Laboratorio de Optica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Laboratorio de Optica"

Transcripción

1 Laboratorio de Optica 5. Lentes Delgadas Neil Bruce Laboratorio de Optica Aplicada, Centro de Instrumentos, U.N.A.M., A.P , México, 04510, D.F. Objetivos Veriicar las ecuaciones que relacionan la distancia imagen y la ampliicación transversal en una lente delgada con la distancia del objeto y ocal de dicha lente. Manejar con luidez los conceptos de distancia ocal de una lente, así como los de objeto e imagen real y objeto e imagen virtual. Aprender a: - Determinar con rapidez la distancia ocal de una lente. - Alinear una lente o un sistema de lentes en un arreglo óptico. Entender correctamente los conceptos de tamaño y ampliicación angular o poder de aumento de un instrumento optico. Entender el poder de ampliicación de una lupa. Construir en el laboratorio un microscopio y un telescopio con dos lentes simples. Introducción Una lente es un sistema óptico, compuesto de dos ó más supericies reractoras no paralelas (en general curvas), con la propiedad de que al observar un objeto através de ella se orma una imagen de dicho objeto. Cuando el sistema sólo esta ormado por dos supericies reractoras es llamada una lente simple y si la separación entre estas supericies es pequeña 1

2 se dice que es delgada. Se tiene que, cuando se hace incidir un haz de rayos paralelos y estos convergen a un punto se le llama a la lente convergente o positiva y si este haz diverge se dice que es divergente o negativa. Para cada posición del objeto se encuentra una posición y tamaño de la imagen. Las imágenes que se pueden construir con las lentes delgadas (y en general, con cualquier sistema óptico) se clasiican como reales o virtuales. Una imagen real es aquella que puede ser proyectada sobre una pantalla de observación colocada a la distancia adecuada, según sea la distancia que guarde el objeto a la lente. Las imágenes virtuales por el contrario no pueden ser proyectadas en una pantalla; es decir, los rayos provenientes del objeto no convergen a ningún punto, más bien parecen diverger de un punto que, para ser localizado, requiere de un arreglo auxiliar. La ubicación de la imagen está descrita matemáticamente por la ecuación de Gauss. Esta relaciona las distancias del objeto y la imagen con un parámetro de la propia lente llamada distancia ocal. Esta es deinida con aquella distancia a la cual convergen rayos paralelos al eje deinido por la lente. La relación es la siguiente: = (1) So Si donde S o es la distancia objeto, S i es la distancia imagen y la distancia ocal. En consecuencia, la ampliicación transversal, deinida como la razón existente entre las dimensiones transversales de la imagen y el objeto, resulta ser M t y i Si = (2) y S o o En donde y i es el tamaño transversal de la imagen y y o es el tamaño transversal del objeto. Por otro lado todas las cantidades involucradas son números positivos pero existe una convención de signos para estas cantidades tomando a los rayos provenientes de la izquierda, esta convención se resume en la siguiente tabla. Cantidad Signo + - S o Objeto real Objeto virtual (a la izquierda de la lente) (a la derecha de la lente) S i Imagen real Imagen virtual (a la derecha de la lente) (a la izquierda de la lente) Lente convergente Lente divergente y o Objeto derecho Objeto invertido y i Imagen derecha Imagen invertida M t Imagen derecha Imagen invertida 2

3 De la ecuación (1) vemos que si S o es positiva y mayor que la distancia ocal de la lente obtendremos una S i positiva por lo cual obtenemos una imagen real, pero si la distancia S o es igual a la distancia ocal S i será ininita por lo que no se podrá obtener una imagen. Ahora bien si tenemos distancias S o menores que la distancia ocal S i será negativa y se ormara una imagen virtual la cual no podremos proyectar sobre una pantalla. Por último si S o es una cantidad negativa, (es decir si tenemos un objeto virtual), la distancia imagen será positiva es decir obtendremos una imagen real. Experimentalmente todas estas cantidades son posibles medirlas, algunas de ellas directamente y otras por medio de un arreglo óptico que acilite este trabajo. El tamaño angular α de un objeto (o imagen) se deine como el ángulo que subtiende el objeto desde el ojo que observa, α yd (igura 1) y α d Figura 1 El poder de ampliicación ( PA ) de un instrumento se deine como el cociente del tamaño angular visto a través del instrumento (igura 2) y el tamaño angular observado a simple vista en condiciones óptimas (generalmente se toma la situación cuando el objeto está en el punto cercano, i.e. en igura 1, d es la distancia al punto cercano): PA i = α α (3) 3

4 y i α i y x L d l Sugerencias Figura 2 A continuación se sugiere un arreglo óptico para realizar el experimento en donde se involucren todos los casos posible para medir la distancia ocal de una lente convergente. Primeramente se determinara la distancia ocal de una lente; para ello se requiere montar el arreglo mostrado en la igura 3. S o S i lampara colimada objeto lente pantalla Figura 3 Debido a que las distancias ocales de las lentes con las que se cuenta en el laboratorio son pequeñas será suiciente que las distancias objeto sean lo suicientemente grandes (según lo permita el riel óptico) para obtener una imagen real y con estos valores estimar en primera aproximación la distancia ocal de la lente. Una vez estimado este valor será necesario 4

5 tomar varios valores de S o para poder establecer con mayor precisión el valor de. Además para cada posición se tomara también el tamaño de la imagen para veriicar la ecuación (2). Debido a que cuando se orma una imagen virtual esta no puede ser proyectada, se requerirá de una lente auxiliar previamente identiicada para poder proyectar una imagen real S i 1 tomando como objeto la imagen virtual de la primera lente y por medio de la misma ecuación de Gauss establecer tanto la distancia imagen como la ampliicación transversal del objeto. véase la igura 2. Por ultimo se tomara a la imagen real ormada por nuestra lente auxiliar como un objeto virtual (colocado a la derecha de nuestra lente de estudio), para ormar con este objeto su imagen real proyectándola sobre la pantalla (ver la igura) y con ayuda de la ecuación (1) determinar tanto S i como la ampliicación transversal. imagen virtual de lente 1 objeto real de lente S o lampara objeto lente 1 lente 2 pantalla S i 1 S i 2 S o 2 Figura 4 Microscopio simple o lupa La manera más simple de usar una lente positiva para aumentar una imagen y observarla cómodamente, es acercando el objeto a la lente de manera que la distancia objeto sea menor a la distancia ocal; la imagen será virtual, de mayor tamaño transversal que el objeto, y suicientemente alejado para una observación cómoda (igura 2). Puede mostrarse que el poder de ampliicación está dado por 0.25 ( ) L l PA = 1 + L (4) en donde un valor típico para la distancia al punto cercano es 0.25m y L y l son positivos. Si se coloca el objeto en el punto ocal de la lente, la imagen virtual está al ininito ( L = ) y: 5

6 i.e. una constante PA = (5) Microscopio Compuesto El microscopio compuesto da mayor aumento angular que la lupa de objetos cercanos. El arreglo se muestra en la igura 5. o o L e e Objeto Imagen Intermedia Objetivo Imagen en Ocular Figura 5 En el arreglo, el objetivo da una imagen real, invertida y aumentada del objeto (la imagen intermedia en la igura 3). La ampliicación transversal del objetivo es (ver Hecht y Zajac, Optica, capitulo 5): M To L = (6) o donde la distancia L es conocida como la longitud del tubo, y es un estándar en microscopios comerciales, L=0.16m. Usando la ecuación (3), el poder de aumento del ocular es: PA e = 025. (7) e El poder de aumento del sistema es: 6

7 PA = M PA To e = L 0.25 o e (8) Telescopio Cual es la dierencia entre un microscopio y un telescopio? Basicamente, la única dierencia es la posición del objeto: cerca para el microscopio y lejos para el telescopio. Quizá por eso los dos ueron descubiertos casi al mismo tiempo (~1600). En la igura 6 se muestra el arreglo para un telescopio simple α o e Imagen Intermedia α i Objetivo Ocular Figura 6 El poder de aumento está dado por la ecuación (3) con α y α i como se indica en la igura 6. Se puede mostrar que el poder de aumento es: o PA = (9) Procedimiento Experimental 1. Hacer una medición rápidamente para tener una estimación de la distancia ocal de su lente positiva. 2. Montar el arreglo mostrado en la igura 7. Usar el eecto de paralaje para ver las posiciones relativas de la lente y la imagen (si la imagen está a la derecha o izquierda de la lente) cuando la distancia entre la lente y el objeto es (a) mayor y (b) menor que la distancia ocal de la lente. 3. Usar el arreglo mostrado en la igura 3 para medir las distancias S o y S i de la lente para dierentes valores de S o, cuando la distancia S i es positiva, i.e. cuando la imagen es real. Realiza el análisis de errores primero para encontrar los valores de S o adecuados para minimizar los errores involucrados. Medir los tamaños del objeto y de e 7

8 la imagen para veriicar la ecuación (2) de la magniicación de la lente. Graicar las unciones de S o y S i convenientes para calcular la distancia ocal de la lente y su error. 4. Usar un sistema de dos lentes ormado por otra lente positiva y la lente ya medida para ormar una imagen real y asi calcular la distancia ocal y su error para la lente desconocida usando la ecuación de Gauss dos veces. Asegúrate de usar correctamente la convención de signos. Medir los tamaños del objeto y de la imagen inal y comparar la magniicación con el valor calculado usando la ecuación (2) para cada lente. 5. Medir la distancia ocal y su error de una lente negativa. Compara la magniicación medida con la magniicación calculada usando la ecuación (2). 6. Usar una lente simple y poner un objeto a una distancia igual a la distancia ocal de la lente. Observar la imagen ormada directamente con el ojo por esta lupa para dierentes posiciones de observación (dierentes valores de l en la igura 2). Describir y explicar sus observaciones. 7. Construir un microscopio con dos lentes y veriicar (cualitativamente) que hay aumento del tamaño angular y que este aumento sigue la relación de la ecuación (8). 8. Construir un telescopio con dos lentes y veriicar (cualitativamente) que hay aumento del tamaño angular y que este aumento sigue la relación de la ecuación (9). espejo lampara colimada objeto lente Figura 7 9. Mide la distancia ocal de un espejo y veriica que al tamaño de la imagen obedece la ecuación de Gauss para un espejo. Bibliograía (1) Optica, E. Hecht y A. Zajac, cap. 5 8

Experimento 2 Lentes Delgadas

Experimento 2 Lentes Delgadas Experiment 2 Lentes Delgadas Objetivs Veriicar las ecuacines que relacinan la distancia imagen y la ampliicación transversal en una lente delgada cn las distanciascal y del bjet de dicha lente. Manejar

Más detalles

Óptica. Radio Microondas Infrarrojo Visible Ultravioleta Rayos X Rayos. plano. 2ª ley: el ángulo de incidencia es igual que el ángulo de reflexión.

Óptica. Radio Microondas Infrarrojo Visible Ultravioleta Rayos X Rayos. plano. 2ª ley: el ángulo de incidencia es igual que el ángulo de reflexión. Óptica Espectro electromagnético (m) 10-1 10-3 7 10-7 4,5 10-7 10-9 10-11 Radio Microondas Inrarrojo Visible Ultravioleta Rayos X Rayos (Hz) 10 9 10 11 4 10 14 8 10 14 10 17 10 19 Hipótesis de Planck Energía

Más detalles

Óptica geométrica II: lentes e imágenes. Versión 2.0

Óptica geométrica II: lentes e imágenes. Versión 2.0 Óptica geométrica II: lentes e imágenes. Versión 2.0 Héctor Cruz Ramírez Instituto de Ciencias Nucleares, UNAM hector.cruz@ciencias.unam.mx septiembre 207 Índice. Objetivos 2. Teoría 2 2.. Lentes delgadas

Más detalles

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física 1 Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física 1. Los índices de refracción de un dioptrio esférico cóncavo, de 20,0 cm de radio, son 1,33 y 1,54 para el primero y el segundo medios.

Más detalles

Instrumentos ópticos

Instrumentos ópticos Instrumentos ópticos Ojo Humano: sistema óptico ormado por un dióptrico esérico (córnea) y una lente (cristalino) orman la imagen del objeto en la retina. Punto remoto: la distancia máxima a la que puede

Más detalles

23. MICROSCOPIO COMPUESTO: DETERMINACIÓN DE SU AUMENTO y MEDIDA DE ÁREAS MICROSCÓPICAS

23. MICROSCOPIO COMPUESTO: DETERMINACIÓN DE SU AUMENTO y MEDIDA DE ÁREAS MICROSCÓPICAS 23. MICROSCOPIO COMPUESTO: DETERMINACIÓN DE SU AUMENTO y MEDIDA DE ÁREAS MICROSCÓPICAS OBJETIVO El objetivo de la práctica es familiarizarse con el uso del microscopio, determinar el aumento lineal de

Más detalles

CAPITULO II: Las imágenes y las lentes

CAPITULO II: Las imágenes y las lentes CAPITULO II: Las imágenes y las lentes CAPITULO II: LAS IMÁGENES Y LAS LENTES 1 1.- Las imágenes 1.1.- Propagación rectilínea de las luz. 1.2.- Las imágenes estenopéicas. 13 1.3.- Características de las

Más detalles

Seminario 3: Lentes, espejos y formación de imágenes

Seminario 3: Lentes, espejos y formación de imágenes Seminario 3: Lentes, espejos y ormación de imágenes Fabián Andrés Torres Ruiz Departamento de Física,, Chile 4 de Abril de 2007. Problemas. (Problema 8, capitulo 35,Física, Raymond A. Serway, las supericies

Más detalles

Guía: Lentes F2 ByG - Q 2º Cuat 2010

Guía: Lentes F2 ByG - Q 2º Cuat 2010 Guía: Lentes F2 ByG - Q 2º Cuat 2010 Objetivos: En la presente práctica se evaluarán las características de sistemas formadores de imágenes como es el caso de lentes delgadas convergentes. Se analizarán

Más detalles

FORMACIÓN DE IMÁGENES CON LENTES DELGADAS

FORMACIÓN DE IMÁGENES CON LENTES DELGADAS FORMACIÓN DE IMÁGENES CON LENTES DELGADAS MATERIAL - Banco de óptica de 90 cm. - Fuente de iluminación. - Objeto difusor con escala 20 30 mm (cuadrícula de 1.0 2.0 mm ). - Transparencia retículo de 20

Más detalles

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N ro 5 Instrumentos Ópticos Simples Objetivo: Estudiar las características

Más detalles

Formación de imágenes en lentes convergentes

Formación de imágenes en lentes convergentes Objetivos Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Formación de imágenes en lentes convergentes. Estudiar un sistema óptico simple. 2. Determinar experimentalmente

Más detalles

Física 2 Biólogos y Geólogos. Lentes delgadas

Física 2 Biólogos y Geólogos. Lentes delgadas Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 2 Lentes delgadas Objetivos Estudiar sistemas ópticos simples, tales como las lentes convergentes y divergentes: formación de imágenes

Más detalles

Lentes Delgadas Tomás Corti (tomascorti@fibertel.com.ar) Ramiro Olivera (ramaolivera@hotmail.com) Fabián Shalóm (fabianshalom@hotmail.

Lentes Delgadas Tomás Corti (tomascorti@fibertel.com.ar) Ramiro Olivera (ramaolivera@hotmail.com) Fabián Shalóm (fabianshalom@hotmail. Trabajo Práctico N o (Continuación) Lentes Delgadas Tomás Corti (tomascorti@fibertel.com.ar) Ramiro Olivera (ramaolivera@hotmail.com) Fabián Shalóm (fabianshalom@hotmail.com) Marzo de 2004 Cátedra de Física

Más detalles

Laboratorio de Optica

Laboratorio de Optica Laboratorio de Optica 8. Interferómetro de Michelson Neil Bruce Laboratorio de Optica Aplicada, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, U.N.A.M., Objetivos A.P. 70-186, México, 04510, D.F.

Más detalles

ÓPTICA. Agradecimientos al profesor Camilo Reyes

ÓPTICA. Agradecimientos al profesor Camilo Reyes ÓPTICA Agradecimientos al profesor Camilo Reyes ÓPTICA Aplicación de lentes, espejos y prismas a instrumentos que controlan y manipulan la luz. CONVERGENTES (positivas) DIVERGENTES (negativas) TIPOS BÁSICOS

Más detalles

ÓPTICA ÓPTICA GEOMÉTRICA

ÓPTICA ÓPTICA GEOMÉTRICA ÓPTICA ÓPTICA GEOMÉTRICA IES La Magdalena. Avilés. Asturias En la óptica geométrica se estudian los cambios de dirección experimentados por los rayos de luz cuando son relejados o reractados mediante representaciones

Más detalles

TEMA: Formación de imágenes en lentes convergentes

TEMA: Formación de imágenes en lentes convergentes TEMA: Formación de imágenes en lentes convergentes Objetivos 1. Estudiar un sistema óptico simple. 2. Determinar experimentalmente la longitud focal de una lente convergente. 3. Verificar experimentalmente

Más detalles

LENTES DELGADAS 2.1. INTRODUCCIÓN

LENTES DELGADAS 2.1. INTRODUCCIÓN LENTE DELGADA.. INTRODUCCIÓN En la práctica anterior se realizó un estudio de las leyes de relexión y reracción de la luz, utilizando espejos y sólidos transparentes con dierentes geometrías. Uno de los

Más detalles

Práctica de Óptica Geométrica

Práctica de Óptica Geométrica Práctica de Determinación de la distancia focal de lentes delgadas convergentes y divergentes 2 Pre - requisitos para realizar la práctica.. 2 Bibliografía recomendada en referencia al modelo teórico 2

Más detalles

21. POTENCIA DE LENTES DELGADAS.

21. POTENCIA DE LENTES DELGADAS. OBJETIVO 21. POTENCIA DE LENTES DELGADAS. Determinación de la distancia focal y de la potencia de lentes delgadas convergentes y divergentes. MATERIAL (1) Banco óptico con regla graduada. (2) Lámpara con

Más detalles

PRACTICA 3 ÓPTICA GEOMÉTRICA

PRACTICA 3 ÓPTICA GEOMÉTRICA 10 PRACTICA 3 ÓPTICA GEOMÉTRICA (Equipo: manual PASCO, Introductory Optics System) OBJETIVO GENERAL Estudiar las leyes de la reflexión y refracción, y la dependencia de esta última en la longitud de onda.

Más detalles

Lentes delgadas (aprox. paraxial + delgadas)

Lentes delgadas (aprox. paraxial + delgadas) Lentes delgadas (aprox. paraxial + delgadas) Formación de imágenes con lentes CONVERGENTES O POSITIVAS Objeto más allá del foco: Imagen REAL, INVERTIDA Objeto más cerca del foco: Imagen VIRTUAL, DERECHA,

Más detalles

Práctica 1: La lupa. 1.1 Objetivo de la práctica. 1.2 Material necesario LABORATORIO DE ÓPTICA (ÓPTICA INSTRUMENTAL) CURSO 2009/10

Práctica 1: La lupa. 1.1 Objetivo de la práctica. 1.2 Material necesario LABORATORIO DE ÓPTICA (ÓPTICA INSTRUMENTAL) CURSO 2009/10 LBORTORIO DE ÓPTIC (ÓPTIC INSTRUMENTL) CURSO 2009/10 Práctica 1: La lupa 11 Objetivo de la práctica El objetivo de esta práctica es la comprensión de los fundamentos de la lupa Para ello se realiza la

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

Ejercicios Repaso Tema 5: Óptica geométrica

Ejercicios Repaso Tema 5: Óptica geométrica Cuestiones y Problemas Ejercicios Repaso Tema 5: Óptica geométrica Dpto. de Física 1. Una esfera de vidrio de paredes delgadas y radio R está llena de agua. A una distancia 3R de su superficie se coloca

Más detalles

FÍSICA 2º BACHILLERATO

FÍSICA 2º BACHILLERATO PROBLEMAS DE ÓPTICA 1.- Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º. Encontrar el ángulo refractado. ( n agua = 1,33 ) SOLUCIÓN 58,7º 2.- Encontrar el ángulo

Más detalles

Medición indirecta de la distancia focal de una lente convergente

Medición indirecta de la distancia focal de una lente convergente Medición indirecta de la distancia focal de una lente convergente Donato Vásquez Juárez Universidad Autónoma Chapingo Dpto. de Preparatoria Agrícola Área de Física donatovas@hotmail.com Guillermo Becerra

Más detalles

Experimento 12 LEY DE CHARLES. Objetivos. Teoría

Experimento 12 LEY DE CHARLES. Objetivos. Teoría Experimento 12 LEY DE CHARLES Objetivos 1. Montar un modelo de máquina térmica, 2. Poner a funcionar el modelo para verificar la ley de Charles, 3. Describir y explicar la ley de Charles a la luz de los

Más detalles

Guía Óptica. Área de Físico-Química. 4to año 2016

Guía Óptica. Área de Físico-Química. 4to año 2016 Guía Óptica Área de Físico-Química 4to año 2016 Pág. 1 de 10 Espejos Reflexión de la luz: Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. En este fenómeno

Más detalles

MEDICIÓN INDIRECTA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE.

MEDICIÓN INDIRECTA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE. 1 XII CONGRESO NACIONAL DE INVESTIGACIÓN EDUCATIVA MEDICIÓN INDIRECTA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE. DONATO VÁSQUEZ JUÁREZ/ GUILLERMO BECERRA CÓRDOVA Universidad Autónoma Chapingo. RESUMEN:

Más detalles

PRÁCTICA Nº.- LENTES.

PRÁCTICA Nº.- LENTES. PRÁCTICA Nº.- LENTES. Objetivo: Estudiar la ormación de imágenes de lentes delgadas y determinar la distancia ocal y la potencia de una lente convergente y de una lente divergente. undamento teórico: La

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

Física 2 Laboratorio N 1 Óptica Geométrica

Física 2 Laboratorio N 1 Óptica Geométrica Física 2 Laboratorio N 1 Óptica Geométrica Enunciado de Laboratorio Laboratorio Nº 1 Tema 1-A: Medida de la Longitud Focal de un Sistema Óptico. I- Objetivo En esta práctica se estudia un método para determinar

Más detalles

Versión: 01 Manual de prácticas del Página 1/7 Sección ISO 8.3 Fecha de 20 de enero de 2017 emisión Área/Departamento: Facultad de Ingeniería

Versión: 01 Manual de prácticas del Página 1/7 Sección ISO 8.3 Fecha de 20 de enero de 2017 emisión Área/Departamento: Facultad de Ingeniería Página 1/7 Práctica: Lentes 1 Página 2/7 1. Seguridad en la ejecución Peligro o fuente de energía 1 Banco óptico Riesgo asociado Puede caerse y lastimar las extremidades de los alumnos. 2 Lentes Pueden

Más detalles

Física II- Curso de Verano. Clase 7

Física II- Curso de Verano. Clase 7 Física II- Curso de Verano Clase 7 Formación de imágenes: ESPEJOS PLANOS Leyes de reflexión Imagen virtual, formada por la prolongación de los rayos Distancia imagen = distancia objeto d o =d i No invierte

Más detalles

Un dioptrio es una superficie de separación entre dos medios de diferente índice de refracción. Vamos a estudiar dos: el esférico y el plano.

Un dioptrio es una superficie de separación entre dos medios de diferente índice de refracción. Vamos a estudiar dos: el esférico y el plano. Un dioptrio es una supericie de separación entre dos medios de dierente índice de reracción. Vamos a estudiar dos: el esérico el plano. Dioptrio esérico Vamos a trabajar con raos paraxiales: raos próximos

Más detalles

BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Introducción a la óptica geométrica 2. Óptica de la reflexión. Espejos planos y esféricos 3. Óptica de

Más detalles

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B.

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B. Junio 2013. Pregunta 5A.- A 10 cm de distancia del vértice de un espejo cóncavo de 30 cm de radio se sitúa un objeto de 5 cm de altura. a) Determine la altura y posición de la imagen b) Construya la imagen

Más detalles

Guías de Prácticas de Laboratorio

Guías de Prácticas de Laboratorio Guías de Prácticas de Laboratorio Laboratorio de Número de Páginas: 10 Codificación: LAF-G-407 Fecha Emisión: 30/11/07 Revisión No.: 0 Física IV ÓPTICA Y ACÚSTICA Titulo de la Práctica de Laboratorio:

Más detalles

FÍSICA. BLOQUE 3: Ondas y Óptica ÓPTICA GEOMÉTRICA 2º CURSO

FÍSICA. BLOQUE 3: Ondas y Óptica ÓPTICA GEOMÉTRICA 2º CURSO BLOQUE 3: Ondas y Óptica ÓPTICA GEOMÉTRICA El estudio de la Óptica Geométrica, se restringe al marco de la aproximación paraxial. Las ecuaciones de los sistemas ópticos se presentan desde un punto de vista

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

ÓPTICA GEOMÉTRICA MODELO 2016

ÓPTICA GEOMÉTRICA MODELO 2016 ÓPTICA GEOMÉTRICA MODELO 2016 1- Se desea obtener una imagen virtual de doble tamaño que un objeto. Si se utiliza: a) Un espejo cóncavo de 40 cm de distancia focal, determine las posiciones del objeto

Más detalles

FASES DE VENUS Rosa M. Ros, Ederlinda Viñuales Atrévete con el Universo

FASES DE VENUS Rosa M. Ros, Ederlinda Viñuales Atrévete con el Universo FASES DE VENUS Rosa M. Ros, Ederlinda Viñuales Atrévete con el Universo La Tierra es el tercer planeta del sistema solar, en consecuencia el aspecto que nos presentan los diferentes planetas depende de

Más detalles

Física 2 Biólogos y Geólogos. Reflexión y refracción de la luz

Física 2 Biólogos y Geólogos. Reflexión y refracción de la luz Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 1 Reflexión y refracción de la luz Objetivos Estudiar experimentalmente las leyes de la reflexión y de la refracción de la luz. Determinar

Más detalles

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real, es cuando está formada sobre los propios rayos. Estas imágenes se pueden recoger sobre una pantalla. Imagen virtual, es cuando está formada por la prolongación

Más detalles

GUIÓN DE LA SESIÓN DE PRÁCTICAS Nº 1 Medida de focales.

GUIÓN DE LA SESIÓN DE PRÁCTICAS Nº 1 Medida de focales. GUIÓN DE LA SESIÓN DE PRÁCTICAS Nº 1 Medida de focales. Objetivos de la práctica: Medida de la distancia focal de una lente convergente por tres métodos distintos (uno de los cuales permite la localización

Más detalles

FACULTAD DE CIENCIAS DEPARTAMENTO DE FISICA

FACULTAD DE CIENCIAS DEPARTAMENTO DE FISICA Experiencia nº: Lentes delgadas FACULTAD DE CIENCIAS OBJETIVOS.- Comprobar experimentalmente la Ley de Gauss..- Determinar experimentalmente la distancia focal de una lente biconvexa..- Determinar experimentalmente

Más detalles

Capítulo Óptica. Lentes. Matías Enrique Puello Chamorro

Capítulo Óptica. Lentes. Matías Enrique Puello Chamorro Capítulo Óptica. Lentes Matías Enrique Puello Chamorro www.matiaspuello.wordpress.com 24 de abril de 2017 Índice 1. Óptica 2 2. Lentes 3 3. Tipos de lentes 4 4. Lentes convergentes 5 5. Lentes divergentes

Más detalles

{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la

{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la 4 FUNCIONES 4 Conceptos básicos Sean A y B dos conjuntos dados, una unción de A en B es una regla de correspondencia que asigna a cada elemento de A uno y solamente uno de B En una unción: A es el dominio

Más detalles

Física 2 Biólogos y Geólogos. Instrumentos Ópticos

Física 2 Biólogos y Geólogos. Instrumentos Ópticos Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 3 Instrumentos Ópticos Objetivos Construir un microscopio compuesto sencillo y determinar su aumento. Emplear un microscopio de laboratorio:

Más detalles

TEMA 11 : ÓPTICA GEOMÉTRICA

TEMA 11 : ÓPTICA GEOMÉTRICA . INTRODUCCIÓN A LA ÓPTICA GEOMÉTRICA Las leyes sobre las que se estructura la óptica geométrica son: Ley de propagación rectilínea de la luz Ley de independencia de los rayos luminosos. Cada rayo es independiente

Más detalles

FUNDAMENTOS DE SALUD VISUAL: MANEJO CLÍNICO DE LA MIOPÍA

FUNDAMENTOS DE SALUD VISUAL: MANEJO CLÍNICO DE LA MIOPÍA PRÁCTICA FUNDAMENTOS DE SALUD VISUAL: MANEJO CLÍNICO DE LA MIOPÍA La corrección de los defectos de refracción como la miopía, la hipermetropía y el astigmatismo es una de las actividades básicas que realiza

Más detalles

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO DIOPTRIO PLANO Ejercicio 1. Junio 2.013 Un objeto se encuentra delante de un espejo plano a 70 cm del mismo. a. Calcule la distancia al espejo a la que se forma la imagen y su aumento lateral. b. Realice

Más detalles

SESIÓN Nº 1: MEDIDA DE FOCALES.

SESIÓN Nº 1: MEDIDA DE FOCALES. Sesión nº 1: Medida de Focales. SESIÓN Nº 1: MEDIDA DE FOCALES. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales Aproximación paraxial: aproximación de ángulos con el

Más detalles

CURSO DE FÍSICA 1º BACHILLERATO ÓPTICA GEOMÉTRICA

CURSO DE FÍSICA 1º BACHILLERATO ÓPTICA GEOMÉTRICA CURS DE FÍSICA 1º BACHILLERAT ÓPTICA GEMÉTRICA ESPEJS Un espejo es una superficie pulida y opaca. Cuando un haz de luz incide sobre él, este se refleja de manera especular. Es por esta razón que un espejo

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras GUÍA DE EJERCICIOS Nº1 Responde en tu cuaderno las siguientes preguntas: 1. Menciona dos observaciones que respalden la teoría ondulatoria de la luz. 2. Menciona dos observaciones que respalden la teoría

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '

Más detalles

Experiencia nº3: Lentes delgadas

Experiencia nº3: Lentes delgadas Experiencia nº3: Lentes delgadas OBJETIVOS 1.- Comprobar experimentalmente la ecuación ecuación de Gauss para lentes. 2.- Determinar experimentalmente la distancia focal de una lente biconvexa. 3.- Determinar

Más detalles

Proyecto 1.- Lentes convergentes Observaciones cualitativas I

Proyecto 1.- Lentes convergentes Observaciones cualitativas I Objetivos Estudio cualitativo y cuantitativo de sistemas ópticos simples. Análisis de la formación de imágenes por lentes convergentes. Determinación de la distancia focal de lentes convergentes delgadas.

Más detalles

UN SISTEMA PARA RESOLVER PROBLEMAS DE ÓPTICA. Guillermo Becerra Córdova. Universidad Autónoma Chapingo. Dpto. de Preparatoria Agrícola.

UN SISTEMA PARA RESOLVER PROBLEMAS DE ÓPTICA. Guillermo Becerra Córdova. Universidad Autónoma Chapingo. Dpto. de Preparatoria Agrícola. UN SISTEMA PARA RESOLVER PROBLEMAS DE ÓPTICA Guillermo Becerra Córdova Universidad Autónoma Chapingo Dpto. de Preparatoria Agrícola Área de Física E-mail: gllrmbecerra@yahoo.com Resumen Dentro de los cursos

Más detalles

Objetivos. Introducción. β α

Objetivos. Introducción. β α Objetivos Medir el espectro emitido por una lámpara de sodio utilizando redes de difracción. Determinar los límites del espectro visible usando una fuente de luz blanca. Introducción Una red de difracción

Más detalles

Formación de imágenes en lentes convergentes

Formación de imágenes en lentes convergentes Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Formación de imágenes en lentes convergentes Objetivos. Estudiar un sistema óptico simple. 2. Determinar experimentalmente

Más detalles

1 1 1 s s 10 14s. Problema 95

1 1 1 s s 10 14s. Problema 95 Problema 95 Una lente convergente de de distancia focal se utiliza para formar la imagen de un objeto luminoso lineal colocado perpendicularmente a su eje óptico y de tamaño y = 1. a) Dónde hay que colocar

Más detalles

Laboratorio de Física II (ByG) 2do cuat Guía 2 y 3: Lentes e instrumentos ópticos.

Laboratorio de Física II (ByG) 2do cuat Guía 2 y 3: Lentes e instrumentos ópticos. Objetivos Laboratorio de Física II (ByG) 2do cuat. 2016 Guía 2 y 3: Lentes e instrumentos ópticos. Estudiar sistemas ópticos simples. Caracterizar una lente convergente estudiando la formación de imágenes

Más detalles

Fig.1. Fig.1. 1 u. 1 f. 1 v. 1 f f

Fig.1. Fig.1. 1 u. 1 f. 1 v. 1 f f FOCAL DE UNA LENTE DIVERGENTE FUNDAMENTO Se trata de medir la distancia ocal de una lente divergente. El esquema de la práctica es el de la igura. Fig. La lente convergente L orma una imagen real I. Si

Más detalles

1.- LENTES. OBJETIVOS: MATERIAL:

1.- LENTES. OBJETIVOS: MATERIAL: 1.- LENTES. OBJETIVOS: - Comprobar experimentalmente el mecanismo de formación de imágenes con una lente convergente. - Identificar en el laboratorio los conceptos básicos de la óptica geométrica: lentes,

Más detalles

transparent ÓPTICA GEOMÉTRICA Prof. Jorge Rojo Carrascosa 27 de febrero de 2017

transparent  ÓPTICA GEOMÉTRICA Prof. Jorge Rojo Carrascosa 27 de febrero de 2017 transparent www.profesorjrc.es 27 de febrero de 2017 Conceptos Básicos 1 En medios isótropos y homogeneos, el rayo luminoso se propaga en ĺınea recta. 2 El cruce de dos o más rayos no afectan a la trayectoria.

Más detalles

PRÁCTICA 01 EL MICROSCOPIO COMPUESTO

PRÁCTICA 01 EL MICROSCOPIO COMPUESTO PRÁCTICA 01 EL MICROSCOPIO COMPUESTO OBJETIVOS: 1. Recordar las partes mecánicas y ópticas del microscopio. 2. Comprender la interrelación entre parte óptica y mecánica. 3. Manejar perfectamente el mecanismo

Más detalles

Liceo Cristo Redentor Los Álamos Educar en equidad y calidad a estudiantes forjadores de futuro PROFESOR JAIME HERRERA RIVAS

Liceo Cristo Redentor Los Álamos Educar en equidad y calidad a estudiantes forjadores de futuro PROFESOR JAIME HERRERA RIVAS Liceo Cristo Redentor Los Álamos Educar en equidad y calidad a estudiantes forjadores de futuro PROFESOR JAIME HERRERA RIVAS En esta unidad aprenderás 1. Clasificar los cuerpos según su comportamiento

Más detalles

Bolilla 09. Óptica Geométrica (parte 2)

Bolilla 09. Óptica Geométrica (parte 2) Bolilla 09 Óptica Geométrica (parte 2) La óptica geométrica es la parte de la Física que estudia, mediante leyes geométricas sencillas, los cambios de dirección que experimentan los rayos de luz en la

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013 2014-Modelo A. Pregunta 4.- Utilizando una lente convergente delgada que posee una distancia focal de 15 cm, se quiere obtener una imagen de tamaño doble que el objeto. Calcule a qué distancia ha de colocarse

Más detalles

LENTES Autor: Ramón Chavez PRIMERA PARTE INTRODUCTORIA

LENTES Autor: Ramón Chavez PRIMERA PARTE INTRODUCTORIA GUÍA DE PRÁCTICA LENTES Autor: Ramón Chavez PRIMERA PARTE INTRODUCTORIA I INTRODUCCIÓN Esta primera parte de la práctica es un instrumento que ayuda de una manera directa a identificar y comprender los

Más detalles

LENTES ESFÉRICAS convergentes o divergentes.

LENTES ESFÉRICAS convergentes o divergentes. LENTES Objetivos Conocer los tipos de lentes y los elementos de las lentes. Conocer los rayos principales y la formación de imágenes en lentes convergentes y divergentes. Conocer las partes del ojo, las

Más detalles

1) Se selecciona la frecuencia deseada para la antena de corte: 7050MHz y utiliza la fórmula:

1) Se selecciona la frecuencia deseada para la antena de corte: 7050MHz y utiliza la fórmula: Sexta, 25 de Março de 2011 9:03:29 AM @460 Proyectos de usuario : PU1LHP / Bira antenas dipolo para todas las pistas - Diseño: La antena dipolo puede ser diseñado y construido para ser utilizado en varias

Más detalles

LENTES Y ÓPTICA DEL OJO

LENTES Y ÓPTICA DEL OJO LENTES Y ÓPTICA DEL OJO OBJETIVOS En las investigaciones 2 y 3 vimos que si la luz atraviesa superficies de separación entre dos medios diferentes se desvía. Este hecho ha sido empleado para la construcción

Más detalles

Práctica 7 Lentes. Tema correspondiente: Fenómenos de reflexión y refracción. Elaborado por: Revisado por: Autorizado por: Vigente desde:

Práctica 7 Lentes. Tema correspondiente: Fenómenos de reflexión y refracción. Elaborado por: Revisado por: Autorizado por: Vigente desde: Práctica 7 Lentes Tema correspondiente: Fenómenos de reflexión y refracción. Elaborado por: Revisado por: Autorizado por: Vigente desde: Dr. Heriberto Aguilar Juárez Ing. Martín Bárcenas Escobar Ing. Gabriel

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

LA MAGNITUD ESTELAR CARLOS S. CHINEA, 1997 LA MAGNITUD ESTELAR

LA MAGNITUD ESTELAR CARLOS S. CHINEA, 1997 LA MAGNITUD ESTELAR LA MAGNITUD ESTELAR 1.La sensación de la magnitud estelar. 2.Estimación visual de la sensación de magnitud aparente por comparación. 3.Una escala de medición. La constante de proporcionalidad. 4.El cero

Más detalles

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º 1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º. Encuentra el ángulo refractado ( n agua = 1, 33 ).. Encuentra el ángulo límite para la reflexión total interna

Más detalles

TEMA 7.- SISTEMAS TELESCÓPICOS

TEMA 7.- SISTEMAS TELESCÓPICOS 1/ 6 TEMA 7.- SISTEMAS TELESCÓPICOS Introducción. La condición aocal. Anteojo Astronómico. Aumento visual. Campo angular. Diaragma de campo y retículos. Proundidad de enoque. Oculares dles. Sistema inversor.

Más detalles

Algunos conceptos microeconómicos. Tema: Elasticidad.

Algunos conceptos microeconómicos. Tema: Elasticidad. UNIVERSIDAD DEL VALLE FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN MICROECONOMÍA rograma de Contaduría ública rofesor: Uvencer Alexander Gómez I. Marzo de 008. Algunos conceptos microeconómicos. Tema: Elasticidad.

Más detalles

Manual de Instrucciones y Guía de Experimentos

Manual de Instrucciones y Guía de Experimentos Manual de Instrucciones y Guía de Experimentos BANCO ÓPTICO OBSERVACIÓN SOBRE LOS DERECHOS AUTORALES Este manual está protegido por las leyes de derechos autorales y todos los derechos están reservados.

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos (Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen

Más detalles

Divisor de tensión y puente de Wheatstone

Divisor de tensión y puente de Wheatstone Divisor de tensión y puente de Wheatstone Experiencia 4 1.- OBJETIVOS 1. Derivar pequeñas tensiones a partir de una tensión disponible. 2. Si se conecta una carga al divisor de tensión (resistencia de

Más detalles

Lentes convergentes Observaciones cualitativas I

Lentes convergentes Observaciones cualitativas I Guía 2:Óptica Geométrica Cátedra D. Skigin - 2do Cuat. 2010 Objetivos Estudio cualitativo y cuantitativo de sistemas ópticos simples. Análisis de la formación de imágenes por lentes convergentes. Determinación

Más detalles

CAPÍTULO aletos Física para Ciencias e Ingeniería Contacto: Conceptos fundamentales

CAPÍTULO aletos Física para Ciencias e Ingeniería Contacto: Conceptos fundamentales aletos.6.04- Conceptos undamentales CAPÍTULO.6.04 Un conjunto de supericies que separan medios de distinto índice de reracción constituyen un sistema óptico. Si, como caso particular, estas supericies

Más detalles

Asíntotas en una función.

Asíntotas en una función. Asíntotas en una unción. Las asíntotas son rectas a las cuales la unción se va aproimando indeinidamente, cuando por lo menos una de las variables ( o y) tienden al ininito. Deinición: Si un punto, y )

Más detalles

Construcción de una línea perpendicular, dado un punto y una línea. 1. Dibuja una línea horizontal y un punto por encima de esa línea.

Construcción de una línea perpendicular, dado un punto y una línea. 1. Dibuja una línea horizontal y un punto por encima de esa línea. Materia: Matemática de Séptimo Tema: Rectas Perpendiculares Qué piensas cuando te dicen que dos líneas forman en un ángulo recto? Qué terminología usarías para describir a estas líneas? Después de revisar

Más detalles

APUNTE: CONCEPTO DE DERIVADA

APUNTE: CONCEPTO DE DERIVADA APUNTE: CONCEPTO DE DERIVADA UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic en Economia Proesor: Pro Mabel Chrestia Semestre: ero Año: o Introducción al concepto de derivada de

Más detalles

FÍSICA 2 (FÍCOS) - CÉDRA PROF. SKIGIN SEGUNDO CUATRIMESTRE DE 2016 GUÍA 3: DESCRIPCIÓN GEOMÉTRICA DE MOVIMIENTOS ONDULATORIOS

FÍSICA 2 (FÍCOS) - CÉDRA PROF. SKIGIN SEGUNDO CUATRIMESTRE DE 2016 GUÍA 3: DESCRIPCIÓN GEOMÉTRICA DE MOVIMIENTOS ONDULATORIOS FÍSICA 2 (FÍCOS) - CÉDRA PROF. SKIGIN SEGUNDO CUATRIMESTRE DE 2016 GUÍA 3: DESCRIPCIÓN GEOMÉTRICA DE MOVIMIENTOS ONDULATORIOS 1. a) Si un rayo parte del punto A = (0,1,0), se refleja en el espejo plano

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

Interferencia: Redes de difracción

Interferencia: Redes de difracción Laboratorio de Física (Q) Departamento de Física. FCEyN- UBA Interferencia: Redes de difracción Objetivos Se propone medir el espectro emitido por una lámpara de sodio utilizando redes de difracción. Se

Más detalles

ÓPTICA ÓPTICA GEOMÉTRICA

ÓPTICA ÓPTICA GEOMÉTRICA ÓPTICA La óptica es la parte de la física que estudia los fenómenos de la luz. Se divide en tres ramas: Óptica Geométrica: estudia la naturaleza particular de la luz desde el punto de vista corpuscular,

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles