Método de fórmula general

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Método de fórmula general"

Transcripción

1 Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula general para resolver ecuaciones de segundo grado es la siguiente: x = b ± b ac a Definición 1 donde a, b, c son los coeficientes de la ecuación cuadrática: a x + b x + c = 0. Para resolver ecuaciones de segundo grado usando la fórmula general, primero debemos identificar los valores de los coeficientes. Resuelve la siguiente ecuación cuadrática: x + x 1 = 0 Ejemplo 1 Observa que en este caso no podemos hacer la factorización, porque: El trinomio cuadrado no es perfecto, y No hay dos números enteros que sumados den y multiplicados den 1. En estos casos, la fórmula general es la que nos salva. Los coeficientes en este caso son: a = 1, b =, y c = 1. Vamos a sustituir los coeficientes en la fórmula y después realizamos los cálculos que quedan indicados. x = b ± b ac a = () ± () (1)( 1) (1) = ± ( ) = ± 8 Podemos ver que el radicando puede ser factorizado como 8 = 3 simplificar: =, y después, x = ± = ± 1/1

2 Y ahora podemos simplificar, dividiendo entre dos: x = = ± = 1 ± Y las soluciones de la ecuación cuadrática son: x 1 = 1 + x = 1 Para verificar que las soluciones de la ecuación cuadrática son correctas podemos utilizar el método de factorización. Al sumar las raíces debemos obtener el negativo del coeficiente del término lineal, y al multiplicarlos, debemos obtener término independiente. x 1 + x = (x 1 )(x ) = 1 ( 1 + ) ( 1 + ) ( + 1 ) ( 1 ) Profesor: Sugiera apliquen producto que conjugado para la multiplicación. Reto 1 Ejemplo En la comprobación tanto la suma de las raíces como la multiplicación son muy sencillas. Para realizar la multiplicación de una manera sencilla aplica el producto de binomios conjugados: el resultado es una diferencia de cuadrados. Explica por qué la suma de las raíces debe ser igual al negativo del coeficiente del término lineal Resuelve la siguiente ecuación cuadrática: 5 x + 57 x 36 = 0 Esta ecuación sí se puede resolver por el método de factorización, pero sería muy laborioso. Preferimos usar el método de la fórmula general: x = b ± b ac a = (57) ± (57) (5)( 36) (5) = 57 ± 39 ( 70) = 57 ± /1

3 El número 3969 = 63, así que podemos simplificar el radicando: x = 57 ± ± 63 = Ahora encontramos las dos raíces: x 1 = x = = 6 = 3 5 = = 1 Esto quiere decir que podemos reescribir la ecuación de la siguiente manera equivalente: ( (x + 1) x 3 ) = 0 5 Y al multiplicar ambos lados de la igualdad por 5, obtenemos una ecuación equivalente que no incluye fracciones: (x + 1)(5 x 3) = 0 Ahora que conoces la factorización, se te queda como ejercicio multiplicar los binomios para verificar que las ecuaciones son equivalentes y después realizar la comprobación sustituyendo las raíces en la ecuación. Algunas veces encontraremos ecuaciones que al simplificarse, se reducen a una ecuación cuadrática. En estos casos, después de haber expresado la ecuación en la forma (??), debemos reconocerla como tal y proceder a su solución por cualquiera de los métodos que ya hemos estudiado. Resuelve la siguiente ecuación: 5 x + 1 x = 3 Ejemplo 3 Esta ecuación, para empezar, ni siquiera parece cuadrática. Vamos a simplificarla, para ver si podemos resolverla usando la fórmula general. Para esto, vamos a multiplicar ambos lados de la igualdad por ambos denominadores: 5 (x + )(x ) x + (x + ) (x ) x = 3 (x + )(x ) 5 (x ) (x + ) = 3 (x ) 5 x x = 3 x 1 3 x + x = 0 Esta ecuación cuadrática puede resolverse fácilmente utilizando el método de factorización. 3/1

4 Sin embargo, vamos a utilizar la fórmula general: x = b ± b ac a = () ± () ( 3)(0) ( 3) = ± 16 (0) 6 = ± 16 6 Como 16 =, tenemos: Ahora tú realiza la comprobación. x = ± 6 x 1 = + = 0 6 x = 6 = 8 6 = 3 Ejemplo Resuelve la siguiente ecuación: 8 x 1 1 x + 1 = 1 De nuevo, simplificamos la ecuación, multiplicando ambos lados de la igualdad por ambos denominadores: 8 ( x 1)(x + 1) x + 1) x 1 x + 1 = (x 1)(x + 1) 8 (x + 1) (x 1) = x 1 8 x + 8 x + 1 = x 1 7 x + 9 = x 1 x + 7 x + = 0 Pero todavía podemos multiplicar por 1 ambos lados de la anterior igualdad y obtener: x 7 x = 0 /1

5 Ahora podemos aplicar la fórmula general: x = b ± b ac a = ( 7) ± ( 7) (1)( ) (1) = 7 ± 9 ( 0) = 7 ± 89 Ahora podemos encontrar ambos valores de las raíces: Se te queda la comprobación como ejercicio. x 1 = x = 7 89 Algunas ecuaciones que no son cuadráticas, se pueden transformar en ecuaciones cuadráticas y resolverse usando los métodos que ya hemos estudiado. El siguiente ejemplo es una muestra de esos casos. Resuelve la siguiente ecuación cuadrática: x + 9 x 5 = 0 Ejemplo 5 Empezamos notando que esta ecuación tiene solamente exponentes pares. Esto nos sugiere definir: u = x, lo cual implica: u = x. Al sustituir estos valores en la ecuación obtenemos una nueva ecuación equivalente: u + 9 u 5 = 0 Ahora tenemos una ecuación cuadrática que podemos resolver utilizando la fórmula general: u = b ± b ac a = (9) ± (9) ()( 5) () = 9 ± 81 ( 0) = 9 ± /1

6 Sabemos que 11 = 11, entonces, u 1 = u = = 1 = 5 Pero u 1 = x1, es decir, x 1 = 1 x = ± 1 x 11 = 1 x 1 = 1 Y por otra parte, x = 5 x = ± 5 = ± i 5 x 1 = i 5 x = i 5 En este caso, debido a que la ecuación es de cuarto grado, tiene cuatro raíces. Ejemplo 6 Es importante observar que una ecuación de cuarto grado tiene cuatro raíces. Igualmente, una ecuación de tercer grado tiene tres raíces y una ecuación de segundo grado siempre tiene dos raíces. Seguramente te preguntas: «por qué algunas ecuaciones de segundo grado tienen una sola raíz?» Porque en estos casos las dos raíces son iguales. Por ejemplo, de la ecuación: (x 1) = 0, tiene dos raíces idénticas, siendo ambas x = 1. Algunos problemas que no parecen tener relación con las ecuaciones cuadráticas pueden expresarse como una ecuación cuadrática a través de una transformación. Resuelve: 5 x x = 9 Profesor: Sugiera la factorización: (x 1) = (x 1)(x Vamos a hacer una transformación. Vamos a definir u = 5 x, así: u = 5 x. Por lo que la ecuación puede transformarse como: 5 x x = 9 u + 8 u = 9 Ahora podemos resolver esta ecuación cuadrática por factorización o por fórmula general. 6/1

7 Aplicamos la fórmula general: u = b ± b ac a = (8) ± (8) (1)( 9) (1) = 8 ± 6 ( 36) = 8 ± 0 Ahora calculamos los valores de las dos raíces de la ecuación transformada: Método de factorización: u 1 = u = 8 + = 1 8 = 9 u + 8 u 9 = 0 (u + 9)(u 1) = 0 Las raíces son inmediatas a partir de este método. Ahora volvemos a la definición que hicimos: u = encontrar el verdadero valor de x: 5 x y sustituimos el valor de u para 1 = 5 x x = 1 5 = 1 9 = 5 x x = ( 9) 5 = 5909 Y esas dos son las raíces que queríamos calcular. Observa que en el ejemplo anterior aplicamos algunas de las leyes de los exponentes y los radicales para transformar la ecuación en una que sí supieramos cómo resolver. En otros problemas tendremos que aplicar además productos notables y algunas veces factorización. Resuelve y verifica la raíz positiva de: 3 x x + 1 = 3 x Ejemplo 7 En este ejercicio debes recordar las leyes de los exponentes y de los radicales y los productos notables. Si no recuerdas bien estos tema, es una buena idea estudiarlos de nuevo. 7/1

8 En este caso, vamos a multiplicar ambos lados de la ecuación por 3 x + 1. ( ) x + 1 x = 3 x 3 x x + 1 (3 x + 1) + 35 = 3 x (3 x + 1) Ahora elevamos al cuadrado ambos lados de la igualdad: (x + 1) = 3 x + 36 = 3 x (3 x + 1) 3 3 x + 1 = x (3 x + 1) ( ) x (3 x + 1) x + x + 1 = x (3 x + 1) x + x + 1 = 3 x + x x + 3 x + 1 = 0 x 3 x 1 = 0 Ahora aplicamos la fórmula general para resolver ecuaciones de segundo grado: x = b ± b ac a = ( 3) ± ( 3) ()( 1) () = 3 ± 59 ( 115) = 3 ± 1681 Como 1681 = 1, tenemos: x 1 = x = = 6 = 16 = 18 = 9 =.5 Finalmente, vamos a probar la raíz positiva: 3 x x + 1 = 3 x 35 3 (16) = (16) = 3 () = = 1 8/1

9 Y 16 satisface la ecuación, por lo que es una raíz de la misma. Ahora vamos a resolver algunos problemas cotidianos con el apoyo de las ecuaciones cuadráticas. Ejemplo 8 El largo de un terreno es un metro mayor al doble del ancho. Su área es de 300 m. Cuáles son sus dimensiones? Sabemos que el largo es un metro más largo que el doble del ancho. Vamos a realizar un dibujo para representar la información del problema: x A = 300 m x + 1 Si x es su ancho, el largo será: x + 1. Y su área es de 300 m, entonces la ecuación que modela esta situación es: (ancho)(largo) = Área del terreno x ( x + 1) = 300 Ahora tratamos de simplificar la ecuación: Ahora aplicamos la fórmula general: x ( x + 1) = 300 x + x 300 = 0 x = b ± b ac a = (1) ± (1) ()( 300) () = 1 ± 1 ( 00) = 1 ± /1

10 Ahora podemos encontrar las raíces de la ecuación: x 1 = x = 1 01 = = = 8 = 1 = 50 = 1.5 Esto nos indica que el ancho del terreno original era de 1 metros. El largo es de: (1)() + 1 = 5. Entonces, el área del terreno es de: (1)(5) = 300 m. La solución satisface las condiciones del problema, por tanto es correcta. Observa que la raíz: x = 1.5 satisface la ecuación, pero no es la solución del problema porque el ancho del terreno no puede ser un número negativo. Ejemplo 9 Una fotografía de 7 cm 35 cm se va a enmarcar. Para esto, se le colocará alrededor una banda de papel especial para adornarla. El ancho del papel alrededor de la fotografía es constante. Cuánto debe medir este ancho para que el aumento en el área total de la fotografía con su marco de papel sea de 335 cm? Empezamos realizando una figura para tener una mejor idea del problema: x 35 x x 7 x De la figura se ve inmediatamente que la fotografía con marco tendrá ahora (7 + x) cm de ancho y (35 + x) cm de altura. Entonces, el área final será: (7 + x)(35 + x). Necesitamos que el área aumente en 335 cm. /1

11 El área de la fotografía sin el marco es de: 7 35 = 95 cm. Así que el área de la fotografía con marco será de: = 1 80 cm. La ecuación que modela esta situación es: (7 + x)(35 + x) = 1 80 Vamos a desarrollar el producto de los binomios para poder después resolverla por el método de fórmula general: (7 + x)(35 + x) = x + x = 1 80 x + 1 x 335 = 0 Ahora aplicamos la fórmula general para resolver esta ecuación: x = b ± b ac a = (1) ± (1) ()( 335) () = 1 ± ( 5360) 8 = 1 ± Finalmente, sabiendo que = 1, podemos escribir: x = x 1 = x = 1 ± = 0 8 = 5 =.5 = 68 8 = 67 = 33.5 Pero no es posible agregar 33.5 cm al ancho y largo de la fotografía. Es decir, la única solución de la ecuación que tiene sentido físico es: x =.5 cm. Ahora vamos a comprobar que la solución sea correcta. Inicialmente las dimensiones de la fotografía eran de 7 35 cm. Como se agregaron.5 cm más, las dimensiones de la fotografía con su marco son ahora de: 7 + (.5) = 3 cm por 35 + (.5) = 0 cm. Comentario El área de la fotografía con su marco es ahora de: 3 0 = 1 80 cm. 11/1

12 Los problemas aplicados de las ecuaciones cuadráticas generalmente requieren de mucho cuidado al hacer sustituciones, porque algunas veces ahí es donde se cometen con mayor frecuencia los errores a la hora de resolverlos. Ten cuidado con eso. Albert Einstein Créditos Todo debe hacerse tan simple como sea posible, pero no más. Este material se extrajo del libro Matemáticas I escrito por Efraín Soto Apolinar. La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor. Autor: Efraín Soto Apolinar. Edición: Efraín Soto Apolinar. Composición tipográfica: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. Productor general: Efraín Soto Apolinar. Año de edición: 0 Año de publicación: Pendiente. Última revisión: de agosto de 0. Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. México. 0. Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean divulgados entre otros profesores y sus alumnos. Este material es de distribución gratuita. Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico: efrain@aprendematematicas.org.mx 1/1

Profr. Efraín Soto Apolinar. Productos notables

Profr. Efraín Soto Apolinar. Productos notables Productos notables Cuando realizamos operaciones entre polinomios con el fin de resolver problemas, es muy frecuente encontrar algunas operaciones que por su naturaleza, aparecen en muchos fenómenos. Debido

Más detalles

Profr. Efraín Soto Apolinar. Método de despeje

Profr. Efraín Soto Apolinar. Método de despeje Método de despeje Cuando tenemos una ecuación cuadrática incompleta es muy buena idea hacer un despeje para resolverla. Este método es el más sencillo para este tipo de ecuaciones. Resuelve la siguiente

Más detalles

Profr. Efraín Soto Apolinar. Forma normal

Profr. Efraín Soto Apolinar. Forma normal Forma normal Todavía nos falta una última forma de la ecuación de la recta que nos ayudará a estudiar el último tema de esta unidad. Ecuación de la recta en su forma normal La ecuación de la recta en su

Más detalles

Profr. Efraín Soto Apolinar. Forma general

Profr. Efraín Soto Apolinar. Forma general Forma general La forma general de la ecuación de la recta es la que considera todos los casos de las rectas: horizontales, verticales e inclinadas. En otros casos no siempre es posible escribir la ecuación

Más detalles

La función cuadrática

La función cuadrática La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola

Más detalles

Conversión de la forma general a la forma ordinaria

Conversión de la forma general a la forma ordinaria Conversión de la forma general a la forma ordinaria Ahora que ya conocemos las formas ordinaria y general de la ecuación de la circunferencia y que ya hemos hecho conversiones de la forma ordinaria a la

Más detalles

Triangulación de polígonos. Perímetros y áreas

Triangulación de polígonos. Perímetros y áreas Triangulación de polígonos Para calcular el área de un polígono de n lados nos apoyaremos en la fórmula para calcular el área de un triángulo. Empezamos dibujando n diagonales que partan de un mismo vértice:

Más detalles

Método de Igualación

Método de Igualación Método de Igualación Ya vimos que la solución del S.E.L. debe ser tal que cuando sustituyamos los valores de las variables en cada ecuación obtengamos una igualdad verdadera. Entonces, el valor de x que

Más detalles

Problemas geométricos y algebraicos. Reglas de los exponentes

Problemas geométricos y algebraicos. Reglas de los exponentes Problemas geométricos y algebraicos Aquí empezamos a estudiar los conceptos que más vamos a utilizar en los cursos de matemáticas. Los temas de esta unidad son los conceptos de álgebra que no debes olvidar.

Más detalles

Int. indefinida de funciones exponenciales

Int. indefinida de funciones exponenciales Int. indefinida de funciones exponenciales Ahora vamos a calcular integrales indefinidas de funciones exponenciales de la forma: y = e v y y = a v Para este fin, vamos a estar utilizando las reglas de

Más detalles

La diferencial como aproximación al incremento

La diferencial como aproximación al incremento La diferencial como aproximación al incremento Ahora vamos a utilizar la diferencial para hacer aproximaciones. Esta aproximación está basada en la interpretación geométrica que acabamos de dar de la diferencial.

Más detalles

Circunferencia que pasa por tres puntos

Circunferencia que pasa por tres puntos Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,

Más detalles

Series y sucesión lineal

Series y sucesión lineal Series y sucesión lineal En la naturaleza muchas veces aparecen las sucesiones de números. Por ejemplo, cuando el hombre tuvo la necesidad de contar, tuvo que inventar un conjunto de números que le sirviera

Más detalles

Profr. Efraín Soto Apolinar. Suma de ángulos

Profr. Efraín Soto Apolinar. Suma de ángulos Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema

Más detalles

Profr. Efraín Soto Apolinar. La función racional

Profr. Efraín Soto Apolinar. La función racional La función racional Ahora estudiaremos una extensión de las funciones polinomiales. Las funciones racionales se definen a partir de las funciones polinomiales. Esta generalización es semejante a la que

Más detalles

Profr. Efraín Soto Apolinar. Método Gráfico

Profr. Efraín Soto Apolinar. Método Gráfico Método Gráfico El último método que estudiaremos es el más sencillo. Se trata de considerar a la ecuación como una máquina que transforma los números. Para eso, crearemos una función. Función (Definición

Más detalles

Funciones especiales

Funciones especiales Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.

Más detalles

Denominadores con factores lineales

Denominadores con factores lineales Denominadores con factores lineales uando al sumar dos fracciones algebraica obtenemos una nueva fracción con denominador que se puede factorizar hasta tener factores lineales, significa que los denominadores

Más detalles

1 Ecuaciones y propiedades de la recta

1 Ecuaciones y propiedades de la recta Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente

Más detalles

Ec. rectas notables en un triángulo

Ec. rectas notables en un triángulo Ec rectas notables en un triángulo omo recordarás del curso de geometría plana (segundo semestre), las rectas notables de un triángulo son: Medianas: Una mediana es la recta que pasa por el punto medio

Más detalles

Técnicas de integración. Cambio de variable

Técnicas de integración. Cambio de variable Técnicas de integración En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada de una función, en general, el problema es muy sencillo, pues solamente se requiere

Más detalles

Reglas del producto y del cociente

Reglas del producto y del cociente Reglas del producto y del cociente Al igual que la regla de la potencia, ya calculamos las fórmulas para calcular la derivada de un producto de dos funciones en la página?? y del cociente de dos funciones

Más detalles

S.E.L.: 3 ecuaciones con 3 incógnitas

S.E.L.: 3 ecuaciones con 3 incógnitas 1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para

Más detalles

Problemas aritméticos

Problemas aritméticos Problemas aritméticos En las matemáticas los números y los conjuntos son la base de toda la demás teoría. Por eso es importante saber realizar las operaciones básicas con ellos: suma, resta, multiplicación

Más detalles

Interpretación gráfica

Interpretación gráfica Interpretación gráfica En la introducción de la sección Sistemas de Ecuaciones Lineales se presentó la interpretación gráfica (o geométrica) de la solución de un S.E.L.. Este tema está relacionado con

Más detalles

Ecuación general de la circunferencia

Ecuación general de la circunferencia Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso

Más detalles

Resolución de Ecuaciones de Segundo Grado

Resolución de Ecuaciones de Segundo Grado Resolución de Ecuaciones de Segundo Grado Ecuación de Segundo Grado Es una ecuación que se puede escribir de la forma: a x 2 + b x + c = 0 () donde a, b, c R, y a = 0. A la ecuación de segundo grado también

Más detalles

Desigualdades de dos variables

Desigualdades de dos variables Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

Forma pendiente-ordenada al origen

Forma pendiente-ordenada al origen Forma pendiente-ordenada al origen Si una recta corta el eje de las ordenadas (eje y) en el punto B(0, b), entonces decimos que la ordenada al origen de la recta es b. Conociendo este punto es muy sencillo

Más detalles

Teoremas de los límites

Teoremas de los límites Teoremas de los límites Empezamos esta sección dando la definición de límite. Límite Sea y = f (x una función. Si podemos formar la sucesión x 1, x 2,, x n de valores de la variable x tales que cada uno

Más detalles

La derivada como razón de cambio instantánea

La derivada como razón de cambio instantánea La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos

Más detalles

Profr. Efraín Soto Apolinar. Lenguaje algebraico

Profr. Efraín Soto Apolinar. Lenguaje algebraico Lenguaje algebraico Las matemáticas son un lenguaje, hecho por los humanos para los humanos. Como todo lenguaje, tiene sus reglas, y si conoces sus reglas, podrás entender todas las matemáticas. Evidentemente,

Más detalles

Diferenciabilidad en un intervalo

Diferenciabilidad en un intervalo Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en

Más detalles

Método de Sustitución

Método de Sustitución Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las

Más detalles

Ecuaciones exponenciales y logaritmicas

Ecuaciones exponenciales y logaritmicas Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3

Más detalles

Ecuación ordinaria de la hipérbola

Ecuación ordinaria de la hipérbola Ecuación ordinaria de la hipérbola Empezamos estudiando la ecuación de la hipérbola con centro en el origen, que es la ecuación que se deduce anteriormente. Ahora vamos a utilizarla para calcular ecuaciones

Más detalles

Integración de funciones trigonométricas

Integración de funciones trigonométricas Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este

Más detalles

Profr. Efraín Soto Apolinar. Variación inversa. entonces,

Profr. Efraín Soto Apolinar. Variación inversa. entonces, Variación inversa La función racional más sencilla es: Esta función en palabras nos dice que cuando x crece el valor de y decrece en la misma proporción. Por ejemplo, si el valor de x crece al doble, el

Más detalles

Integral indefinida de funciones algebraicas

Integral indefinida de funciones algebraicas Integral indefinida de funciones algebraicas En esta sección vamos a empezar a practicar el cálculo de integrales indefinidas de funciones. ( 1) d Ejemplo 1 Empezamos aplicando la regla (i) para separar

Más detalles

Notas del curso de Introducción a los métodos cuantitativos

Notas del curso de Introducción a los métodos cuantitativos Ecuación de segundo grado Una ecuación de segundo grado es aquella que puede reducirse a la forma, ax + bx + c = 0 en la que el coeficiente a debe ser diferente de cero. Sabemos que una ecuación es una

Más detalles

Operaciones con polinomios

Operaciones con polinomios 1 Operaciones básicas Operaciones con polinomios Cuando realizamos la suma de dos o más polinomios sumamos términos semejantes con términos semejantes. El estudiante al escuchar esto puede causarle confusión

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

Distancia entre un punto y una recta

Distancia entre un punto y una recta Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular

Más detalles

UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN

UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN 86 _ 087-098.qxd 7//07 : Página 88 IDENTIICAR OBJETIVO UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN NOMBRE: CURSO: ECHA: Dado el polinomio P(x) x +, ya sabemos cómo se calcula su valor numérico: x P() + x P( )

Más detalles

1 Razones y Proporciones

1 Razones y Proporciones 1 Razones y Proporciones 1 1 Razones y Proporciones En la vida real surgen muchas ocasiones en las que deseamos comparar dos cantidades. Para compararlas tenemos muchas opciones válidas, pero la que nos

Más detalles

Solución de ecuaciones de segundo grado completando el trinomio cuadrado perfecto

Solución de ecuaciones de segundo grado completando el trinomio cuadrado perfecto Solución de ecuaciones de segundo grado completando el trinomio cuadrado perfecto Cuando no es posible factorizar la ecuación, se completa el trinomio cuadrado perfecto con la única finalidad de poder

Más detalles

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición Curso de Matemática Unidad 2 Profesora: Sofía Fuhrman Operaciones Elementales II: Potenciación Definición a n = a. a.a a multiplicado por sí mismo n veces. a) Regla de los signos Exponente Par Exponente

Más detalles

Límites de funciones

Límites de funciones Límites de funciones Gracias a las propiedades de los límites podemos resolver problemas de una manera más sencilla. Límites de funciones polinomiales y racionales 2 + 2 2 4 Ejemplo Sin el apoyo de las

Más detalles

ax 2 +bx+c=0 ax 2 +bx=0 ax 2 +c=0 ax 2 =0 SESIÓN 2. Ecuaciones cuadráticas o de segundo grado.

ax 2 +bx+c=0 ax 2 +bx=0 ax 2 +c=0 ax 2 =0 SESIÓN 2. Ecuaciones cuadráticas o de segundo grado. SESIÓN. Ecuaciones cuadráticas o de segundo grado. Comenzamos con la definición de ecuación de segundo grado. Ejemplos: 3y-y = 3x -48= Son ejemplos de ecuaciones de segundo grado, pues el mayor exponente

Más detalles

Constante de integración

Constante de integración Constante de integración Cuando impongamos una condición que deba satisfacer la antiderivada de la función dada, por ejemplo, que pase por un punto dado, tendremos la posibilidad de reducir toda una familia

Más detalles

3. POLINOMIOS, ECUACIONES E INECUACIONES

3. POLINOMIOS, ECUACIONES E INECUACIONES 3. POLINOMIOS, ECUACIONES E INECUACIONES 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI Un polinomio con indeterminada x es una expresión de la forma: Los números

Más detalles

( ) es aceptable. El grado del

( ) es aceptable. El grado del POLINOMIOS 8.1.1 8.1.3 El capítulo eplora funciones polinómicas en maor profundidad. Los alumnos aprenderán cómo bosquejar funciones polinómicas sin su herramienta de graficación, utilizando la forma factorizada

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas mediante factorización

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas mediante factorización Ecuaciones cuadráticas Resolver ecuaciones cuadráticas mediante factorización Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Polinomios de grado 2 Una ecuación cuadrática es una ecuación

Más detalles

Centro fuera del origen

Centro fuera del origen Centro fuera del origen Ya conoces la ecuación de la circunferencia que tiene su centro en el origen. Si trasladamos el centro de la circunferencia h unidades a la derecha k unidades hacia arriba, obtenemos

Más detalles

Ecuaciones ordinarias de la parábola

Ecuaciones ordinarias de la parábola Ecuaciones ordinarias de la parábola En la sección anterior dedujimos la ecuación de la parábola en su forma ordinaria. Ahora vamos a utilizar la ecuación. Empezaremos estudiando las parábolas con vértice

Más detalles

Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra

Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra Expresiones algebraicas y ecuaciones Melilla Qué es una expresión algebraica? Los padres de Iván le han encargado que vaya al mercado a comprar 4 kg de naranjas y 5 kg de manzanas. Pero no saben lo que

Más detalles

Ecuaciones de Primer Grado

Ecuaciones de Primer Grado Ecuaciones de Primer Grado Vamos a empezar el estudio de las ecuaciones de primer grado con el caso más sencillo. Poco a poco iremos estudiando casos más complicados. Ec. de Primer Grado con una incógnita

Más detalles

DESCOMPOSICIÓN FACTORIAL

DESCOMPOSICIÓN FACTORIAL 6. 1 UNIDAD 6 DESCOMPOSICIÓN FACTORIAL Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques la factorización de polinomios cuyos términos tienen coeficientes

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

Lección 6: Factorización de Casos Especiales. Dra. Noemí L. Ruiz Limardo 2009

Lección 6: Factorización de Casos Especiales. Dra. Noemí L. Ruiz Limardo 2009 Lección 6: Factorización de Casos Especiales Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán polinomios que representan una Diferencia de

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

Ecuaciones de Primer Grado con una Incógnita

Ecuaciones de Primer Grado con una Incógnita Tema 5 Ecuaciones de Primer Grado con una Incógnita Una ecuación es una igualdad ( = ) que sólo se verifica para unos valores concretos de una variable, generalmente llamada x. Cuando sólo aparece una

Más detalles

Lección 13: Resolución algebraica de sistemas de ecuaciones

Lección 13: Resolución algebraica de sistemas de ecuaciones GUÍA DE MATEMÁTICAS III Lección 1: Resolución algebraica de sistemas de ecuaciones En la lección anterior hemos visto cómo resolver gráficamente un sistema de ecuaciones. Si bien ese método es relativamente

Más detalles

Funciones crecientes y decrecientes

Funciones crecientes y decrecientes Funciones crecientes y decrecientes Ahora estudiaremos el comportamiento de la función a partir de la derivada. Hasta ahora hemos calculado máximos y mínimos de funciones. También sabemos que cuando f

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: ECUACIONES IRRACIONALES Año escolar: 5to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Derivadas de orden superior

Derivadas de orden superior Derivadas de orden superior Ya habrás observado que al derivar una función obtenemos otra nueva función. Por ejemplo, la derivada de la función y = x 2 es y = 2 x. Observa que y es otra función, generalmente

Más detalles

La ecuación de segundo grado para resolver problemas.

La ecuación de segundo grado para resolver problemas. La ecuación de segundo grado para resolver problemas. Como bien sabemos, una técnica potente para modelizar y resolver algebraicamente los problemas verbales es el uso de letras para expresar cantidades

Más detalles

La derivada. Razón de cambio promedio e instantánea

La derivada. Razón de cambio promedio e instantánea La derivada En esta sección empezamos con el estudio del concepto más importante de este curso. La derivada, la cual vamos a definir más adelante, es una herramienta poderosísima que ayuda a ingenieros,

Más detalles

Límites e indeterminaciones

Límites e indeterminaciones Límites e indeterminaciones La idea de límite de una función no es en sí complicada, pero hubo que esperar hasta el siglo XVII a que los matemáticos Newton 1 y Leibniz 2 le dieran forma y la convirtiesen

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

Ángulos formados por dos rectas paralelas y una secante

Ángulos formados por dos rectas paralelas y una secante Ángulos formados por dos rectas paralelas y una secante Cuando dos rectas paralelas son cortadas por una tercer recta que no es paralela a ellas, se forman varios ángulos de interés. La secante a una curva

Más detalles

Unidad 3 ECUACIONES LINEALES O CUADRÁTICAS

Unidad 3 ECUACIONES LINEALES O CUADRÁTICAS Profesor: Blas Torres Suárez. Versión.0 Unidad 3 ECUACIONES LINEALES O CUADRÁTICAS Competencias a desarrollar: Identificar las características de una ecuación lineal o cuadrática. Hallar el conjunto solución

Más detalles

POTENCIAS Y RAÍCES. Signo de la base + * Expresa en forma de potencia: a) 100 = b) 16 = c) 81 = d) 49 =

POTENCIAS Y RAÍCES. Signo de la base + * Expresa en forma de potencia: a) 100 = b) 16 = c) 81 = d) 49 = POTENCIAS Y RAÍCES Potencias. Una potencia es una multiplicación de varios factores iguales. Los términos de una potencia son la base, que es el factor que se multiplica, y el exponente, que indica el

Más detalles

x= 1± 1 24 = 1±5 = 6 0 = 6 18 18 = 1 3 x= 7± 49 60 = 7± 11 10

x= 1± 1 24 = 1±5 = 6 0 = 6 18 18 = 1 3 x= 7± 49 60 = 7± 11 10 1.- Ecuaciones de segundo grado. Resolver las siguientes ecuaciones. a) 5x 2 45 = 0, despejando x 2 = 9, y despejando x (3 y 3 son los únicos números que al elevarlo al cuadrado dan 9) obtengo que x1 =

Más detalles

Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema.

Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema. Materia: Matemática de Octavo Tema: Propiedades de la Adición y la Multiplicación en Q Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema. Para simplificar

Más detalles

Graficación de funciones sin tabulación

Graficación de funciones sin tabulación Graficación de funciones sin tabulación Cuando se les solicita a los estudiantes que grafiquen una función lineal o cuadrática, es mu común que los estudiantes empiecen tabulando valores de a partir de

Más detalles

2.4. Números complejos

2.4. Números complejos 2.4 Números complejos 95 83 Relaciones temperatura-latitud a tabla siguiente contiene promedios de temperaturas anuales para los hemisferios norte y sur a varias latitudes. atitud Hemisf. N. Hemisf. S.

Más detalles

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades

Más detalles

1º) x³ x² x x⁰ 1-3 0 5-2. 3º) x³ x² x x⁰ 1-3 0 5 -2-2 -2 (-5) 1-5 0+[-2 (-5)] 4º) x³ x² x x⁰ 1-3 0 5-2-2 10-20 1-5 10-15. 2º) x³ x² x x⁰ 1-3 0 5

1º) x³ x² x x⁰ 1-3 0 5-2. 3º) x³ x² x x⁰ 1-3 0 5 -2-2 -2 (-5) 1-5 0+[-2 (-5)] 4º) x³ x² x x⁰ 1-3 0 5-2-2 10-20 1-5 10-15. 2º) x³ x² x x⁰ 1-3 0 5 1. OPERACIONES BÁSICAS Monomio: Producto de números y letras. Ej: 3x²y a) Suma: Se pueden sumar los que tengan las mismas letras elevadas a los mismos exponentes. Ej: 3x²y xy + 4x²y = 7x² xy b) Producto:

Más detalles

( )( ) EJERCICIOS DE ECUACIONES : DE PRIMER GRADO, SEGUNDO GRADO, BICUADRADAS, CON X EN EL DENOMINADOR Y CON RADICALES. x x + 3 2 6 = 2 1 2 3 6 + =

( )( ) EJERCICIOS DE ECUACIONES : DE PRIMER GRADO, SEGUNDO GRADO, BICUADRADAS, CON X EN EL DENOMINADOR Y CON RADICALES. x x + 3 2 6 = 2 1 2 3 6 + = EJERCICIOS DE ECUACIONES : DE PRIMER GRADO, SEGUNDO GRADO, BICUADRADAS, CON X EN EL DENOMINADOR Y CON RADICALES Ejercicio nº.- Ejercicio nº 7.- Resuelve la ecuación: ( + ) ( ) + Resuelve esta ecuación:

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado Contenidos 1. Expresiones algebraicas Identidad y ecuación Solución de una ecuación. Ecuaciones de primer grado Definición Método de resolución Resolución de problemas 3. Ecuaciones

Más detalles

Máximos y mínimos usando la segunda derivada

Máximos y mínimos usando la segunda derivada Máimos mínimos usando la segunda derivada Ahora que sabemos que la segunda derivada nos da información acerca de la primera derivada, vamos a utilizarla para calcular los máimos mínimos de funciones. Ya

Más detalles

ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO ECUACIONES ECUACIONES E INECUACIONES DE PRIMER Y SEGUNDO GRADO 1.- IGUALDADES Y ECUACIONES Las expresiones compuestas de dos miembros enlazados por el signo = se llaman igualdades, y ponen de manifiesto

Más detalles

Ecuaciones de primer y segundo grado

Ecuaciones de primer y segundo grado Ecuaciones de primer y segundo grado Las ecuaciones de primer y segundo grado es una ecuación porque es una igualdad entre expresiones algebraicas. Ecuaciones de primer grado con una incógnita Ejemplo

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

9. Ecuaciones, parte III

9. Ecuaciones, parte III Matemáticas I, 202-I El concepto de información Ya hemos visto ejemplos de ecuaciones con una única solución y otras que admiten dos soluciones. Ahora veremos unos ejemplos más extraños. Ejemplo. Resuelve

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

Definición y Clasificación de Polígonos. Definición

Definición y Clasificación de Polígonos. Definición Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono

Más detalles

Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x.

Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x. EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 4 ECUACIONES Ejercicio nº 1.- Dada la siguiente igualdad: x 1 3 9 x 5 3x = x responde razonadamente: a) Es cierta si sustituimos la incógnita por el valor cero?

Más detalles

Profr. Efraín Soto Apolinar. Lugares geométricos

Profr. Efraín Soto Apolinar. Lugares geométricos Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos

Más detalles

Ecuaciones de segundo grado www.math.com.mx

Ecuaciones de segundo grado www.math.com.mx Ecuaciones de segundo grado www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-008 Contenido. La ecuación cuadrática. La ecuación x d.. Resúmen de la ecuación x d.......................

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

PAIEP. Factorización de Expresiones algebraicas

PAIEP. Factorización de Expresiones algebraicas Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Factorización de Expresiones algebraicas Factorizar una expresión algebraica consiste en reescribir la expresión

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles