SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN"

Transcripción

1 SISTEMAS DE NUMERACIÓN Y CODIFICACIÓN EL LENGUAJE DEL ORDENADOR Todos los elementos electrónicos del ordenador son digitales, es decir, trabajan con dos estados posibles: - El estado de activación supone la existencia de un voltaje eléctrico; a este nivel de funcionamiento se le asigna el dígito 1. - El estado de desactivación significa la ausencia de voltaje eléctrico; a este nivel de funcionamiento se le asigna el dígito 0. Como el ordenador utiliza la energía eléctrica para generar impulsos eléctricos que activan o desactivan los circuitos electrónicos, la informática ha tomado los conceptos del lenguaje binario para crear el lenguaje informático conocido como CÓDIGO o LENGUAJE MÁQUINA. Cada uno de los dígitos representativos del sistema binario (0 y 1) recibe el nombre de BIT (Binary Digit) y constituye la unidad mínima de información. Pero antes de estudiar el código binario de los ordenadores, es necesario estudiar los sistemas de numeración. Un sistema de numeración es el conjunto de símbolos y reglas que permiten representar datos numéricos. Estas representaciones se basan en sistemas de posicionamiento, en los que el valor de cada cifra dentro de un número depende de la cifra en sí y del lugar que ocupa en el número. SISTEMA DE NUMERACIÓN DECIMAL Es el sistema que utilizamos habitualmente. Se compone de diez símbolos o dígitos (0, 1, 2, 3,..., 9) a los que se le otorga un valor dependiendo de la posición que ocupe (unidades, decenas, centenas,... etc). Por lo tanto es un sistema en base 10, ya que existen diez símbolos distintos que podemos emplear. El valor de cada dígito está asociado al de una potencia de base 10, y de exponente igual a la posición que ocupa el dígito (contado desde la derecha) menos uno. En este sistema el número 528, por ejemplo, se calcula como: = = 528 En el caso de números con parte decimal, la representación es análoga, usando potencias negativas. Representemos por ejemplo el número 8245,97: = = 8245,97 SISTEMA DE NUMERACIÓN BINARIO Este sistema utiliza sólo dos símbolos que son el 0 y el 1, por lo tanto es un sistema en base dos. Los números se van formando igual que en decimal, solo que en lugar de 10 símbolos sólo disponemos de 2. Primero usamos todos los símbolos individualmente. En este caso, 0, 1. Como ya los hemos agotado, los vamos combinando de 2 en dos, obteniendo 10, 11. Como ya no existen más combinaciones, pasamos a agruparlos de 3 en 3: 100, 101, 110, 111. Luego los agruparíamos de 4 en 4 (del 1000 al 1111) y así sucesivamente. Conversión de un número binario al sistema decimal. Para calcular el valor equivalente en decimal de un número binario, se procede de la misma forma que en decimal, multiplicando cada cifra por una potencia de la base (en este caso 2) elevado a un exponente que depende de la posición del dígito en cuestión. Por ejemplo, calculemos el valor decimal del 1011 (2) = = 11 (10) 1 1 Dado que la única potencia impar de 2 es 2 0, es fácil averiguar, antes de realizar el cálculo correspondiente, si un 1

2 Si el número tiene parte decimal, usaremos potencias negativas. Por ejemplo, calculemos el valor decimal del 10010,01 (2) = ,25 = 18,25 (10) Conversión de un número decimal al sistema binario. Parte entera: Para calcular la parte entera, tendremos que ir dividendo el número decimal por dos, hasta encontrar un cociente de valor 1. Este cociente será la primera cifra del número binaria. Las demás las obtendremos de los restos de las divisiones, empezando por el último y acabando con el primero. Como ejemplo, calculemos el valor binario del número Cociente Resto 159: : : : : : :2 1 0 Si tomamos el último cociente y los restos leídos de abajo hacia arriba obtenemos: Parte decimal 159 (10) = (2) En este caso, procedemos a la inversa; en vez de dividir, multiplicamos por dos. Reservamos la parte entera del número obtenido, y multiplicamos la parte decimal obtenida por dos, repitiendo el proceso hasta que tengamos una parte decimal nula. El resultado lo obtendremos leyendo las partes enteras de arriba hacia abajo (ojo, que es al contrario de lo que hacemos en la parte entera) Calculemos el valor binario de 0,625 P. Entera P. decimal 0, ,25 0, ,5 0, Si leemos las partes enteras de arriba hacia abajo obtenemos: CODIFICACIÓN BINARIA 0,625 (10) = 0,101 (2) Como se ha mencionado antes, la razón por la que los ordenadores usan el sistema binario se número binario es par o impar. Si acaba en 0, la potencia 2 0 no contribuye a la suma, por lo que el resultado será par. Si acaba en 1, obtendremos una suma en la que sólo habrá un sumando impar. El número resultante deberá ser impar. 2 Que sabemos deberá acabar en 1, al ser impar. 2

3 debe al hecho de que es muy sencillo hacer corresponder un 1 a la presencia de voltaje y un 0 a su ausencia. Sin embargo, esto, por si solo, no es suficiente para poder establecer un sistema de comunicación satisfactorio con la máquina. Necesitamos establecer un código de tal forma que a cada cifra en decimal de 0 a 9 se le asigne un conjunto de unos y ceros predeterminado y fijo, de tal forma que sea el mismo para todas las máquinas. Hasta ahora hemos visto que, pasando de decimal a binario no nos hemos preocupado del número de cifras que necesitábamos. Así, el 2 en decimal es 10 en binario, con dos cifras, el 5 es el 101, con tres, y el , con cuatro. Si en vez de pasar el número dos a binario queremos codificarlo, no sólo es necesario hacer el cambio de base, sino que además necesitamos decidir cuántas cifras (cuántos bits) vamos a usar para representarlo. Código BCD natural Los códigos BCD (digital codificado en binario) son los más usados, y dentro de ellos el más sencillo es el BCD natural. En él, cada cifra de 0 a 9 se representa en base dos, completando con ceros a la izquierda si es necesario. El número de bits usado para representar las cifras vendrá dado por el número de bits necesario para pasar a base 2 la cifra mayor. Aquí, 9 (10) =1001 (2). Por tanto, los códigos BCD usarán 4 bits. En el caso particular del código BCD natural, la codificación se muestra en la siguiente tabla: Nº BCD NATURAL Como hemos necesitado 4 bits para codificar el 8 y el 9, obtenemos 2 4 = 16 posibles 3

4 combinaciones, de las cuales usamos diez 3. Antes de continuar, debemos prestar atención a dos diferencias entre la codificación de un número en BCD y su expresión en base 2: 1. Si el número decimal es de una única cifra, la cantidad de cifras que usaremos en base dos será la mínima que necesitemos, mientras que en BCD debemos usar obligatoriamente 4 bits. Así, el 2 se expresa como 10 en base 2, pero su codificación será Para codificar números decimales de más de una cifra, sustituiremos cada una de ellas por su correspondiente codificación, usando 4 bits para cada cifra. En el ejemplo que hemos hecho anteriormente, el 159 se expresaba en base 2 como Sin embargo, codificado en BCD natural sería Otros códigos BCD Dado que la codificación BCD consiste en asignar una secuencia de 4 bits a cada una de las 10 cifras de 0 a 9, no existe ninguna obligación de hacer corresponder esas secuencias con la equivalencia entre el número decimal y su valor en base 2, como se hace para formar el BCD natural. Así, podemos generar una cantidad enorme de códigos. Entre los más usados aparte del natural podemos destacar tres: 1. Código Aiken. Se asignan las 5 primeras combinaciones a los números de 0 a 5 y las cinco últimas a los números de 6 a 9. Las 6 intermedias no se asignan. 2. BCD exceso 3. En este caso, las tres primeras y las tres últimas combinaciones no se asignan, y se usan las 10 intermedias. 3. Códigos Gray. Entre un número y el siguiente, sólo se cambia el valor de un bit. Se usan mucho en sistemas de detección de errores. Nº BCD natural Código Aiken BCD exceso 3 Código Gray Volviendo al ejemplo del 159, podemos ver cómo se expresaría en los diferentes sistemas binarios que hemos visto: Decimal Base 2 BCD natural Código Aiken Exceso 3 Código Gray Como regla general, con n bits tendremos 2 n combinaciones posibles. 4

5 SISTEMA DE NUMERACIÓN HEXADECIMAL. Como se acaba de ver, para codificar los números 8 y 9 en binario se necesitan 4 bits, lo que da lugar a 16 combinaciones de unos y ceros, de las cuales dejamos 6 sin utilizar. En informática resulta muy interesante no desaprovechar esas combinaciones, y usar un sistema de numeración hexadecimal, que usa una base 16. Al igual que en decimal formamos todos los números a partir de 10 cifras básicas (de 0 a 9) y en binario a partir de dos (0 y 1), en hexadecimal necesitaremos una base de 16 cifras: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F. Cuando agotamos estas 16 cifras, las agruparemos de 2 en 2. Así, después de F vendrán los números 10, 11, 12,, 19, 1A, 1B,, 1F, 20, 21,, 29, 2A,, 99, 9A,, 9F, A0,, FF. Luego los agruparemos de 3 en 3, desde el 100 hasta el FFF, y así sucesivamente. La tabla de correspondencias entre números binarios, hexadecimales y BCD natural será entonces: Decimal Hexadecimal BCD Natural A (10) B (11) C (12) D (13) E (14) F (15) 1111 Conversión de un número hexadecimal a decimal. Se procede exactamente igual que en el caso de un número binario, multiplicado cada cifra por una potencia de la base (16, en este caso) elevada a un exponente que depende de la posición de la cifra. Si queremos pasar el 2B8E (16) a decimal: 2B8E = = = (10) Conversión de un número decimal a hexadecimal. También se procede como en el caso de decimal a binario: tendremos que ir dividendo el 5

6 número decimal por 16, hasta encontrar un cociente menor que este número. Este cociente será la primera cifra del número hexadecimal. El resto las obtendremos de los restos de las divisiones, empezando por el último y acabando con el primero, teniendo en cuenta que para restos mayores de 9 habrá que usar una letra entre A y F. Por ejemplo, pasemos el (10) a hexadecimal. Cociente Resto 42198: : D (13) 164:16 A (10) 4 Tomando el último cociente y los restos de abajo hacia arriba obtenemos: (10) = A4D6 (16) Conversión de un número hexadecimal a binario. Es extraordinariamente sencillo, ya que se trata de sustituir cada cifra del número hexadecimal por su correspondiente codificación en BCD natural: C70 (16) = (2) Conversión de un número binario a hexadecimal. Dividimos el número binario en grupos de 4, de derecha a izquierda (completando con ceros a la izquierda si es necesario) y se sustituye cada grupo por su valor hexadecimal: CÓDIGO o LENGUAJE MÁQUINA (2) = = 2AC5 (16) Cada uno de los dígitos representativos del sistema binario (0 y 1) recibe el nombre de BIT (Binary Digit) y constituye la unidad mínima de información. Un grupo de 8 bits se denomina BYTE, y a partir de ahí se obtienen los diversos múltiplos: 8 bits = 1 byte 1024 bytes = 1 Kilobyte 1024 kilobytes = 1 Megabyte 1024 Megabytes = 1 Gigabyte 1024 Gigabytes = 1 Terabyte El motivo por el que la proporción entre los distintos múltiplos es 1024 se debe a que ésta es la cantidad en potencias de base 2 que más se aproxima a la proporción 1000 (2 10 = 1024). El ordenador necesita recibir los datos codificado en forma binaria, es decir, convertidos en ceros y unos. Por tanto, todos los caracteres (letras, números, símbolos) deben ser traducidos al lenguaje binario mediante un cierto código. Existen varios tipos de códigos que cumplen esta función entre los que destaca el código (American Standard Code for Information Interchange). En el código a cada carácter se le asigna un byte. Como cada byte está formado por 8 bits, tendremos 2 8 = 256 caracteres diferentes. La tabla completa del código se muestra en la siguiente página. Cada carácter tiene asignado un número entre 0 y 255, además de su equivalente hexadecimal. De esta forma, es sencillo escribir el código de cualquier texto, ya que sólo es necesario buscar el código hexadecimal de cada símbolo y escribir su equivalente BCD, respetando que cada carácter siempre se codifica a 8 bits. Por ejemplo, escribamos Informática. en código 6

7 I (49) o (6F) á (A0) c (63) n (6E) r (72) t (74) a (61) f (66) m (6D) i (69) (2E) Si lo escribimos seguido, Informática. en quedaría: Que es en realidad lo que procesa un ordenador al escribir la palabra en el teclado. Hay que notar que para el ordenador no son iguales las mayúsculas y las minúsculas. Por tanto, el código para I no es igual que el de i. Lo mismo ocurre para las vocales sin acentuar y acentuadas. Si el texto tuviese espacios en blanco, también habría que introducir su carácter correspondiente. 7

SISTEMAS DE NUMERACIÓN

SISTEMAS DE NUMERACIÓN SISTEMAS DE NUMERACIÓN BINARIO, OCTAL Y HEXADECIMAL EDICIÓN: 091113 LUIS GONZÁLEZ DEPARTAMENTO DE TECNOLOGÍA I.E.S. SANTA EUGENIA SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos

Más detalles

SISTEMAS DE NUMERACION

SISTEMAS DE NUMERACION SISTEMAS DE NUMERACION Un sistema de numeración se conoce como el conjunto de símbolos y reglas que se utilizan para la representación de cantidades. En ellos existe un elemento característico que define

Más detalles

Definición(2) La base (r) de un sistema de numeración especifica el número de dígitos o cardinal* de dicho conjunto ordenado. Las bases más utilizadas

Definición(2) La base (r) de un sistema de numeración especifica el número de dígitos o cardinal* de dicho conjunto ordenado. Las bases más utilizadas Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Definición(1) Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos

Más detalles

SISTEMAS DE NUMERACION

SISTEMAS DE NUMERACION SISTEMA DECIMAL Este sistema consta de diez símbolos que van desde el numero 0 hasta el numero 9, los cuales le dan la característica principal a este sistema conocido por todo el mundo. Estos símbolos

Más detalles

Represent. Información. Caracteres Alfanuméricos

Represent. Información. Caracteres Alfanuméricos Representación de la 2009-20102010 Sistemas de Numeración 1 a Representar Qué información necesitamos representar? Caracteres Alfabéticos: A, B,..., Z, a, b,..., z Caracteres numéricos: 0, 1,..., 9 Caracteres

Más detalles

2. SISTEMAS Y CÓDIGOS DE NUMERACIÓN

2. SISTEMAS Y CÓDIGOS DE NUMERACIÓN Fundamentos de los Computadores.Sistemas y Códigos de Numeración. 1 2. SISTEMAS Y CÓDIGOS DE NUMERACIÓN Un Sistema de numeración es un conjunto de símbolos empleados para representar información numérica.

Más detalles

Implantación de Sistemas Operativos 1º ASIR

Implantación de Sistemas Operativos 1º ASIR Sistemas de Numeración Sistema decimal El sistema de numeración que utilizamos es el decimal, que se compone de diez símbolos o dígitos a los que otorga un valor dependiendo de la posición que ocupen en

Más detalles

5 centenas + 2 decenas + 8 unidades, es decir: = 528

5 centenas + 2 decenas + 8 unidades, es decir: = 528 Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

Unidad de Promoción y Desarrollo Guadiana OBJETIVO GENERAL

Unidad de Promoción y Desarrollo Guadiana OBJETIVO GENERAL Unidad de Promoción y Desarrollo Guadiana OBJETIVO GENERAL Conocer los elementos básicos de un ordenador, identificar sus elementos principales, diferenciando aquellos que forman parte de su hardware y

Más detalles

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería Electrónica Asignatura: Informática I 1R2 Trabajo Práctico N 1 - Año 2015

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería Electrónica Asignatura: Informática I 1R2 Trabajo Práctico N 1 - Año 2015 Numeración Binaria, Hexadecimal y Octal 1.- Introducción a los números binarios, hexadecimal y octal: El sistema de numeración binario y los códigos digitales son fundamentales en electrónica digital,

Más detalles

Tema 1 Sistemas de numeración

Tema 1 Sistemas de numeración Tema 1 Sistemas de numeración 1.1 - Sistema de numeración BINARIO En el sistema binario de numeración existen solamente dos símbolos distintos: el 0 y el 1. A primera vista puede resultar una forma de

Más detalles

CURSO 2016/2017 INFORMÁTICA 1ºBCH. La codificación es. Por qué se. Fíjate en. la imagen de decirle que si. cero. decimal: 1* *2 3.

CURSO 2016/2017 INFORMÁTICA 1ºBCH. La codificación es. Por qué se. Fíjate en. la imagen de decirle que si. cero. decimal: 1* *2 3. INFORMÁTICA 1ºBCH 1. CODIFICACIÓN DE LA INFORMACIÓN La codificación es el método que permite epresentar la información utilizando un conjunto de símbolos que se combinan siguiendo determinadas reglas.

Más detalles

Introducción al sistema binario. El bit (dígito binario)

Introducción al sistema binario. El bit (dígito binario) Introducción al sistema binario A finales de la década de 1930, Claude Shannon mostró que utilizando interruptores que se encontraban cerrados para "verdadero" y abiertos para "falso", se podían llevar

Más detalles

SISTEMAS DE NUMERACIÓN

SISTEMAS DE NUMERACIÓN SISTEMAS DE NUMERACIÓN INDICE. 1. DEFINICIÓN DE SISTEMAS DE NUMERACIÓN.... 1 2. TEOREMA FUNDAMENTAL DE LA NUMERACIÓN... 3 3. SISTEMAS DECIMAL, BINARIO, OCTAL Y HEXADECIMAL.... 5 3.1. SISTEMA DECIMAL...

Más detalles

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Introducción Definición Clasificación Sist. Binario Sist. Octal Sist. Hexa. Arti. Binaria

Introducción Definición Clasificación Sist. Binario Sist. Octal Sist. Hexa. Arti. Binaria Sistemas de Numeración Sistemas Numeración 2009-20102010 Sistemas de Numeración 1 En la historia han existido muchas formas de representar los números. En la actualidad el más extendido es el sistema Decimal

Más detalles

El sistema binario es una secuencia de números que contiene unos y ceros, así;

El sistema binario es una secuencia de números que contiene unos y ceros, así; Taller 1er Corte Introducción Software Sistemas numéricos y Conversiones Dentro de la informática es muy común escuchar el tema de los sistemas numéricos como herramienta de funcionamiento del PC, téngase

Más detalles

Capacidad : Número de valores diferentes que puede representar un código. Depende del número de dígitos usados.

Capacidad : Número de valores diferentes que puede representar un código. Depende del número de dígitos usados. CAPITULO Nº2 CÓDIGOS. 2.1 Definiciones. Funciones de la codificación: Transmitir en forma fácil, rápida y segura los datos. Facilitar el procesamiento de datos. Descubrir y corregir errores. Mantener en

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

❶ Sistemas Numéricos

❶ Sistemas Numéricos Capítulo ❶ Los sistemas digitales manejan información binaria, es decir, disponen solamente de dos valores para representar cualquier información. Esto hace que los sistemas digitales sean más confiables

Más detalles

Capítulo 4 Representación interna de los Datos

Capítulo 4 Representación interna de los Datos Curso Ingreso 013 Carrera Ingeniería en Computación - Facultad de Informática Facultad de Ingeniería Capítulo 4 Representación interna de los Datos Objetivos Los problemas resueltos en los capítulos anteriores

Más detalles

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban. DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números

Más detalles

Tema 2. Divisibilidad. Múltiplos y submúltiplos.

Tema 2. Divisibilidad. Múltiplos y submúltiplos. Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Representación de números enteros: el convenio complemento a dos

Representación de números enteros: el convenio complemento a dos Representación de números enteros: el convenio complemento a dos Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior

Más detalles

Conversión decimal->binario

Conversión decimal->binario Conversión decimal->binario 1- Se divide el número decimal entre 2 sin sacar decimales, obteniendo un cociente y un resto (que será 0 ó 1) 2- Se vuelve a dividir el cociente anterior entre 2, con lo que

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #3: jueves, 2 de junio de 2016. 3 Decimales 3.1 Sistema de numeración

Más detalles

SISTEMAS DE NUMERACION

SISTEMAS DE NUMERACION SISTEMAS DE NUMERACION INTRODUCCION El número de dígitos de un sistema de numeración es igual a la base del sistema. Sistema Base Dígitos del sistema Binario 2 0,1 Octal 8 0,1,2,3,4,5,6,7 Decimal 10 0,1,2,3,4,5,6,7,8,9

Más detalles

Unidad 1. Números naturales

Unidad 1. Números naturales Unidad 1. Números naturales Matemáticas Múltiplo 1.º ESO / Resumen Unidad 1 NÚMEROS NATURALES USOS QUE TIENEN CÓMO SE EXPRESAN OPERACIONES Contar Ordenar Medir Codificar... Sistema de numeración decimal

Más detalles

ACTIVIDAD: 1.- Convierte de Sistema Decimal a Sistema Binario los siguientes números:

ACTIVIDAD: 1.- Convierte de Sistema Decimal a Sistema Binario los siguientes números: CARTILLA DE TRABAJO NRO: 2 TEMA: NUMEROS BINARIOS AÑO/CURSO/: ALUMNA/O: FECHA: MÁQUINA Nº: ACTIVIDAD: 1.- Convierte de Sistema Decimal a Sistema Binario los siguientes números: a) 32 b) 147 c) 43 d) 80

Más detalles

REPRESENTACIÓN INTERNA DE LA INFORMACIÓN

REPRESENTACIÓN INTERNA DE LA INFORMACIÓN REPRESENTACIÓN INTERNA DE LA INFORMACIÓN Introducción... 2 Códigos... 3 Unidades de Información... 4 Unidades de Información... 5 Sistemas de numeración... 6 - Decimal, Binario... 6 - Conversión de decimal

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

OCW-V.Muto Sistemas de numeración Cap. III CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION

OCW-V.Muto Sistemas de numeración Cap. III CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION CAPITULO III. SISTEMAS DE NUMERACION 1. REPRESENTACION DE LA INFORMACION El sistema de numeración usado habitualmente es el decimal, de base 10, que no es adecuado para ser manejado por el ordenador, fundamentalmente

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES 1. MÚLTIPLOS DE UN NÚMERO. 1.1. CONCEPTO DE MÚLTIPLO. Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el

Más detalles

INFORMÁTICA APLICADA A LA ECONOMÍA Tema 3: Representación de la Información. Verónica A. Bollati

INFORMÁTICA APLICADA A LA ECONOMÍA Tema 3: Representación de la Información. Verónica A. Bollati INFORMÁTICA APLICADA A LA ECONOMÍA Tema 3: Representación de la Información Verónica A. Bollati 2010-2011 Objetivos Conocer cómo se representa la información. Dominar los distintos tipos de sistemas de

Más detalles

Funcionamiento del algoritmo XS3 para conversión binario-bcd

Funcionamiento del algoritmo XS3 para conversión binario-bcd Funcionamiento del algoritmo XS3 para conversión binario-bcd Por Uriel Corona Bermúdez En este documento se describe el funcionamiento delalgoritmo XS3 para la conversión de código binario a código BCD.

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

Tema 4: Múltiplos y Divisores

Tema 4: Múltiplos y Divisores Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un

Más detalles

en coma flotante Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2006

en coma flotante Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2006 Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2006 4. Representación n de números n en coma flotante Para La números representar fraccionarios números

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 2 Aritmética y Codificación Aritmética

Más detalles

A veces queremos almacenar algún elemento que es Verdadero o Falso. Este tipo de dato se llama Booleano y su representación es sencilla, para cada

A veces queremos almacenar algún elemento que es Verdadero o Falso. Este tipo de dato se llama Booleano y su representación es sencilla, para cada Hemos visto que los ordenadores modernos son máquinas digitales que sólo funcionan con datos binarios. Así que necesitamos una representación binaria de cada dato que queremos usar en un ordenador. El

Más detalles

SISTEMA DE NUMERACIÓN BINARIO

SISTEMA DE NUMERACIÓN BINARIO SISTEMA DE NUMERACIÓN BINARIO Cuando se trabaja en una computadora, los datos son convertidos en números dígitos que, a su vez, son representados como pulsaciones o pulsos electrónicos. En la actualidad

Más detalles

Sistemas de numeración

Sistemas de numeración platea.pntic.mec.es Autor: Luis González SISTEMAS DE NUMERACIÓN binario, octal y hexadecimal Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles

TEMA II SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA.

TEMA II SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. TEMA II SISTEMAS DE NUMERACIÓN USUALES EN INFORMÁTICA. INTRODUCCIÓN. Codificación de la información. Codificación consiste en representar los elementos de un conjunto mediante los elementos de otro conjunto.

Más detalles

Lectura Obligatoria (LO-II-003) Guía de Conversiones entre sistemas de numeración

Lectura Obligatoria (LO-II-003) Guía de Conversiones entre sistemas de numeración UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS CENTRO UNIVERSITARIO REGIONAL DEL LITORAL ATLÁNTICO CARRERA DE ADMINISTRACIÓN DE EMPRESAS COMPUTACIÓN II Lectura Obligatoria (LO-II-003) Guía de Conversiones entre

Más detalles

Tema 1. Números naturales, operaciones y divisibilidad. El trabajo en equipo y el trabajo científico.

Tema 1. Números naturales, operaciones y divisibilidad. El trabajo en equipo y el trabajo científico. Tema 1. Números naturales, operaciones y divisibilidad. El trabajo en equipo y el trabajo científico. 1.- Estudio de los números naturales 1.1. Concepto de número natural El conjunto de los números naturales

Más detalles

Sistemas de Numeración. Códigos

Sistemas de Numeración. Códigos Electrónica Básica 1 Sistemas de Numeración. Códigos Electrónica Digital José Ramón Sendra Sendra Dpto. de Ingeniería Electrónica y Automática ULPGC SISTEMAS DE NUMERACIÓN 2 Sistemas de numeración: Intuitivamente

Más detalles

2 POTENCIAS Y RAÍCES CUADRADAS

2 POTENCIAS Y RAÍCES CUADRADAS 2 POTENCIAS Y RAÍCES CUADRADAS EJERCICIOS PROPUESTOS 2.1 Escribe cada potencia como producto y calcula su valor. a) ( 7) 3 b) 4 5 c) ( 8) 3 d) ( 3) 4 a) ( 7) 3 ( 7) ( 7) ( 7) 343 c) ( 8) 3 ( 8) ( 8) (

Más detalles

APUNTE Nº 1 INFORMATICA Y TECNOLOGÍAS DE LA INFORMACIÓN Y LAS COMUNICACIONES (T.I.C.)

APUNTE Nº 1 INFORMATICA Y TECNOLOGÍAS DE LA INFORMACIÓN Y LAS COMUNICACIONES (T.I.C.) APUNTE Nº 1 INFORMATICA Y TECNOLOGÍAS DE LA INFORMACIÓN Y LAS COMUNICACIONES (T.I.C.) Material de Consulta para Alumnos y Docentes Material editado y donado por la Prof. Mónica Alejandra Lobaiza - 1 -

Más detalles

SISTEMAS NUMÉRICOS. Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación

SISTEMAS NUMÉRICOS. Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación SISTEMAS NUMÉRICOS OBJETIVO GENERAL Conocer los diferentes sistemas numéricos y su importancia en la informática y la computación OBJETIVOS ESPECÍFICOS Distinguir los sistemas de numeración Identificar

Más detalles

Fundamentos de Programación. El Sistema de Numeración Binario. Fundamentos de Programación. Página 02.0 de 44

Fundamentos de Programación. El Sistema de Numeración Binario. Fundamentos de Programación. Página 02.0 de 44 Fundamentos de Programación. El Sistema de Numeración Binario. Fundamentos de Programación. Página 02.0 de 44 Atención! Hay 10 clases de personas: las que entienden el Sistema Binario y las que no. Fundamentos

Más detalles

Colegio Diocesano San José de Carolinas

Colegio Diocesano San José de Carolinas Tema 1. Representación digital de la información 1. Introducción. Los ordenadores son máquinas digitales y como tales operan con información representada en formato binario. La unidad elemental de información

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

Cómo hacer divisiones con y sin decimales

Cómo hacer divisiones con y sin decimales Cómo hacer divisiones con y sin decimales Las divisiones no son una operación tan difícil como muchos piensan. Es cierto que a veces son largas de hacer, pero largo no quiere decir que sea complicado,

Más detalles

Tema 2 Divisibilidad

Tema 2 Divisibilidad 1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos

Más detalles

Comunicación y representación de la información

Comunicación y representación de la información Comunicación y representación de la información Unidad 0 C.F.G.M. Sistemas Microinformáticos y Redes Redes Locales Curso 2017/2018 IES Antonio Gala Palma del Río Índice de contenido Comunicación y representación

Más detalles

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA

Más detalles

SISTEMAS DE NUMERACIÓN

SISTEMAS DE NUMERACIÓN SISTEMAS DE NUMERACIÓN Un sistema de numeración es el conjunto de símbolos y reglas que se utilizan para la representación de datos numéricos o cantidades. Un sistema de numeración se caracteriza por su

Más detalles

Todo numero es divisible por 2 si y solo si termina en cero o en una cifra par

Todo numero es divisible por 2 si y solo si termina en cero o en una cifra par Revisemos la idea Cuando un número es divisor de un dividendo, bastara sumar dicho divisor en forma continua para alcanzar al dividendo. Basado en este proceso, es simple determinar la multiplicidad de

Más detalles

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones

Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología

Más detalles

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos

Más detalles

Representación de números enteros: el convenio complemento a uno

Representación de números enteros: el convenio complemento a uno Representación de números enteros: el convenio complemento a uno Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior

Más detalles

CONALEP TEHUACÁN ING. JONATHAN QUIROGA TINOCO SPORTE Y MANTENIMIENTO A EQUIPOS DE CÓMPUTO OPERACIÓN DE CIRCUÍTOS ELECTRÓNICOS DIGITALES TEMA 1.1.

CONALEP TEHUACÁN ING. JONATHAN QUIROGA TINOCO SPORTE Y MANTENIMIENTO A EQUIPOS DE CÓMPUTO OPERACIÓN DE CIRCUÍTOS ELECTRÓNICOS DIGITALES TEMA 1.1. CONALEP TEHUACÁN ING. JONATHAN QUIROGA TINOCO SPORTE Y MANTENIMIENTO A EQUIPOS DE CÓMPUTO OPERACIÓN DE CIRCUÍTOS ELECTRÓNICOS DIGITALES TEMA 1.1.2 SISTEMAS DE NUMERACIÓN 1 Sistemas de numeración Un sistema

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de

Más detalles

Tema 1 Conjuntos numéricos

Tema 1 Conjuntos numéricos Tema 1 Conjuntos numéricos En este tema: 1.1 Números naturales. Divisibilidad 1.2 Números enteros 1.3 Números racionales 1.4 Números reales 1.5 Potencias y radicales 1.7 Logaritmos decimales 1.1 NÚMEROS

Más detalles

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de

Más detalles

Representación de la información

Representación de la información Prof. Rodrigo Araya E. raraya@inf.utfsm.cl Universidad Técnica Federico Santa María Departamento de Informática Valparaíso, 1 er Semestre 2006 1 2 3 4 5 Contenido En el mundo que vivimos estamos rodeados

Más detalles

Teoría de errores. Departamento de Análisis Matemático Universidad de La Laguna

Teoría de errores. Departamento de Análisis Matemático Universidad de La Laguna Teoría de errores BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

Decimal Binario Hexadecimal Octal

Decimal Binario Hexadecimal Octal Decimal Binario Hexadecimal Octal El Sistema Decimal es el sistema es que todos utilizamos sin darnos cuenta del porqué. El Sistema Decimal utiliza 10 cifras (del 0 al 9). Al combinar estas cifras se consigue

Más detalles

Bases Numéricas. Por ejemplo: El valor en combinación de los símbolos 234 es determinado por la suma de los valores correspondientes a cada posición:

Bases Numéricas. Por ejemplo: El valor en combinación de los símbolos 234 es determinado por la suma de los valores correspondientes a cada posición: Bases Numéricas EL SISTEMA DECIMAL (Base 10): Este sistema está formado por diez símbolos, llamados números arábicos. También es llamado sistema de base 10. Usando los diez símbolos separadamente 0, 1,

Más detalles

La herramienta ArtEM: Aritmética Entera y Modular

La herramienta ArtEM: Aritmética Entera y Modular La herramienta ArtEM: Aritmética Entera y Modular 1. Introducción La herramienta ArtEM (Aritmética Entera y Modular) es una aplicación informática programada en Visual Basic y desarrollada con el fin de

Más detalles

DIAGRAMAS DE FLUJOS. Qué son Los Diagramas de Flujo y Para qué se Usan?

DIAGRAMAS DE FLUJOS. Qué son Los Diagramas de Flujo y Para qué se Usan? DIAGRAMAS DE FLUJOS Los diagramas de flujo representan la secuencia o los pasos lógicos para realizar una tarea mediante unos símbolos. Dentro de los símbolos se escriben los pasos a seguir. Un diagrama

Más detalles

Sistemas Numéricos Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas

Sistemas Numéricos Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 1 Sistemas Numéricos 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 Introducción Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar

Más detalles

+ 0 1 0 0 1 1 1 10* + 0 1 0 0 1 1 1 10* 45 10 + 21 10 66 10 Acarreo (Carry) Ejemplo: Acarreo 1 1 1 1 1 1 1 1 1 1 1 1 1 0 + 1 0 1 0 + 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 - 0 1 0 0 1* 1 1 0 Cuando se

Más detalles

Tema 1: Números Reales.

Tema 1: Números Reales. Tema 1: Números Reales. En este tema, estudiaremos lo que son los números reales, el conjunto de los números reales y los distintos subconjuntos (Naturales, Enteros, Racionales e Irracionales), así como

Más detalles

Introducción al análisis numérico

Introducción al análisis numérico Introducción al análisis numérico Javier Segura Universidad de Cantabria Cálculo Numérico I. Tema 1 Javier Segura (Universidad de Cantabria) Introducción al análisis numérico CNI 1 / 26 Contenidos: 1 Sistemas

Más detalles

LA DIVISIBILIDAD. Luego, 24 es divisible entre 3. CÓMO SABER SI UN NÚMERO ES DIVISIBLE ENTRE OTRO, SIN HACER LA DIVISIÓN?

LA DIVISIBILIDAD. Luego, 24 es divisible entre 3. CÓMO SABER SI UN NÚMERO ES DIVISIBLE ENTRE OTRO, SIN HACER LA DIVISIÓN? LA DIVISIBILIDAD Qué entendemos por divisibilidad? Es la propiedad de que un número pueda ser dividido por otro un número exacto de veces o que el resto sea cero. Luego, 24 es divisible entre 3. CÓMO SABER

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2

Más detalles

OPEN KNOWLEDGE CURSO DE METODOS NUMERICOS

OPEN KNOWLEDGE CURSO DE METODOS NUMERICOS OPEN KNOWLEDGE CURSO DE METODOS NUMERICOS Juan F. Dorado Diego F. López Laura B. Medina Juan P. Narvaez Roger Pino Universidad de San Buenaventura, seccional Cali OPEN KNOWLEDEGE CURSO DE METODOS NUMERICOS

Más detalles

EJERCICIOS RESUELTOS DEL TEMA 5

EJERCICIOS RESUELTOS DEL TEMA 5 EJERCICIOS RESUELTOS DEL TEMA 5 MULTIPLICACIÓN 1.- Multiplicar los números 27 y -7 utilizando representación binaria en complemento a 2, con el mínimo número posible de bits y empleando el algoritmo apropiado.

Más detalles

Sistemas Numéricos y Códigos Binarios

Sistemas Numéricos y Códigos Binarios Sistemas Numéricos y Códigos Binarios Marcelo Guarini Departamento de Ingeniería Eléctrica, 5 de Abril, 5 Sistemas Numéricos en Cualquier Base En el sistema decimal, cualquier número puede representarse

Más detalles

Informática Básica. Definiciones. Conceptos generales e historia

Informática Básica. Definiciones. Conceptos generales e historia Informática Básica Conceptos generales e historia Definiciones Informática: ciencia del tratamiento automático (mediante máquinas) y racional (siguel razonamiento humano) de la información. Computadora:

Más detalles

UNIVERSIDAD DON BOSCO TECNICO EN INGENIERIA EN COMPUTACION

UNIVERSIDAD DON BOSCO TECNICO EN INGENIERIA EN COMPUTACION UNIVERSIDAD DON BOSCO TECNICO EN INGENIERIA EN COMPUTACION CICLO 1/ 2019 Nombre de la Practica: Lugar de Ejecución: Tiempo Estimado: MATERIA: GUIA DE LABORATORIO #1 Sistemas Numéricos Centro de Computo

Más detalles

Dedos Manos Representación con cifras

Dedos Manos Representación con cifras Qué significa 10? Esta es una pregunta que todos pueden contestar en segundos, pero qué dirá la mayoría si afirmo categóricamente que también 3+2=10 o que 10-3=4? Seguro que muchos dirán que no tengo ni

Más detalles

Tema 2: Sistemas y códigos numéricos

Tema 2: Sistemas y códigos numéricos Tema 2: Sistemas y códigos numéricos Sistemas numéricos posicionales En este sistema la posición de cada digito tiene un peso asociado. El valor de un número es una suma ponderada de los dígito, por ejemplo:

Más detalles

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario: Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de 5 porque

Más detalles

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS) UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.

Más detalles

No tienen componente en continua: Lo que implica todas las ventajas mencionadas anteriormente.

No tienen componente en continua: Lo que implica todas las ventajas mencionadas anteriormente. No tienen componente en continua: Lo que implica todas las ventajas mencionadas anteriormente. Detección de errores: Se pueden detectar errores si se observa una ausencia de transición esperada en mitad

Más detalles

NÚMEROS UTILIZADOS EN ELECTRÓNICA DIGITAL

NÚMEROS UTILIZADOS EN ELECTRÓNICA DIGITAL UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACION DE COMPUTACION GUIA DE LABORATORIO #1 CICLO: 01/ 2016 Nombre de la Practica: Lugar de Ejecución: Tiempo Estimado: MATERIA: Sistemas

Más detalles

Nombre del Plantel: Conalep Tehuacán 150. Nombre del módulo: Operación de Circuitos de Electrónicos. Apunte 2: Sistemas de Representación Numérica

Nombre del Plantel: Conalep Tehuacán 150. Nombre del módulo: Operación de Circuitos de Electrónicos. Apunte 2: Sistemas de Representación Numérica www.zonaemec.tk Nombre del Plantel: Conalep Tehuacán 150 Nombre del módulo: Operación de Circuitos de Electrónicos Apunte 2: Sistemas de Representación Numérica Ing. Jonathan Quiroga Tinoco Grupo: 309

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Seguro que alguna vez has tenido en tus manos algún cuadernillo de pasatiempos o has realizado algún test psicotécnico

Más detalles

SISTEMA BINARIO. Los códigos empleados para ambos canales responden a dos formas:

SISTEMA BINARIO. Los códigos empleados para ambos canales responden a dos formas: SISTEMA BINARIO Todo sistema de comunicación necesita un mensaje, un emisor del mismo, un receptor, un canal para transmitir la información y un código que tanto el emisor como el receptor sean capaces

Más detalles