Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y))

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y))"

Transcripción

1 Capítulo 3 Funciones elementales En este capítulo se introducen la funciones elementales variable compleja: la exponencial, el logaritmo y las funciones trigonométricas e hiperbólicas. Como veremos, muchas de las propiedades que estas funciones verifican en el caso real también se cumplen en el caso complejo. Pero también surgen propiedades distintas. Veremos, por ejemplo, que la exponencial compleja es una función periódica o que las funciones sen y cos no están acotadas en lc Función exponencial Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como exp(z) = e x (cos(y) + i sen(y)) Comparando esta expresión con la forma polar de los números complejos se tiene que exp(z) = e x y que y es un argumento de exp(z). Observamos que esta definición es coherente con la notación de Euler pues si z = 0 + iy, con y l - R, se tiene que e iy = cos(y) + i sen(y). También se utiliza la notación e z en vez de exp(z). En primer lugar comprobaremos que la función exponencial compleja extiende a la exponencial real. Si z = x + i0, con x l - R, se tiene que exp(x + i0) = e x. Proposición 3.1 La función exponencial es derivable y su derivada es ella misma. Ejemplo 3.1 Exprese en forma polar y represente gráficamente e iπ, e +iπ/ y e iπ/4. Ejemplo 3. Exprese en la forma e x+iy los números complejos, i, 3, i. 19

2 0 Ejemplo 3.3 Halle la imagen de la recta y = π/4 mediante la función exponencial. Ejemplo 3.4 Halle la imagen de la recta x = 1 mediante la función exponencial. Ejercicio 3.1 Razone que si w 0 siempre existe un z lc tal que e z = w. Ejercicio 3. Dados a, b l - R, halle la imagen de las rectas x = a e y = b mediante la función exponencial. Ejercicio 3.3 Halle la imagen del conjunto A = [1, ] [0, π] mediante la función exponencial. Proposición 3. Para cualesquiera z 1, z lc se verifica exp(z 1 + z ) = exp(z 1 ) exp(z ). (3.1) Corolario 3.1 Para cualquier z lc se verifica: 1. exp(z) 0,. exp( z) = 1 exp(z), 3. (exp(z)) n = exp(nz) n Z. Las propiedades vistas hasta ahora son comunes a las exponenciales real y compleja. Veremos que también hay propiedades que verifica una y la otra no. Por ejemplo, sabemos que la exponencial real es inyectiva. La exponencial compleja no lo es, pues como establece corolario siguiente, es una función periódica y sus periodos son de la forma kπi con k Z. Corolario 3. Para cualesquiera z 1, z lc se tiene que e z 1 = e z si, y solamente si, z 1 = z + kπi con k Z. Ejemplo 3.5 Halle las soluciones de la ecuación e z = 1 + i y represéntelas gráficamente. Ejercicio 3.4 Demuestre que la función exponencial es inyectiva si se restringe el conjunto de partida al conjunto A 0 = l - R ( π, π). Halle el conjunto imagen.

3 1 3.. El logaritmo complejo En el caso real, la función exponencial es inyectiva, y también sobreyectiva si restringimos el conjunto de llegada al intervalo (0, + ). Puede considerarse entonces la función inversa que es el logaritmo neperiano real. Para introducir el logaritmo en el caso complejo no puede seguirse exactamente el mismo procedimiento pues, como ya se ha mencionado, la función exponencial compleja no es inyectiva y, si se considera su inversa, se obtiene una correspondencia no unívoca. Para conseguir una función univaluada el procedimiento que seguiremos será elegir zonas donde la exponencial es inyectiva y considerar, en cada zona, la correspondiente función inversa. Así se construyen las denominadas ramas del logaritmo. Dado w lc analicemos las soluciones de la ecuación exp(z) = w Si z = x + iy y θ es un argumento de w, la ecuación se escribe e x e iy = w e iθ e igualando módulos se obtiene, en el campo de los números reales, la ecuación e x = w de donde 1 x = ln( w ), si w 0, y no tiene solución si w = 0. Igualando ahora argumentos se obtiene y = θ + kπ para k Z. Tenemos pues que y puede ser cualquier argumento del número complejo w. Se define entonces el logaritmo como sigue Definición 3. Sea w 0, se dice que z es un logaritmo de w si exp(z) = w. Si w = ρ y θ es un argumento de w, los logaritmos de w son log(w) = {ln(ρ) + i(θ + kπ), k Z}. (3.) Si de todos los posibles argumentos de w se elige el único que pertenece al intervalo ( π, π], se obtiene un único logaritmo que se denomina logaritmo principal. La instrucción log de Matlab calcula este logaritmo. Ejemplo 3.6 Calcule los logaritmos de: (a) 1 + i, (b) 1, (c) 1, (d) i. Ejercicio 3.5 Estudie si el logaritmo principal extiende a la función logaritmo neperiano real. 1 Empleamos la notación ln para el logaritmo neperiano real.

4 Ejercicio 3.6 Halle las soluciones de la acuación e z = 1 + (3)i que pertenecen al conjunto A 0 = l - R ( π, π). Según la definición anterior, el logaritmo asocia a cada número complejo w 0 un conjunto de números. Por tanto, el logaritmo así definido resulta una función multívoca esto es debido a que la función exponencial es una función periódica. Si deseamos obtener una función univaluada que sea inversa de la exponencial basta restringirse a un dominio donde ésta sea inyectiva. Si para α l - R se considera el conjunto A α = (, ) (α π, α + π), la función exp : A α lc resulta inyectiva y su conjunto imagen es lc \ H α, siendo H α = {z = ρe iα+π : ρ 0}. Tenemos entonces que la función exp : (, ) (α π, α + π) lc \ H α es biyectiva y, por tanto, podemos considerar su inversa que se denotará por log α. Tenemos entonces que si w lc H α, w posee infinitos logaritmos que son ln( w ) + iθ, donde θ es un argumento cualquiera de w. La función log α asocia a w el único de estos logaritmos perteneciente al conjunto A α = (, ) (α π, α + π). Utilizando la función arg α se tiene que log α (w) = ln w + i arg α (w). Definición 3.3 Dado α l - R, se llama log α a la inversa de la función exp : (, ) (α π, α + π) lc \ H α Se tiene entonces que log α : lc \ H α (, ) (α π, α + π) es log α (z) = ln z + i arg α (z) (3.3) De la definición se deduce que log α (z) log(z) y, por lo tanto, e log α (z) = z para todo z lc H α. También se verifica que si z A α = (, ) (α π, α + π), log α (exp(z)) = z, igualdad que es falsa si z / A α. Ejemplo 3.7 Calcule: log π ( 1), log 3π ( 1), log 0 (1), log π (1). Proposición 3.3 La función log α : lc \ H α lc es analítica en su dominio de definición y su derivada es d log α (z) = 1 dz z.

5 3 Ejemplo 3.8 Halle el dominio de definición de f(z) = log 0 (z ) y calcule su derivada. Ejercicio 3.7 Estudie si α l - R es cierto que log(e 1+i 3π ) = 1 + i 3π. Ejercicio 3.8 Estudie si log 0 puede extenderse como función continua a los puntos del semieje real negativo. Ejercicio 3.9 Dado α l - R, estudie si z, w lc\h α se cumple log α (z w) = log α (z)+log α (w). Ejercicio 3.10 Dado α l - R, estudie si z lc \ H α y n ln se cumple que log α (z n ) = n log α (z). Ejercicio 3.11 Halle el dominio de definición de f(z) = log 0 (1 z) y calcule su derivada Funciones trigonométricas e hiperbólicas En esta sección se definen las funciones trigonométricas e hiperbólicas y se estudian sus principales propiedades. Las funciones se introducen a partir de la función exponencial, extendiendo a las funciones trigonométricas e hiperbólicas del caso real. Veremos que no todas las propiedades del caso real se verifican en el caso complejo. Dado t l - R se tienen las expresiones Sumando y restando se obtiene sen(t) = eit e it i e it = cos(t) + i sen(t) e it = cos(t) i sen(t), cos(t) = eit + e it, ecuaciones que expresan el sen y el cos de un número real en función de la exponencial compleja. Parece entonces natural la definición siguiente: Definición 3.4 Para z lc se definen sen(z) = eiz e iz i cos(z) = eiz + e iz (3.4) (3.5)

6 4 Resulta obvio que estas funciones extienden al sen y al cos del caso real por lo que no hay ambigüedad en la notación. Proposición 3.4 Las funciones sen y cos son enteras y sus derivadas son: d sen(z) dz = cos(z) y d cos(z) dz = sen(z). Proposición 3.5 Se verifican las siguientes propiedades: 1. Las funciones sen(z) y cos(z) son periódicas de periodo π.. e iz = cos(z) + i sen(z) z lc. 3. sen( z) = sen(z) y cos(z) = cos( z) z lc. 4. sen (z) + cos (z) = sen(z 1 + z ) = sen(z 1 ) cos(z ) + sen(z ) cos(z 1 ), z 1, z lc. 6. cos(z 1 + z ) = cos(z 1 ) cos(z ) sen(z 1 ) sen(z ), z 1, z lc. Proposición 3.6 Se verifica que: 1. sen(z) = 0 si, y sólo si, z = kπ con k Z. cos(z) = 0 si, y sólo si, z = π/ + kπ con k Z. Ejemplo 3.9 Halle las soluciones de la ecuación sen(z) =. (Sol. z = ( π +kπ) i ln(+ 3) o z = ( π + kπ) i ln( 3) con k Z.) Ejercicio 3.1 Halle las soluciones de la ecuación cos(z ) = 0. (Sol. z = ± π + kπ con k Z + {0} o z = ± kπ πi con k Z ). El ejemplo siguiente muestra que no todas las propiedades del caso real se verifican en el caso complejo. Como sabemos, cuando x l - R, sen(x) 1. Esta propiedad no se cumple en lc. Ejemplo 3.10 Demuestre que sen(z) no está acotada cuando z lc. Análogamente al caso real se definen el resto de funciones trigonométricas. Las funciones hiperbólicas se definen como las reales.

7 5 Definición 3.5 Para z lc se definen senh(z) = ez e z y cosh(z) = ez + e z De estas definiciones resulta obvio que extienden a las funciones senh y cosh reales. Es inmediato comprobar las siguientes proposiciones: Proposición 3.7 Las funciones senh y cosh son enteras y sus derivadas son: d senh(z) dz = cosh(z) y d cosh(z) dz = senh(z). Proposición 3.8 Para z, z 1, z C se verifican 1. cosh (z) senh (z) = 1,. senh(z 1 + z ) = senh(z 1 ) cosh(z ) + cosh(z 1 ) senh(z ), 3. cosh(z 1 + z ) = cosh(z 1 ) cosh(z ) + senh(z 1 ) senh(z ). Ejercicio 3.13 Verifique la relaciones: (a) senh(iz) = i sen(z), (b) cosh(iz) = cos(z). El resto de las funciones hiperbólicas se definen como en el caso real: tgh(z) = senh(z), si cosh(z) 0 cosh(z) sech(z) = 1 cosh(z),... Ejercicio 3.14 Halle los ceros de senh(z) y cosh(z) Exponenciación y potenciación en lc En el caso de los números reales, si x, y l - R, x > 0, se tiene x y = e y ln(x) Extendiendo esta expresión al caso complejo podemos definir z w como sigue:

8 6 Definición 3.6 Para z 0 se define z w = e w log(z) Ejemplo 3.11 Halle i i, 1 i, i π. Ejemplo 3.1 Halle e 1/ y verifique que no coincide con exp(1/). Se observa que hay una ambigüedad en la notación: e z puede interpretarse como exp(z) o como la potencia e z, que son cosas diferentes. Cuando se escriba e z, salvo que se especifique otra cosa, se entenderá que es exp(z). Ejemplo 3.13 Estudie si es cierto que m, n ln y z 0 se cumple que z m/n coincide con n zm. Si se desea obtener una exponenciación univaluada se utiliza una ramas del logaritmo. Definición 3.7 Sea α l - R y w lc. Para z lc \ H α se define la potencia w de z como p w α(z) = e w log α (z) Proposición 3.9 La función p w α(z) es analítica en lc \ H α y su derivada es w z pw 1 α (z). Ejercicio 3.15 Sea f(z) = p 1/3 0 (z). 1. Calcule su dominio de definición A y el conjunto imagen B = f(a).. Sea g(z) = z 3. Estudie si es cierto que g(f(z)) = z z A. 3. Estudie si es cierto que f(g(z)) = z z B. Y para todo z lc?

Tema 3: Funciones elementales. Ejemplos. Marisa Serrano, José Ángel Huidobro. 15 de octubre de Ejemplo 3.1

Tema 3: Funciones elementales. Ejemplos. Marisa Serrano, José Ángel Huidobro. 15 de octubre de Ejemplo 3.1 Índice Marisa Serrano, José Ángel Huidobro 1 2 Universidad de Oviedo 15 de octubre de 2009 3 4 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es 5 Ejemplo 3.1 Definición 3.1 Dado z = x + iy C se define

Más detalles

Funciones elementales

Funciones elementales Funciones elementales 3.1. Función exponencial Ya hemos introducido la exponencial compleja definiéndola como e z = e x (cosy + i sen y) para todo z = x + iy C. Dicha definición fue propuesta por Euler

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Funciones de Variable Compleja (Continuidad,

Más detalles

N = {1, 2, 3, 4, 5,...}

N = {1, 2, 3, 4, 5,...} Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus

Más detalles

,... Como cada número entero m puede ser escrito como la fracción m 1, se tienen las inclusiones N Z Q

,... Como cada número entero m puede ser escrito como la fracción m 1, se tienen las inclusiones N Z Q Tema 1 Campos Numéricos Se supone al lector familiarizado con las propiedades usuales de los números naturales N, los números enteros Z y los números racionales Q. Los números naturales son los que utilizamos

Más detalles

1. NUMEROS COMPLEJOS.

1. NUMEROS COMPLEJOS. Apunte de Números complejos o imaginarios: Representación gráfica. Complejos conjugados y opuestos. Forma trigonométrica, de De Moivre, exponencial. Operaciones. Raíces.Fórmula de Euler. 1. NUMEROS COMPLEJOS.

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

Tema 2.1: Función exponencial. Funciones trigonométricas

Tema 2.1: Función exponencial. Funciones trigonométricas Tema.1: Función exponencial. Funciones trigonométricas Facultad de Ciencias Experimentales, Curso 008-09 E. de Amo Comenzaremos tratando de de nir la función exponencial sobre todo el plano C de modo que

Más detalles

Funciones. Definiciones. Dominio, rango e imagen

Funciones. Definiciones. Dominio, rango e imagen Funciones La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números, podemos

Más detalles

1. Función exponencial y funciones definidas mediante la exponencial

1. Función exponencial y funciones definidas mediante la exponencial TEMA 3 FUNCIONES COMPLEJAS ELEMENTALES 1. Función exponencial funciones efinias meiante la exponencial 1.1 La función exponencial 1. Funciones trigonométricas 1.3 Funciones hiperbólicas. Función logaritmo

Más detalles

Matemáticas 1 1 RESUMEN TEORÍA: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 RESUMEN TEORÍA: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemáticas 1 1 RESUMEN TEORÍA: Números Complejos Elena Álvare Sái Dpto. Matemática Aplicada y C. Computación Universidad de Cantabria Ingeniería de Telecomunicación Teoría: Números Complejos Necesidad

Más detalles

El conjunto de los números complejos.

El conjunto de los números complejos. Tema 1 El conjunto de los números complejos. 1.1. Introducción. Suponemos conocido el conjunto de los números reales R y sus propiedades. En consecuencia sabemos que en tal conjunto no tiene solución la

Más detalles

El sistema de los números reales y los números complejos

El sistema de los números reales y los números complejos Tema 1 El sistema de los números reales y los números complejos 1.1. Introducción A lo largo de la primera parte de este curso estudiaremos las funciones reales de una variable real, es decir funciones

Más detalles

Variable Compleja I Tema 5: Funciones elementales

Variable Compleja I Tema 5: Funciones elementales Variable Compleja I Tema 5: Funciones elementales 1 La exponencial 2 Logaritmos El conjunto de los logaritmos El problema del logaritmo holomorfo Ejemplos de logaritmos holomorfos Desarrollos en serie

Más detalles

Tema 3: Conjuntos y Funciones

Tema 3: Conjuntos y Funciones Tema 3: Conjuntos y Funciones Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2008 09 LC, 2008 09 Conjuntos y Funciones 3.1 Conjuntos Escribimos

Más detalles

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 Sabemos que la función inversa 1 Si f a b, entonces f b a 1 f (o recíproca) de f cumple la siguiente condición: Por lo tanto: 1 f f 1

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas...

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas... En el estudio de los conjuntos y las funciones es fundamental el sistema que se utilize para representar los puntos. Estamos acostumbrados a utilizar la estructura de afín o de vectorial de R n, utilizando

Más detalles

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos 1. Efectuar cada una de las operaciones indicadas. a) (35 + 25i) + ( 12 5i) b) ( 75 i) + (34 + 42i) c)

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002

Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002 MA3002 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo. La función exponencial Sea z = x + y i un número complejo. Se fine la función

Más detalles

Funciones Exponenciales y Logarítmicas

Funciones Exponenciales y Logarítmicas Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. Exponencial. Nota 1. Logaritmo.

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. Exponencial. Nota 1. Logaritmo. MA3002 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo. En lo que sigue, las funciones cuyo nombre está en letra azul son funciones variable

Más detalles

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á NÚMEROS REALES Página 7 REFLEXIONA Y RESUELVE El paso de Z a Q Di cuáles de las siguientes ecuaciones se pueden resolver en Z y para cuáles es necesario el conjunto de los números racionales, Q. a) x 0

Más detalles

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial Funciones potenciales A A. Funciones potenciales La función potencial f : R + R definida como f (x) = x b tiene sentido para cualquier exponente b real. En el caso particular de potencias naturales, se

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Logaritmos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con números reales. Propiedades de

Más detalles

Números imaginarios. x 2 +1 = 0,

Números imaginarios. x 2 +1 = 0, Números imaginarios El problema de encontrar la raíz cuadrada de determinados números ( 2, por ejemplo) provocó la ampliación de los números racionales a los números reales. Con el desarrollo del álgebra,

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Funciones de una variable (I)

Funciones de una variable (I) Funciones de una variable (I) Sesión teórica 7 5 de octubre de 2010 1 Preliminares 2 Funciones polinómicas y racionales 3 Función exponencial y logarítmica 4 Funciones trigonométricas Función Definición

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas

Universidad Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Universia Antonio Nariño Matemáticas Especiales Guía N 3: Funciones elementales complejas: exponencial, logaritmo, trigonométricas e hiperbólicas Grupo e Matemáticas Especiales Resumen Se presenta la efinición

Más detalles

MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011

MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011 MODULO DE LOGARITMO Nombre:.. Curso : Medio Los aritmos están creados para facilitar los cálculos numéricos. Por aritmo podemos convertir los productos en sumas, los cocientes en restas, las potencias

Más detalles

EJERCICIOS RESUELTOS DE ECUACIONES

EJERCICIOS RESUELTOS DE ECUACIONES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones EJERCICIOS RESUELTOS DE ECUACIONES 1. Determinar si cada una de las siguientes igualdades es una ecuación o una identidad:

Más detalles

Matemáticas I: Hoja 1

Matemáticas I: Hoja 1 Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LOGARITMOS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LOGARITMOS LOGARITMOS Introducción El empleo de los logaritmos es de gran utilidad para entender muchos de los desarrollos que se analizan en la Matemática, y para explicar una variedad muy extensa de problemas que

Más detalles

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009

Tema 2: Funciones anaĺıticas. Conjuntos abiertos y conjuntos cerrados. Ejemplos. Marisa Serrano. 6 de octubre de 2009 Índice Universidad de Oviedo 6 de octubre de 2009 1 2 3 4 email: mlserrano@uniovi.es Conjuntos abiertos y conjuntos cerrados B(a, ɛ) = {z C : z a < ɛ} = D(a, ɛ). Dado A C se dice que un punto a C es interior

Más detalles

UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA.

UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA. UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA Históricamente, los exponentes fueron introducidos en matemáticas para dar un método corto que indicara el producto de varios factores semejantes,

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim Las Funciones Analíticas 1 Las Funciones Analíticas Definición 12.1 (Derivada de una función compleja). Sea D C un conjunto abierto. Sea z 0 un punto fijo en D y sea f una función compleja, f : D C C.

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

Espacio de Funciones Medibles

Espacio de Funciones Medibles Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles

Más detalles

Índice. Tema 6 Series de Taylor y de Laurent. Series de Taylor. Observación. Marisa Serrano Ortega José Ángel Huidobro Rojo

Índice. Tema 6 Series de Taylor y de Laurent. Series de Taylor. Observación. Marisa Serrano Ortega José Ángel Huidobro Rojo Tema 6 y de Laurent Marisa Serrano Ortega José Ángel Huidobro Rojo Índice 1 2 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es 3 Observación Teorema 6.1 Sea f función analítica en D(z 0, R). Existe

Más detalles

Las Funciones Trigonométricas Inversas

Las Funciones Trigonométricas Inversas Capítulo 4 Las Funciones Trigonométricas Inversas 4.1. Relaciones y sus inversas Recordemos que una relación es un subconjunto de un producto cartesiano, es decir R A B o bien R : A B, en tanto que su

Más detalles

Números complejos (lista de problemas para examen)

Números complejos (lista de problemas para examen) Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

El alumno conocerá los fundamentos conceptuales de los números complejos 1.1. DEFINICIÓN Y ORIGEN Y OPRACIONES FUNDAMENTALES CON NÚMEROS COMPLEJOS

El alumno conocerá los fundamentos conceptuales de los números complejos 1.1. DEFINICIÓN Y ORIGEN Y OPRACIONES FUNDAMENTALES CON NÚMEROS COMPLEJOS ALGEBRA LINEAL OBJETIVO GENERAL: EL ALUMNO ANALIZARÁ Y ADQUIRIRÁ LOS CONOCIMEINTOS DEL ÁÑGEBRA LINEAL Y LOS PALICARÁ COMO UNA HERRAMIENTA PARA LA SOLUCIÓN DE PROBLEMAS PRÁCTICO DEL ÁREA DE INGENOERÍA.

Más detalles

Problemas de 4 o ESO. Isaac Musat Hervás

Problemas de 4 o ESO. Isaac Musat Hervás Problemas de 4 o ESO Isaac Musat Hervás 5 de febrero de 01 Índice general 1. Problemas de Álgebra 7 1.1. Números Reales.......................... 7 1.1.1. Los números....................... 7 1.1.. Intervalos.........................

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Enteras Polinómicas Racionales Algebraicas Fraccionarias Racionales Irracionales Funciones Trigonométricas Trascendentes Exponenciales Logarítmicas

Enteras Polinómicas Racionales Algebraicas Fraccionarias Racionales Irracionales Funciones Trigonométricas Trascendentes Exponenciales Logarítmicas E.T.S.I. Industriales y Telecomunicación Curso 010-011 Tema : Funciones reales de una variable real Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase y ponga

Más detalles

Tema 2. Función compleja de una variable compleja

Tema 2. Función compleja de una variable compleja Nota: Las siguientes líneas son un resumen de las cuestiones que se han tratado en clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido en la bibliografía recomendada en la

Más detalles

Complejos, C. Reales, R. Fraccionarios

Complejos, C. Reales, R. Fraccionarios NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

Curso 2018/2019 Grado en Ingeniería Química Industrial Matemáticas I - Soluciones problemas Tema 1 Concepto básicos Números complejos

Curso 2018/2019 Grado en Ingeniería Química Industrial Matemáticas I - Soluciones problemas Tema 1 Concepto básicos Números complejos Curso 08/09 Grado en Ingeniería Química Industrial Matemáticas I - Soluciones problemas Tema Concepto básicos Números complejos. Escribe en lenguaje matemático las siguientes afirmaciones: a) Sea una aplicación

Más detalles

2.1 Las ecuaciones de Maxwell en el espacio libre. Llamaremos «espacio libre» a todo medio que satisfaga las siguientes propiedades

2.1 Las ecuaciones de Maxwell en el espacio libre. Llamaremos «espacio libre» a todo medio que satisfaga las siguientes propiedades Capítulo 2 Leyes básicas de la teoría electromagnética. Ondas electromagnéticas 2.1 Las ecuaciones de Maxwell en el espacio libre 2.1.1 El espacio libre Llamaremos «espacio libre» a todo medio que satisfaga

Más detalles

MATEMATICAS GRADO DECIMO

MATEMATICAS GRADO DECIMO MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real En la primera parte de este tema vamos a tratar con funciones reales de variable real, esto es, funciones

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 3 Dado el número complejo z3i, su conjugado, z, su opuesto, z, y su inverso,, son: z a) z 3, z 3, z 3 3 3 b) z 3, z 3, z 3 c) z 3, z 3, z 3

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos CONCEPTOS NÚMEROS COMPLEJOS En el conjunto de los números reales, una ecuación tan sencilla como x + = 0 no se puede resolver ya que es equivalente a x = - y no existe ningún número real cuyo cuadrado

Más detalles

VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como:

VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como: VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del al origen

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON Cap. Continuidad de funciones.1 CONTINUIDAD EN UN PUNTO. CONTINUIDAD DE FUNCIONES CONOCIDAS.3 CONTINUIDAD EN OPERACIONES CON FUNCIONES.4 CONTINUIDAD EN UN INTERVALO.5 TEOREMA DEL VALOR INTERMEDIO OBJETIVOS:

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013. Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de 23..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo:

Más detalles

CONVEXIDAD: CONCEPTOS BÁSICOS

CONVEXIDAD: CONCEPTOS BÁSICOS CONVEXIDAD: CONCEPTOS BÁSICOS El estudio de la convexidad de conjuntos y funciones, tiene especial relevancia a la hora de la búsqueda de los óptimos de las funciones, así como en el desarrollo de los

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

Funciones complejas. (excluyendo del dominio los valores de z en los que el denominador se anula).

Funciones complejas. (excluyendo del dominio los valores de z en los que el denominador se anula). Funciones complejas Una manera natural de definir funciones complejas es extendiendo las funciones reales. Las funciones reales mas sencillas son las lineales, polinomiales y las racionales (cocientes

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 3-4. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema : Series. Problema. Halle la representación en serie de McLaurin

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3 Hoja NúmerosComplejos.- Calcular todos los números z IC tales que: a) z = z 2 b) z = Rez + 2.- Obtener en forma binómica. a) b) c) 8 ( i) 5 (3 + 5i) (2 i) ( + i 3 ) ( + i) 3 3.- Obtener en forma binómica

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 7 PRACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; 9 ;, 7; ),; ; b) Alguno de ellos es entero? c) Ordénalos de menor a mayor. a) Racionales: ; 9

Más detalles

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es

Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1

Funciones. A.1 Definiciones. Dominio, rango e imagen A.1.1 Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,

Más detalles

Fórmula de Taylor-Maclaurin para algunas funciones elementales

Fórmula de Taylor-Maclaurin para algunas funciones elementales Fórmula de Taylor-Maclaurin para algunas funciones elementales Objetivos. Deducir las fórmulas de Taylor-Maclaurin para las funciones e x, a x, ln(1 + x), cos(x), sen(x), (1 + x) p. Requisitos. Tabla de

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

Sistemas de Ecuaciones y Matrices

Sistemas de Ecuaciones y Matrices Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

PRÁCTICAS DE VARIABLE COMPLEJA

PRÁCTICAS DE VARIABLE COMPLEJA PRÁCTICAS DE VARIABLE COMPLEJA Departamento de Análisis Matemático Curso 2/2 Práctica El Sistema de los números complejos.................... Práctica 2 Funciones holomorfas..............................

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

NÚMEROS COMPLEJOS. Página 146 PARA EMPEZAR, REFLEXIONA Y RESUELVE. Página 147. El paso de Z a Q

NÚMEROS COMPLEJOS. Página 146 PARA EMPEZAR, REFLEXIONA Y RESUELVE. Página 147. El paso de Z a Q NÚMEROS COMPLEJOS Página PARA EMPEZAR, REFLEXIONA Y RESUELVE El paso de Z a Q Imaginemos que solo se conocieran los números enteros, Z. Sin utilizar otro tipo de números, intenta resolver las siguientes

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

El cuerpo de los números complejos

El cuerpo de los números complejos Capítulo 1 El cuerpo de los números complejos En este primer capítulo se revisan los conceptos elementales relativos a los números complejos. El capítulo comienza con una breve nota histórica y después

Más detalles

Ecuaciones de Cauchy-Riemann

Ecuaciones de Cauchy-Riemann Ecuaciones de Cauchy-Riemann Por lo tanto, si las primeras derivadas parciales son continuas y satisfacen las ecuaciones de Cauchy-Riemann en todos los puntos de la vecindad (entorno), entonces f(z) es

Más detalles