1. El sistema de los números reales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. El sistema de los números reales"

Transcripción

1 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos de números. 1.1 Números enteros Z Son los números reales que se denotan por Z ; así que se escribe Z {...,, 1,0,1,... } 1. Números racionales Q Los números racionales son los números reales que se pueden expresar como razón de dos enteros. Se denota el conjunto de los números racionales por Q, así que Q { p x / x donde p Z, q Z } q Por otro lado, su desarrollo decimal es finito o infinito periódico. 1

2 Ejemplo: Números naturales N También conocidos como números para contar o enteros positivos. 1. Números Irracionales I N { 1,,,,,6,,8,9,... } Son los números que no pueden expresarse como un cociente de enteros y su desarrollo decimal es infinito no periódico. Ejemplo: π La unión del conjunto de los números racionales y del de los números irracionales se conoce como el conjunto de los números reales. Una manera bastante práctica es representar los conjuntos de números en una recta a la que denominaremos recta numérica como la que aparece en la siguiente figura. Mediante las ideas de igualdad y desigualdad pueden compararse números reales. Suponga que a y b representan dos números reales. Si sus gráficas sobre la recta numérica están en el mismo punto, a y b son iguales. Si la gráfica de a está a la derecha de b, entonces a es mayor que b, y si la gráfica de a está a la izquierda de b, entonces a es menor que b. Utilizamos símbolos para representar estas ideas.

3 Cuando se lee de izquierda a derecha, el símbolo < representa algo que es menor que, de modo que para decir que es menor que 8 escribiremos: < 8. También para escribir que 6 es menor que 9 ponemos 6 < 9. El símbolo > significa que algo es mayor que. Escribimos 8 es mayor que como 8 >. El enunciado 1 es mayor que 11 se convierte en 1 > 11. Podemos tener claro el significado de los símbolos < y > si recordamos que éstos siempre apuntan hacia el número más pequeño. Hay otros dos símbolos y, que también representan la idea de desigualdad. El símbolo significa es menor o igual que, por lo que 9 significa que es menor o igual a 9. Este enunciado es verdadero, ya que <9 es verdadero. Si la parte es verdadera o la parte < es verdadera, entonces la desigualdad es verdadera. 8 8 es verdadero ya que 88 también lo es. Pero no es verdadero 1 9, pues no son verdaderos 1<9, ni 19. Ejemplos: Determine si cada proposición es verdadera o falsa. a) 6 6. La proposición es falsa ya que 6 6. b) < 19. Como representa un número que en realidad es menor que 19 esta proposición es verdadera. c) 1 0. La proposición es verdadera ya que 1<0. d) 0. Tanto 0 como >0 son falsas. Por lo tanto 0 es falsa. e) 1 1. Como 1 1, esta proposición es verdadera.

4 . Operaciones con números reales Las reglas para la suma de números reales se describen a continuación:.1 Suma de números reales Signos iguales. Para sumar dos números con el mismo signo, deben sumarse sus valores absolutos. El signo de la suma (+ o - ) es el mismo que el signo de los dos números. Signos diferentes. Para sumar dos números con signos diferentes debe restarse el valor absoluto más pequeño del más grande. La suma es positiva si el número positivo tiene el valor absoluto más grande. La suma es negativa si el número negativo posee el valor absoluto más grande. Ejemplo: para sumar 1 y 8, primero han de obtenerse sus valores absolutos 1 1 y 8 8. Como estos números tiene el mismo signo, sume sus valores absolutos: Dé a la suma el signo de los dos números. Como los dos números son negativos, la suma es negativa 1 + ( 8) 0. Al buscar , tenemos que restar los valores absolutos pues dichos números tienen distintos signos: 1 1 y 11 11; Daremos al resultado el sigo del número con mayor valor absoluto: El resultado es negativo ya que 1 > 11. Ejemplo. Determine cada una de las siguientes sumas: a) (-6) + (-) -(6+) -9 b) (-1) + (-) -(1 + ) -16 c) + (-1) d) e)

5 . Definición de sustracción Para todos los números reales a y b a b a + ( b) (Cambie el signo del segundo número y sume) Ejemplo. Realice las operaciones indicadas: a) (-8) - b) (-) -16 c) -10 (-) d) 1 (-) 1. Cuando se resuelve un problema con sumas y restas, la suma y las restas se realizan en orden de izquierda a derecha.. Multiplicación de números reales Signos iguales. Para multiplicar dos números con el mismo signo, multiplique sus valores absolutos. El producto es positivo. Signos diferentes. Para multiplicar dos números con signos diferentes, multiplique sus valores absolutos. El producto es negativo. Ejemplo. Determine cada uno de los productos siguientes. a) 9 6 b) 1 ( ) 0 c) 8 ( )

6 . División de números reales Signos iguales. Para dividir dos números con el mismo signo, deben dividirse sus valores absolutos. El cociente es positivo. Signos diferentes. Para dividir dos números con signos diferentes, hay que dividir sus valores absolutos. El producto es negativo. Ejemplo. 1 a) Determine cada uno de los cocientes siguiente. Esto es cierto ya que ( ) b) 60 c) 0 0 Si 0 se divide entre un número diferente de cero, el cociente es 0. esto es 0 a para a 0. Esto es verdadero, ya que 0 a 0. Sin embargo, no podemos dividir entre 0. Hay una buena razón para esto. Siempre que se realiza una división, queremos encontrar un solo cociente. Ahora, considere el problema de división 0. Nos debemos preguntar qué número multiplicado por 0 da?. No existe tal número ya que el producto de 0 y cualquier número es cero. Por otra parte, si consideramos el cociente 0 0 existe un número infinito de respuestas a la interrogante qué número multiplicado por 0 da 0? Como la división entre 0 no da como resultado un único cociente, no se permite. Para resumir estas dos situaciones, expresamos el enunciado siguiente: La división por 0 no está definida 6

7 . Orden de las operaciones Si hay paréntesis o corchetes Paso 1. Resuelva arriba y debajo de las rayas de fracciones por separado. Paso. Utilice las reglas siguientes dentro de cada conjunto de paréntesis o corchetes. Inicie con el conjunto más interno y trabaje hacia fuera. Si no hay paréntesis o corchetes: Paso 1. Aplique todos los exponentes. Paso. Haga las multiplicaciones o divisiones en el orden en que aparezcan, trabajando de izquierda a derecha. Paso. Haga las sumas y restas en el orden en que aparezcan, trabajando de izquierda a derecha. Ejemplo. Utilice el orden de las operaciones para simplificar la siguiente expresión: + Primero multiplique y después sume ( + 8) + Trabaje dentro del paréntesis ( + 8) Aplique los exponentes Haga todas las multiplicaciones y divisiones trabajando de izquierda a derecha. Por último, realice todas las sumas o restas, trabajando de izquierda a derecha

8 Ejemplo. Pablo Vázquez ganó $10. en sus ventas del lunes, $1, tuvo de ganancias en las ventas del martes. El miércoles no pudo trabajar y el jueves vendió muy poco, así y que los gastos superaron las ventas y tuvo una perdida de $8. El viernes también tuvo pérdidas, por $1. Y el sábado se repuso pues tuvo ganancias por $00. Cuál fue su ganancia total? ( 8) + ( 1) La ganancia total en la semana fue de $. Ejemplo. El record de temperatura más alta fue de º c, en la fábrica, fue registrada en el área de pintura, el 1 de julio de 00. El record de temperatura más baja fue de -11º c registrada en el área refrigeración el 1 de enero de 006. Cuál es la diferencia entre la temperatura más alta y la más baja? Debemos determinar el valor de la temperatura más alta menos la más baja: ( 11) la diferencia entre la temperatura más alta y la más baja es de º c. Números racionales Los cocientes de los enteros se denominan fraccionarios o números racionales, en la forma a b. A a se le da el nombre de numerador y al número ubicado donde está b se le llama denominador. El denominador debe ser distinto de cero..1 Propiedad fundamental de los números racionales Si a, b y k son números enteros y b 0 y k 0, entonces a k b k a b 6 Ejemplo: Reduzca a su mínima expresión. Se puede escribir

9 . Suma y resta de números racionales Si b a y d c son números racionales, entonces a c ad + bc + y b d bd a b c d ad bc bd Ejemplos Efectúe las siguientes operaciones: a) se utiliza la fórmula para la suma ( 1)( ) + ( ) + () 1 () () 1 b) + como todo número siempre esta dividido por 1, tenemos + + entonces Forma alternativa para resolver + Se multiplica el número entero por el número del denominador y al resultado se suma el número del numerador, ( ) () + a este resultado se le divide entre el denominador de la fracción que se esta operando, así el resultado queda como. 1 c) + Primero efectuamos las operaciones dentro de los paréntesis En este caso como los denominadores son iguales solo se efectúa las operaciones de los numeradores y el denominador pasa igual, quedando como resultado

10 . Multiplicación de números racionales Si b a y d c son números racionales, entonces a b c d ac bd Ejemplo Determine cada uno de los siguientes productos a) b) División de números racionales Si b a y d c son números racionales, entonces a b c d ad bc Ejemplo Determine cada uno de los siguientes cocientes a) b)

11 Ejemplos: 19 a) Escribir en forma de entero o número mixto: 19 Escribe el cociente en forma de entero y coloca el residuo sobre el divisor como la fracción propia. b) Escribir en forma de fracción el número mixto + 1 Hay o 1 séptimos en unidades completas. 1 séptimos 1 más 1 séptimo son séptimos. 1 11

12 Procedimiento para realizar operaciones con números mixtos Transformar los números mixtos a fracciones impropias y efectuar la suma. Ejemplo: Efectúe las siguientes operaciones a) Primero se transforma a fracciones impropias y luego se efectúa la operación b)

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS) UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.

Más detalles

Capítulo 1. El Conjunto de los números Reales

Capítulo 1. El Conjunto de los números Reales Capítulo El Conjunto de los números Reales Contenido. El conjunto de los números Naturales................................. 4. El conjunto de los números Enteros................................... 4. El

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad

MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad 1. CONJUNTOS NUMÉRICOS Empezaremos este curso de preparación PSU revisando los diferentes conjuntos numéricos con los que has trabajado tanto

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos

Más detalles

1 Números racionales

1 Números racionales 8 _ 0-0.qxd //0 : Página Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que

Más detalles

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

Tema 1 Conjuntos numéricos

Tema 1 Conjuntos numéricos Tema 1 Conjuntos numéricos En este tema: 1.1 Números naturales. Divisibilidad 1.2 Números enteros 1.3 Números racionales 1.4 Números reales 1.5 Potencias y radicales 1.7 Logaritmos decimales 1.1 NÚMEROS

Más detalles

EL CONJUNTO DE LOS NÚMEROS REALES

EL CONJUNTO DE LOS NÚMEROS REALES MÓDULO 1 Curso: Matemática EL CONJUNTO DE LOS NÚMEROS REALES UNIVERSIDAD DE PANAMÁ CENTRO REGIONAL UNIVERSITARIO DE BOCAS DEL TORO Introducción Los estudiantes que inician el curso de Matemática a nivel

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS NÚMEROS NATURALES: Son los que utilizamos para contar Ejemplo: Contar el número de alumnos de la clase, escribir el número de la matrícula de un coche Se representan N{0,1,2, } Ejercicio:

Más detalles

Representación de enteros.

Representación de enteros. Representación de enteros. 1.- Debes representar en una recta los pares de números enteros que a continuación se indican. Para ello debes dividir la recta en las divisiones necesarias para que la representación

Más detalles

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006 LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas

Más detalles

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE Que se pueden escribir de la forma b a, donde a y b son enteros y b 0. Operaciones: suma,

Más detalles

TEMA 2 NÚMEROS ENTEROS

TEMA 2 NÚMEROS ENTEROS TEMA 2 NÚMEROS ENTEROS Criterios De Evaluación de la Unidad 1. Utilizar de forma adecuada los números enteros. 2. Representar sobre la recta los números enteros. 3. Hallar el valor absoluto de cualquier

Más detalles

SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS

SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS I. CONTENIDOS: 1. Introducción: de la aritmética al álgebra. 2. Números reales y recta numérica. 3. Operaciones aritméticas básicas con

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11 RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES º B CURSO 00- Expresa las siguientes fracciones en forma decimal e indica de qué tipo es dicho cociente / /0 0/ / Entero, Decimal exacto 0 0, Periódico puro,

Más detalles

Trabajo Práctico N 1: Números enteros y racionales

Trabajo Práctico N 1: Números enteros y racionales Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

REGLAS DE LOS SIGNOS

REGLAS DE LOS SIGNOS 1. 1 UNIDAD 1 REGLAS DE LOS SIGNOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las reglas de los signos. Objetivos específicos: 1. Recordarás las reglas

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Fracciones y decimales (páginas 62 66)

Fracciones y decimales (páginas 62 66) A NOMRE FECHA PERÍODO Fracciones y decimales (páginas 6 66) Un decimal que termina, tal como 0, es un decimal terminal Todos los decimales terminales son números racionales 0,000 Un decimal que se repite,

Más detalles

Los Conjuntos de Números

Los Conjuntos de Números Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #3: jueves, 2 de junio de 2016. 3 Decimales 3.1 Sistema de numeración

Más detalles

SIGNIFICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS

SIGNIFICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS OBJETIVO 1 SIGNIICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS NOMBRE: CURSO: ECHA: NÚMEROS NEGATIVOS En nuestra vida diaria observamos, leemos y decimos expresiones del tipo: a) Hemos dejado el coche

Más detalles

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =

Más detalles

Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed.

Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Agosto, 00 Notación exponencial La notación exponencial se usa para repetir

Más detalles

Lección 8: Potencias con exponentes enteros

Lección 8: Potencias con exponentes enteros GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad.

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. UNIDAD 6: FRACCIONES 6. Conocimiento de fracciones Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. 6.. Términos Los términos

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

PROBLEMAS DE DIAMANTE 2.1.1

PROBLEMAS DE DIAMANTE 2.1.1 PROBLEMAS DE DIAMANTE 2.1.1 En cada Problema de diamante, el producto de los dos números a los lados (izquierda y derecha) es el número arriba y la suma es el número de abajo. producto ab Los Problemas

Más detalles

1 of 18 10/25/2011 6:42 AM

1 of 18 10/25/2011 6:42 AM Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción

Más detalles

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales.

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. 1. LA FRACCIÓN Y SUS TÉRMINOS TEMA 6. LAS FRACCIONES Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. Fracción es una o varias partes iguales

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un

Más detalles

Operaciones con fracciones I

Operaciones con fracciones I Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:

Más detalles

5 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Números negativos y positivos. Números enteros.

5 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Números negativos y positivos. Números enteros. 826464 _ 0289-0300.qxd 12/2/07 09:47 Página 289 Números enteros INTRODUCCIÓN El concepto de número entero negativo implica la inclusión en el sistema numérico de unos números que superan el concepto de

Más detalles

6to GRADO. Operaciones con decimales HOJAS DE TRABAJO

6to GRADO. Operaciones con decimales HOJAS DE TRABAJO 6to GRADO Operaciones con decimales HOJAS DE TRABAJO Multiplicar y dividir por potencias de diez Mueve el punto decimal dependiendo de la cantidad de ceros el punto decimal se mueve a la derecha el punto

Más detalles

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos. NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

PROPIEDADES DE LOS NUMEROS REALES

PROPIEDADES DE LOS NUMEROS REALES PROPIEDADES DE LOS NUMEROS REALES Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Prof. Yuitza T. Humarán Martínez Adaptado por Prof. Caroline Rodriguez Naturales N={1, 2, 3, 4, } {0}

Más detalles

LOS NÚMEROS ENTEROS NÚMEROS POSITIVOS Y NÚMEROS NEGATIVOS

LOS NÚMEROS ENTEROS NÚMEROS POSITIVOS Y NÚMEROS NEGATIVOS LOS NÚMEROS ENTEROS NÚMEROS POSITIVOS Y NÚMEROS NEGATIVOS Para indicar las temperaturas por encima de cero ponemos delante del número el signo más y a las que son por debajo de cero, el signo menos. Para

Más detalles

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y Números Reales. 8 ejercicios para practicar con soluciones Ordena de menor a mayor las siguientes fracciones: y 8 Reducimos a común denominador: 0 80 0 00 0 y 0 0 0 0 0 0 8 0 El orden de las fracciones,

Más detalles

Unidad 3: Operaciones y propiedades de los números naturales

Unidad 3: Operaciones y propiedades de los números naturales Unidad 3: Operaciones y propiedades de los números naturales 3.1. Adición de números naturales Definición: Se llama suma de dos números a y b al número s de elementos del conjunto formado por lo a elementos

Más detalles

LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO OPERACIONES CON ENTEROS ORDENACIÓN DE NÚMEROS ENTEROS

LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO OPERACIONES CON ENTEROS ORDENACIÓN DE NÚMEROS ENTEROS LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO ORDENACIÓN DE NÚMEROS ENTEROS OPERACIONES CON ENTEROS Suma Resta Multiplicación División Potencia JERARQUÍA RESOLUCIÓN

Más detalles

N = {1, 2, 3, 4, 5,...}

N = {1, 2, 3, 4, 5,...} Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus

Más detalles

3.- LOS NÚMEROS FRACCIONARIOS

3.- LOS NÚMEROS FRACCIONARIOS 3.1 Las fracciones. 3.- LOS NÚMEROS FRACCIONARIOS Una fracción es la representación de un reparto, y la utilizamos comúnmente más de lo que parece, por ejemplo: en la compra, cuando decimos medio kilo

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

CONJUNTO DE LOS NÚMEROS REALES

CONJUNTO DE LOS NÚMEROS REALES COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatura: ANÁLISIS MATEMÁTICO 11º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER CONJUNTO DE LOS NÚMEROS REALES CONJUNTO DE LOS NÚMEROS REALES Aunque la teoría

Más detalles

Operaciones básicas con números enteros y con fracciones

Operaciones básicas con números enteros y con fracciones Curso de Acceso CFGS Operaciones básicas con números enteros y con fracciones OPEACIONES CON NÚMEOS ENTEOS Suma de números enteros Cuando tienen el mismo signo Se suman los valores y se deja el signo que

Más detalles

Operador = < > Se lee Igual a Distinto a Menor que Menor o igual que Mayor que Mayor o igual que

Operador = < > Se lee Igual a Distinto a Menor que Menor o igual que Mayor que Mayor o igual que TEORÍA 1. NÚMEROS ENTEROS * El conjunto de los números enteros está formado por el conjunto de los números naturales N = {0, 1, 2, 3, 4, 5...} y los negativos { 1, 2, 3, 4, 5...}. Se representa con el

Más detalles

MATEMÁTICAS Versión impresa NÚMEROS REALES

MATEMÁTICAS Versión impresa NÚMEROS REALES MATEMÁTICAS Versión impresa NÚMEROS REALES 1. EL CONJUNTO DE LOS NÚMEROS REALES 1.1. Números naturales El conjunto de los números naturales se representa con el símbolo. Los números naturales son los más

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período Los números Decimales, esas comas SISTEMA DE NUMERACIÓN DECIMAL Relación Fracción-Nº Decimal. Parte entera Parte decimal 2.533 Ante período Período Toda fracción se puede escribir en forma decimal, para

Más detalles

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban. DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números

Más detalles

CONJUNTOS NUMÉRICOS Y APLICACIONES

CONJUNTOS NUMÉRICOS Y APLICACIONES INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

Apuntes de los NÚMEROS REALES

Apuntes de los NÚMEROS REALES Apuntes de los NÚMEROS REALES Apuntes y notas tomadas de la dirección URL: http://dgenp.unam.mx/direccgral/secacad/cmatematicas/pdf/m4unidad03.pdf pág. 1 tres posibilidades ESQUEMA DE LOS NÚMEROS REALES

Más detalles

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario: Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

Más detalles

CENTRO DE EDUCACIÓN MEDIA CURSO CERO. Departamento: Matemáticas y Física. Área Académica: Matemáticas. Nombre de la materia: Curso Cero

CENTRO DE EDUCACIÓN MEDIA CURSO CERO. Departamento: Matemáticas y Física. Área Académica: Matemáticas. Nombre de la materia: Curso Cero CENTRO DE EDUCACIÓN MEDIA CURSO CERO DATOS DE IDENTIFICACIÓN CENTRO DE EDUCACIÓN MEDIA Departamento: Matemáticas y Física. Área Académica: Matemáticas BACHILLERATO Nombre de la materia: Curso Cero Tipo

Más detalles

La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1

La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1 La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1 Las expresiones algebraicas consisten en uno o más números y variables, junto

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

1. NUMEROS REALES a. Los Números Reales

1. NUMEROS REALES a. Los Números Reales 1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.

Más detalles

Recordar las principales operaciones con expresiones algebraicas.

Recordar las principales operaciones con expresiones algebraicas. Capítulo 1 Álgebra Objetivos Recordar las principales operaciones con expresiones algebraicas. 1.1. Números Los números naturales se denotarán por N y están constituidos por 0, 1, 2, 3... Con estos números

Más detalles

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación.

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación. FRACCIONES TEMA 2 INTRODUCCIÓN Para aplicar esta unidad didáctica es conveniente que ya se hayan estudiado las fracciones en clase de forma tradicional, es decir, empleando la pizarra, el papel y el lápiz.

Más detalles

SESIÓN 8 EXPONENTESY RADICALES

SESIÓN 8 EXPONENTESY RADICALES SESIÓN 8 EXPONENTESY RADICALES I. CONTENIDOS: 1. Leyes de los exponentes.. Exponente cero.. Exponente fraccionario. 4. Exponente negativo. 5. Radical. 6. Raíz enésima. 7. Raíces de números positivos y

Más detalles

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES NÚMEROS REALES. NÚMEROS RACIONALES Desde la aparición de las sociedades humanas los números desempeñan un papel fundamental para ordenar y contar los elementos de un conjunto. Así surgen, en primer lugar,

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador.

FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador. FRACCIONES FRACCION Una fracción es una epresión formada por dos números separados por una raa horizontal, al número de abajo se le llama denominador nos indica el número de partes iguales en que se divide

Más detalles

Victoria Aguilera Fernández

Victoria Aguilera Fernández Victoria Aguilera Fernández G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Fracciones.- / 1 FRACCIÓN Una fracción es la expresión numérica que representa la división de un todo

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

Números Naturales (N)

Números Naturales (N) Teoría de Conjuntos Números Naturales (N) Recuerda que: Un conjunto es una colección o agrupación de personas, animales o cosas. Los conjuntos generalmente se simbolizan con letras mayúsculas y sus elementos

Más detalles

Números Naturales (N)

Números Naturales (N) Teoría de Conjuntos Números Naturales (N) Recuerda que: Un conjunto es una colección o agrupación de personas, animales o cosas. Los conjuntos generalmente se simbolizan con letras mayúsculas y sus elementos

Más detalles

UNIDAD 5. FRACCIONES Y OPERACIONES

UNIDAD 5. FRACCIONES Y OPERACIONES UNIDAD. FRACCIONES Y OPERACIONES. FRACCIONES.. LA FRACCIÓN COMO OPERADOR Y COMO NÚMERO.. FRACCIONES EQUIVALENTES.. REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR.. OPERACIONES CON FRACCIONES.. FRACCIONES

Más detalles

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES 1. PARTES DE UN NÚMERO DECIMAL. 2. LECTURA Y ESCRITURA DE DECIMALES. 3. DESCOMPOSICIÓN DE NÚMEROS. DECIMALES Y VALOR RELATIVO DE LAS CIFRAS. 4. COMPARACIÓN Y ORDENACIÓN

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 OPERACIONES CON LOS NÚMEROS REALES En R se de nen dos operaciones: Suma o adición y producto o multiplicación: Si a 2 R y

Más detalles

T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor?

T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor? T. P. Números Racionales Q Si a b pertenecen a los enteros, a b SIEMPRE pertenece a los enteros? Exploren las distintas posibilidades (positivos negativos. Den ejemplos de acuerdo con cada caso posible.

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes:

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes

Más detalles

IV NÚMEROS FRACCIONARIOS.

IV NÚMEROS FRACCIONARIOS. IV NÚMEROS FRACCIONARIOS.. Qué es una fracción?. Fracciones equivalentes. Definición. Reconocimiento. Obtención.. Simplificación de fracciones.. Comparación de fracciones.. Operaciones con fracciones.

Más detalles

TEMA 10. EL CONJUNTO DE LOS NÚMEROS ENTEROS

TEMA 10. EL CONJUNTO DE LOS NÚMEROS ENTEROS TEMA 10. EL CONJUNTO DE LOS NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS Hasta ahora sólo has conocido el conjunto de los números naturales (N), que está formado por todos los números positivos desde el cero

Más detalles

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA

Más detalles

Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales)

Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Vamos a recordar los conjuntos numéricos estudiados hasta el momento. (1.) Conjunto de los números Naturales Son aquellos que utilizamos

Más detalles

Teoría de Conjuntos y Conjuntos Numéricos

Teoría de Conjuntos y Conjuntos Numéricos Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

UNIDAD #1: CONJUNTOS NUMERICOS

UNIDAD #1: CONJUNTOS NUMERICOS UNIDAD #1: CONJUNTOS NUMERICOS El concepto de conjunto es una de las ideas más útiles del álgebra ya que ayuda extender y a generalizar toda la aritmética, como veremos a través de la enseñanza de este

Más detalles

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad.

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad. Teoría er Ciclo Primaria Página 9 FRACCIONES FRACCIÓN es una o varias partes iguales en que se divide la unidad. La fracción está formada por dos números naturales a y b colocado uno encima del otro y

Más detalles

NÚMEROS NÚMEROS REALES

NÚMEROS NÚMEROS REALES NÚMEROS NÚMEROS REALES A los números que utilizamos para contar la cantidad de elementos de un conjunto no vacío se los denomina números naturales. Designamos con N al conjunto de dichos números. N = {,,,,,...

Más detalles

TEMA 1 Números enteros y racionales *

TEMA 1 Números enteros y racionales * TEMA Números enteros y racionales * Números enteros: Se denominan números naturales (también llamados enteros positivos) a los números que nos sirven para contar objetos:,2,3,4,5,... El conjunto de los

Más detalles