Tema 5. Derivación Matricial.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 5. Derivación Matricial."

Transcripción

1 Tema 5. Derivación Matricial. Análisis Matemático I 1º Estadística Universidad de Granada Noviembre / 24

2 Producto de Kronecker Definición Dadas dos matrices A M m n y B M p q, el producto de Kronecker de A y B, que notaremos por A B, es la matriz de orden mp nq dada por a 11 B a 12 B a 1n B a 21 B a 22 B a 2n B A B :=.... a m1 B a m2 B a mn B Universidad de Granada Noviembre / 24

3 Producto de Kronecker Observación Para cualquier matriz B se verifica B B 0 I n B = B Por tanto, I n I m = I nm, n, m N. Universidad de Granada Noviembre / 24

4 Producto de Kronecker Ejemplo Si las matrices A y B vienen dadas por A = entonces tenemos A B = = ( ( ) ) ( ( ( ) ) ) y B = ( ( ( ) ) ) Universidad de Granada Noviembre / 24

5 Producto de Kronecker Propiedades del producto de Kronecker Es una aplicación bilineal. Es decir, si A 1, A 2 M m n, B 1, B 2 M p q, entonces (A 1 + A 2 ) B 1 = (A 1 B 1 ) + (A 2 B 1 ), A 1 (B 1 + B 2 ) = (A 1 B 1 ) + (A 1 B 2 ), (αa 1 B 1 ) = (A 1 αb 1 ) = α(a 1 B 1 ), α R Para cualesquiera matrices A, B y C se verifica que No es conmutativo en general. (A B) C = A (B C) Universidad de Granada Noviembre / 24

6 Producto de Kronecker Propiedades del producto de Kronecker Si A 1 M m n, A 2 M n p, B 1 M q r, B 2 M r s, entonces se verifica (A 1 B 1 )(A 2 B 2 ) = A 1 A 2 B 1 B 2 Si A y B son matrices cuadradas invertibles, entonces A B también es invertible y (A B) 1 = A 1 B 1 Para matrices A y B cualesquiera se verifica que (A B) t = A t B t Si A y B son matrices cuadradas, se tiene que tr (A B) = tr (A)tr (B) Universidad de Granada Noviembre / 24

7 Producto de Kronecker Propiedades del producto de Kronecker Si A y B son matrices cuadradas de órdenes m y n, respectivamente, entonces det(a B) = det(a) n det(b) m Para matrices A y B cualesquiera se verifica que rg (A B) = rg (A)rg (B) Si A ( es una matriz) particionada en bloques de la forma A11 A A = 12 y B es otra matriz, entonces A 21 A 22 ( ) A11 B A A B = 12 B A 21 B A 22 B Universidad de Granada Noviembre / 24

8 Vectorización de una matriz Definición Si A es una matriz de orden m n, definimos la vectorización de A, que notaremos por A, como la matriz columna dada por a 1 a 1j a 2 A :=., donde a a 2j j :=, j {1,..., n}.. a n a mj (Nótese que a j es simplemente la columna j-ésima de la matriz A) Universidad de Granada Noviembre / 24

9 Ejemplo ( ) Si A = 4 5 6, entonces A = Universidad de Granada Noviembre / 24

10 Vectorización de una matriz Propiedades de la vectorización Es una aplicación lineal Si A M m n y B M n p se verifica Si A M m n, se tiene AB = (B t I m ) A = (I p A) B = (B t A) I n A = (In A) I n = (A t I m ) I m Si A M m n, B M n p y C M p q, se verifica ABC = (C t A) B = (I q AB) C = (C t B t I m ) A. Universidad de Granada Noviembre / 24

11 Vectorización de una matriz Propiedades de la vectorización Usando las propiedades segunda y primera de la vectorización se deduce que si A, B M m n y C, D M n p, entonces (A + B)(C + D) = [(I p A) + (I p B)][ C + D ] Si A M m n y B M n m, entonces = [(C t I m ) + (D t I m )][ A + B ] tr (AB) = ( A t ) t B = ( B t ) t A, en particular, si n = m y B = I n, entonces tr (A) = ( A t ) t I n = ( I n ) t A, Universidad de Granada Noviembre / 24

12 Derivadas matriciales Introducción En cursos anteriores se ha estudiado el concepto de diferenciabilidad para funciones de R n en R m. Como los espacios de matrices con coeficientes reales son, salvo identificación, R n para conveniente natural n, la diferenciabilidad de funciones de variable matricial y con valores en otro espacio de matrices es la ya conocida. Adoptaremos algún convenio sobre el orden en que escribiremos las derivadas parciales de las funciones reales involucradas. A continuación recordamos (en los casos ya conocidos) el orden en que se suelen escribir las derivadas parciales; estos serán casos particulares de la derivada matricial que definiremos más adelante. Universidad de Granada Noviembre / 24

13 Derivadas matriciales Casos conocidos de derivadas matriciales Función con valores escalares (y : R n ( R) ) y = y(x 1, x 2,..., x n ) tiene derivada y x 1,..., y x n (el gradiente de y). Función de variable real con valores vectoriales (y : R R m ) y 1 (x) dy 1(x) y 2 (x) dx y = y(x) = tiene derivada.... dy m(x) y m (x) dx Universidad de Granada Noviembre / 24

14 Derivadas matriciales Casos conocidos de derivadas matriciales Función de variable vectorial con valores vectoriales (y : R n R m ) y 1 (x 1,..., x n ) y = y(x) =. y m (x 1,..., x n ) tiene derivada y 1(x) x y m(x) x 1... y 1(x) x n. y m(x) x n (el jacobiano de y). Universidad de Granada Noviembre / 24

15 Derivadas matriciales Derivada matricial de una función real de variable matricial Sea y = y(x) una función real de variable matricial, esto es, y : M p n (R) R. La derivada de y (con respecto a la matriz X) es la función matricial que se suele notar por y X (X) y que viene dada por y x y X :=. y x p1... y x 1n. y x pn = ( y x ij )i=1,...,p j=1,...,n Nótese que la derivada matricial de una función real definida en M p n (R) es una función definida en M p n (R) y con valores en el mismo espacio de matrices. Observación Nótese que si p = 1, M 1 n (R) se identifica de forma natural con R n, y y X es más que el gradiente de y. no Universidad de Granada Noviembre / 24

16 Derivadas matriciales Ejemplo Se considera la función matricial F : M 2 2 (R) R dada por ( ) x11 x F 12 = e x11 x x 21 x x Entonces la derivada matricial de F viene dada por F X := F x 11 y x 21 F x 12 y x 22 e x11 x 21 5 = e x11 0 Universidad de Granada Noviembre / 24

17 Derivadas matriciales Derivada de una función matricial de variable matricial Sea Y = Y (X) una función matricial de variable matricial; supongamos que Y : M p n M m q. La derivada de Y (con respecto a la matriz X) es la función matricial (que notaremos Y X ) definida en M p n y con valores en M pm nq dada por Y X := y 11 X.... y m1 X... y 1q X. y mq X. Nótese que como cada y ij es una función escalar de variable matricial, para calcular yij X hay que aplicar la fórmula dada en la definición previa, esto es, y ij y x y ij X := ij x 1n.., 1 i m, 1 j q. y ij x p1... y ij x pn Universidad de Granada Noviembre / 24

18 Derivadas matriciales Ejemplo Se considera la función matricial Y : M 1 2 R 2 M 2 1 dada por y 1 (x 1, x 2 ) x1 2 + x 2 3 Y (x 1, x 2 ) = =. y 2 (x 1, x 2 ) 2x 1 x 2 Entonces la derivada matricial de Y viene dada por Y X := y 1 X y 2 X = y 1 x 1 y 1 x 2 y 2 x 1 y 2 x 2 = 2x 1 3x 2 2 2x 2 2x 1 Universidad de Granada Noviembre / 24

19 Derivadas matriciales Reglas de derivación Sea C una matriz de orden p n (C será la variable independiente). Linealidad Si A, B : M p n M m q, entonces (A + tb) C = A C + t B C, t R Derivada del producto Sean A : M p n M m q y B : M p n M q r, entonces se verifica que (AB) C = A C (B I n) + (A I p ) B C Universidad de Granada Noviembre / 24

20 Matrices de permutación Definición Una matriz de permutación de orden mn, que notaremos por P m,n, es una matriz cuadrada de orden mn dividida en mn bloques de orden m n. El bloque (i, j) tiene todos sus elementos nulos, salvo el que está situado en el lugar (j, i) que vale 1. Ejemplos La matriz de permutación P 2,3 es cuadrada, tiene orden 3 2 = 6 y está formada por 6 bloques de orden 2 3. En este caso tenemos que: B 11 B P 2,3 = B 21 B 22 = B 31 B Universidad de Granada Noviembre / 24

21 Matrices de permutación Ejemplos La matriz de permutación P 3,2 es cuadrada, tiene orden 3 2 = 6 y está formada por 6 bloques de orden 3 2: ( ) B11 B P 3,2 = 12 B 13 = B 21 B 22 B De forma análoga tenemos P 2,2 = ( ) B11 B 12 = B 21 B Universidad de Granada Noviembre / 24

22 Matrices de permutación Proposición Si n, m N, se verifica: P m,1 = P 1,m = I m P t m,n = P n,m P m,n es una matriz ortogonal P m,n P n,m = I nm Universidad de Granada Noviembre / 24

23 Derivadas matriciales Reglas de derivación La variable independiente C es una matriz de orden p n. Derivada del producto de Kronecker Sean A : M p n M m q y B : M p n M s r, entonces se verifica que donde (A B) C (A I r ) C ( = A B C ( = (P r,m I p ) ) + ( I m B I p ) (A I r ) C I r A C ) (P q,r I n ). Universidad de Granada Noviembre / 24

24 Derivadas matriciales Reglas de derivación La variable independiente C es una matriz de orden p n. Regla de la cadena Sean A : M p n M s r e Y : M s r M m q, entonces se verifica que ( Y (A) Y (A) C = A I p También se verifica que Y (A) C = [ ( ( I s ) t ] Y (A) I p A ) t ( A ). C A ) ( ) Ir I n. C Universidad de Granada Noviembre / 24

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA MATEMÁTICAS EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA A Introducción teórica A Módulo y argumento de un vector A Producto escalar A3 Punto medio de un segmento A4 Ecuaciones de la

Más detalles

Subespacios Vectoriales

Subespacios Vectoriales Subespacios Vectoriales Prof. Apuntes del Postgrado en Ingeniería 31 Mayo 2008 Subespacio Definición de Subespacio y Ejemplos. Definición Sea H un subconjunto no vacio de un espacio vectorial V(K). Si

Más detalles

Apuntes de Matemática Discreta 2. Operaciones con Conjuntos

Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 2 Operaciones con Conjuntos

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

Determinantes. Primera definición. Consecuencias inmediatas de la definición

Determinantes. Primera definición. Consecuencias inmediatas de la definición Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

FUNCIONES CONVEXAS. El concepto de convexidad es fundamental en el análisis y resolución de los problemas de optimización.

FUNCIONES CONVEXAS. El concepto de convexidad es fundamental en el análisis y resolución de los problemas de optimización. FUNCIONES CONVEXAS El concepto de conveidad es fundamental en el análisis y resolución de los problemas de optimización. FUNCIONES CONVEXAS Y CÓNCAVAS. Sea S R n, un conjunto conveo y no vacío, y sea f:

Más detalles

Cálculo de Derivadas

Cálculo de Derivadas Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo Determinantes Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 2009 Definición Sea A una matriz de tamaño m n, para 1 i m y 1 j n, definimos el ij-ésimo menor de A, al cual denotaremos

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada (Modelo del 01) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo de 01 Sea la

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

Matrices y sus operaciones

Matrices y sus operaciones Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores

Más detalles

5. INTEGRALES MULTIPLES

5. INTEGRALES MULTIPLES 5. INTEGRALES MULTIPLES INDICE 5 5.. Integrales iteradas. 5.. Definición de integral doble: áreas y volúmenes..3 5.3. Integral doble en coordenadas polares 5 5.4. Aplicaciones de la integral doble (geométricas

Más detalles

Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores.

Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores. Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

Sistemas de ecuaciones lineales 4

Sistemas de ecuaciones lineales 4 4. SISTEMAS DE ECUACIONES LINEALES 4.1. DEFINICIONES Y CLASIFICACIÓN DE SISTEMAS. La ecuación de una recta en el plano tiene la forma ; su generalización a variables es:, y recibe el nombre de ecuación

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2014 Olalla (Universidad de Sevilla) El anillo de

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales Motivación e Ideas y Derivadas Formales La Derivación como Operación. Universidad de Cantabria Esquema Motivación e Ideas 1 Motivación e Ideas 2 3 Motivación Motivación e Ideas Sabemos como son los conjuntos

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2) UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades.

Más detalles

Apuntes Trigonometría. 4º ESO.

Apuntes Trigonometría. 4º ESO. Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al

Más detalles

TRA NSFORMACIO N ES LIN EA LES

TRA NSFORMACIO N ES LIN EA LES TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

cuadrada de 3 filas y tres columnas cuyo determinante vale 2.

cuadrada de 3 filas y tres columnas cuyo determinante vale 2. PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos

Más detalles

2. SISTEMAS DE ECUACIONES LINEALES. Introducción

2. SISTEMAS DE ECUACIONES LINEALES. Introducción 2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente

Más detalles

UNIDAD DIDÁCTICA 5: Geometría analítica del plano

UNIDAD DIDÁCTICA 5: Geometría analítica del plano UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

Departamento de Matemáticas. Matemáticas. 2º Bachillerato

Departamento de Matemáticas. Matemáticas. 2º Bachillerato Matemáticas 2º Bachillerato 1.- CONTENIDOS DE MATEMÁTICAS II QUE SERVIRÁN DE BASE PARA LA ELABORACIÓN DE LAS PROPUESTAS DE EXAMEN EN LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD DE EXTREMADURA CURSO 2006-2007

Más detalles

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO 82 Sea T una transformación afín definida por sus ecuaciones: = 2+ 2x y ' = 2+ 2y z' = 2+ 2z a) Clasificar T y hallar sus elementos característicos b)

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

Concurso Nacional de Matemáticas Pierre Fermat 2012. Examen para Nivel Superior Primera Etapa. Problemas

Concurso Nacional de Matemáticas Pierre Fermat 2012. Examen para Nivel Superior Primera Etapa. Problemas 1 Concurso Nacional de Matemáticas Pierre Fermat 2012 Examen para Nivel Superior Primera Etapa Instrucciones: No utilizar celular (éste deberá de estar apagado), calculadora ó cualquier otro medio en el

Más detalles

APÉNDICE E. Cálculo de la capacidad volumétrica del sitio. E.1 Cálculo de áreas

APÉNDICE E. Cálculo de la capacidad volumétrica del sitio. E.1 Cálculo de áreas Apéndices 79 APÉNDICE E Cálculo de la capacidad volumétrica del sitio E.1 Cálculo de áreas El área de cualquier figura que se haya levantado puede calcularse a partir de:? Las anotaciones de campo? El

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Inversas Generalizadas

Inversas Generalizadas Inversas Generalizadas Departamento de Matemáticas, CSI/IESM 5 de abril de 2 Índice.. Inversas generalizadas..........................................2. Uso de la inversa generalizada.....................................

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. TEMA 4 Ejercicios / 1 TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. 1. Tenemos un sistema homogéneo de 5 ecuaciones y 3 incógnitas: a. Es posible que sea incompatible?. Por qué? b. Es posible

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LOGARITMOS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LOGARITMOS LOGARITMOS Introducción El empleo de los logaritmos es de gran utilidad para entender muchos de los desarrollos que se analizan en la Matemática, y para explicar una variedad muy extensa de problemas que

Más detalles

e st dt = e st TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS 1. Definición de Transformada de Laplace

e st dt = e st TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS 1. Definición de Transformada de Laplace TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS. Definición de Transformada de Laplace Sea E el espacio vectorial de las funciones continuas a trozos y de orden exponencial (esto es, dada una

Más detalles

si este límite es finito, y en este caso decimos que f es integrable (impropia)

si este límite es finito, y en este caso decimos que f es integrable (impropia) Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

TEMA 7. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO.

TEMA 7. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO. TEMA 7. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO. 1. INTRODUCCIÓN.... ÁNGULOS Y DISTANCIAS EN EL PLANO... 3 3. MEDIDA DE ÁNGULOS ENTRE RECTAS Y PLANOS... 4 4. DISTANCIA ENTRE PUNTOS, RECTAS Y PLANOS.... 1

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles

CAPITULO 2: MATRICES Y DETERMINANTES

CAPITULO 2: MATRICES Y DETERMINANTES CAPITULO : MATRICES Y DETERMINANTES Cuando los sistemas de ecuaciones lineales son extensos, mayormente se utiliza matrices por su facilidad de manejo. Las matrices son ordenamientos de datos y se usan

Más detalles

Variable Estadística Bidimensional

Variable Estadística Bidimensional Capítulo 2 Variable Estadística Bidimensional 21 Distribución de Frecuencias Bidimensional Sea una población de n individuos donde estudiamos, simultáneamente, dos variables X e Y Seanx 1,x 2,,x k las

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD

TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD 1 Asignatura: Lógica 3 Curso 2004-2005 Profesor: Juan José Acero 20 25 de Octubre del 2004 TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD 1. El concepto de algoritmo. Los matemáticos

Más detalles

Sistemas de Ecuaciones y Matrices

Sistemas de Ecuaciones y Matrices Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores)

Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores) Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores). Listas de vectores. Listas de vectores son personajes típicos de Álgebra Lineal. Una lista de

Más detalles

TEMA II TEORÍA INTUITIVA DE CONJUNTOS

TEMA II TEORÍA INTUITIVA DE CONJUNTOS TEMA II TEORÍA INTUITIVA DE CONJUNTOS Policarpo Abascal Fuentes TEMA II Teoría intuitiva de conjuntos p. 1/4 TEMA II 2. TEORÍA INTUITIVA DE CONJUNTOS 2.1 CONJUNTOS 2.1.1 Operaciones con conjuntos 2.2 RELACIONES

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

CAPITULO 7.SERIES DE FOURIER. 7.1. Sistemas de funciones ortogonales

CAPITULO 7.SERIES DE FOURIER. 7.1. Sistemas de funciones ortogonales CAPITULO 7.SERIES DE FOURIER La publicación por Fourier (1768-1830) de la " Teoría analítica del calor ", fue de una influencia decisiva en las matemáticas posteriores. Se supone en ella que cualquier

Más detalles

TEMA 4: Espacios y subespacios vectoriales

TEMA 4: Espacios y subespacios vectoriales TEMA 4: Espacios y subespacios vectoriales 1. Espacios vectoriales Sea K un cuerpo. Denominaremos a los elementos de K escalares. Definición 1. Un espacio vectorial sobre K es un conjunto V cuyos elementos

Más detalles

Álgebra matricial. 2.1. Adición y trasposición

Álgebra matricial. 2.1. Adición y trasposición Capítulo 2 Álgebra matricial Estas notas están basadas en las realizadas por el profesor Manuel Jesús Gago Vargas para la asignatura Métodos matemáticos: Álgebra lineal de la Licenciatura en Ciencias y

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao Conceptos Básicos de Algebra Lineal y Geometría Multidimensional Alvaro Cofré Duvan Henao ii Índice general 1 Sistemas de ecuaciones lineales 1 11 El método de eliminación de Gauss 3 12 Determinantes 8

Más detalles

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 10º

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 10º COLEGIO BETHLEMITAS PLAN DE REFUERZO Fecha: Dia 25 Mes 03 Año 2015 META DE COMPRENSIÓN: La estudiante desarrolla comprensión sobre las características de localización de objetos geométricos en sistemas

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc.

Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc. Objetivo: Conocer la forma de analizar las Medidas de Tendencia Central de una distribución con OpenOffice Calc. CALC: MEDIDAS DE TENDENCIA CENTRAL Las medidas de tendencia central sirven como puntos de

Más detalles

DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas.

DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas. DETERMINANTES página 251 DETERMINANTES 13.1 Un determinante es un arreglo numérico en igual número de filas que de columnas del que, a partir de ciertas reglas, se forma un polinomio. El símbolo es un

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

Material elaborado por la Profesora Ana Aída Sforzini - Año 2009 1

Material elaborado por la Profesora Ana Aída Sforzini - Año 2009 1 UNIVERSIDAD NACIONAL DE RIO CUARTO FACULTAD DE CIENCIAS ECONOMICAS Cátedra: ÁLGEBRA LINEAL UNIDAD V ESPACIOS VECTORIALES 1.V Definición de vector VECTOR EN R n y PUNTO EN EL ESPACIO N-DIMENSIONAL SON,

Más detalles

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de 1 (a) f(x 1, x 2, x 3 ) = (x 1 + x 3, x 2 + x 3, x 1 + x 3, x 2 + x 3 ) (b) f(x 1, x 2, x

Más detalles

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

5. Producto de dos binomios de la forma: ( ax + c)( bx d ) PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,

Más detalles

Guía de Reforzamiento N o 2

Guía de Reforzamiento N o 2 Guía de Reforzamiento N o Teorema de Pitágoras y Trigonometría María Angélica Vega Guillermo González Patricio Sepúlveda 19 de Enero de 011 1 TEOREMA DE PITÁGORAS B a c C b A El Teorema de Pitágoras afirma

Más detalles

CAPÍTULO II. 5 El grupo ortogonal

CAPÍTULO II. 5 El grupo ortogonal CAPÍTULO II 5 El grupo ortogonal Desde el punto de vista afín, no existen discriminaciones entre el sistema de referencia canónico y otro sistema de referencia arbitrario. Ello se debe a que uno puede

Más detalles

Conjunto R n y operaciones lineales en R n

Conjunto R n y operaciones lineales en R n Conjunto R n y operaciones lineales en R n Objetivos. Definir el conjunto R n y operaciones lineales en R n, estudiar propiedades de las últimas. Requisitos. Conjunto de los números reales R, propiedades

Más detalles