Tema 5. Derivación Matricial.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 5. Derivación Matricial."

Transcripción

1 Tema 5. Derivación Matricial. Análisis Matemático I 1º Estadística Universidad de Granada Noviembre / 24

2 Producto de Kronecker Definición Dadas dos matrices A M m n y B M p q, el producto de Kronecker de A y B, que notaremos por A B, es la matriz de orden mp nq dada por a 11 B a 12 B a 1n B a 21 B a 22 B a 2n B A B :=.... a m1 B a m2 B a mn B Universidad de Granada Noviembre / 24

3 Producto de Kronecker Observación Para cualquier matriz B se verifica B B 0 I n B = B Por tanto, I n I m = I nm, n, m N. Universidad de Granada Noviembre / 24

4 Producto de Kronecker Ejemplo Si las matrices A y B vienen dadas por A = entonces tenemos A B = = ( ( ) ) ( ( ( ) ) ) y B = ( ( ( ) ) ) Universidad de Granada Noviembre / 24

5 Producto de Kronecker Propiedades del producto de Kronecker Es una aplicación bilineal. Es decir, si A 1, A 2 M m n, B 1, B 2 M p q, entonces (A 1 + A 2 ) B 1 = (A 1 B 1 ) + (A 2 B 1 ), A 1 (B 1 + B 2 ) = (A 1 B 1 ) + (A 1 B 2 ), (αa 1 B 1 ) = (A 1 αb 1 ) = α(a 1 B 1 ), α R Para cualesquiera matrices A, B y C se verifica que No es conmutativo en general. (A B) C = A (B C) Universidad de Granada Noviembre / 24

6 Producto de Kronecker Propiedades del producto de Kronecker Si A 1 M m n, A 2 M n p, B 1 M q r, B 2 M r s, entonces se verifica (A 1 B 1 )(A 2 B 2 ) = A 1 A 2 B 1 B 2 Si A y B son matrices cuadradas invertibles, entonces A B también es invertible y (A B) 1 = A 1 B 1 Para matrices A y B cualesquiera se verifica que (A B) t = A t B t Si A y B son matrices cuadradas, se tiene que tr (A B) = tr (A)tr (B) Universidad de Granada Noviembre / 24

7 Producto de Kronecker Propiedades del producto de Kronecker Si A y B son matrices cuadradas de órdenes m y n, respectivamente, entonces det(a B) = det(a) n det(b) m Para matrices A y B cualesquiera se verifica que rg (A B) = rg (A)rg (B) Si A ( es una matriz) particionada en bloques de la forma A11 A A = 12 y B es otra matriz, entonces A 21 A 22 ( ) A11 B A A B = 12 B A 21 B A 22 B Universidad de Granada Noviembre / 24

8 Vectorización de una matriz Definición Si A es una matriz de orden m n, definimos la vectorización de A, que notaremos por A, como la matriz columna dada por a 1 a 1j a 2 A :=., donde a a 2j j :=, j {1,..., n}.. a n a mj (Nótese que a j es simplemente la columna j-ésima de la matriz A) Universidad de Granada Noviembre / 24

9 Ejemplo ( ) Si A = 4 5 6, entonces A = Universidad de Granada Noviembre / 24

10 Vectorización de una matriz Propiedades de la vectorización Es una aplicación lineal Si A M m n y B M n p se verifica Si A M m n, se tiene AB = (B t I m ) A = (I p A) B = (B t A) I n A = (In A) I n = (A t I m ) I m Si A M m n, B M n p y C M p q, se verifica ABC = (C t A) B = (I q AB) C = (C t B t I m ) A. Universidad de Granada Noviembre / 24

11 Vectorización de una matriz Propiedades de la vectorización Usando las propiedades segunda y primera de la vectorización se deduce que si A, B M m n y C, D M n p, entonces (A + B)(C + D) = [(I p A) + (I p B)][ C + D ] Si A M m n y B M n m, entonces = [(C t I m ) + (D t I m )][ A + B ] tr (AB) = ( A t ) t B = ( B t ) t A, en particular, si n = m y B = I n, entonces tr (A) = ( A t ) t I n = ( I n ) t A, Universidad de Granada Noviembre / 24

12 Derivadas matriciales Introducción En cursos anteriores se ha estudiado el concepto de diferenciabilidad para funciones de R n en R m. Como los espacios de matrices con coeficientes reales son, salvo identificación, R n para conveniente natural n, la diferenciabilidad de funciones de variable matricial y con valores en otro espacio de matrices es la ya conocida. Adoptaremos algún convenio sobre el orden en que escribiremos las derivadas parciales de las funciones reales involucradas. A continuación recordamos (en los casos ya conocidos) el orden en que se suelen escribir las derivadas parciales; estos serán casos particulares de la derivada matricial que definiremos más adelante. Universidad de Granada Noviembre / 24

13 Derivadas matriciales Casos conocidos de derivadas matriciales Función con valores escalares (y : R n ( R) ) y = y(x 1, x 2,..., x n ) tiene derivada y x 1,..., y x n (el gradiente de y). Función de variable real con valores vectoriales (y : R R m ) y 1 (x) dy 1(x) y 2 (x) dx y = y(x) = tiene derivada.... dy m(x) y m (x) dx Universidad de Granada Noviembre / 24

14 Derivadas matriciales Casos conocidos de derivadas matriciales Función de variable vectorial con valores vectoriales (y : R n R m ) y 1 (x 1,..., x n ) y = y(x) =. y m (x 1,..., x n ) tiene derivada y 1(x) x y m(x) x 1... y 1(x) x n. y m(x) x n (el jacobiano de y). Universidad de Granada Noviembre / 24

15 Derivadas matriciales Derivada matricial de una función real de variable matricial Sea y = y(x) una función real de variable matricial, esto es, y : M p n (R) R. La derivada de y (con respecto a la matriz X) es la función matricial que se suele notar por y X (X) y que viene dada por y x y X :=. y x p1... y x 1n. y x pn = ( y x ij )i=1,...,p j=1,...,n Nótese que la derivada matricial de una función real definida en M p n (R) es una función definida en M p n (R) y con valores en el mismo espacio de matrices. Observación Nótese que si p = 1, M 1 n (R) se identifica de forma natural con R n, y y X es más que el gradiente de y. no Universidad de Granada Noviembre / 24

16 Derivadas matriciales Ejemplo Se considera la función matricial F : M 2 2 (R) R dada por ( ) x11 x F 12 = e x11 x x 21 x x Entonces la derivada matricial de F viene dada por F X := F x 11 y x 21 F x 12 y x 22 e x11 x 21 5 = e x11 0 Universidad de Granada Noviembre / 24

17 Derivadas matriciales Derivada de una función matricial de variable matricial Sea Y = Y (X) una función matricial de variable matricial; supongamos que Y : M p n M m q. La derivada de Y (con respecto a la matriz X) es la función matricial (que notaremos Y X ) definida en M p n y con valores en M pm nq dada por Y X := y 11 X.... y m1 X... y 1q X. y mq X. Nótese que como cada y ij es una función escalar de variable matricial, para calcular yij X hay que aplicar la fórmula dada en la definición previa, esto es, y ij y x y ij X := ij x 1n.., 1 i m, 1 j q. y ij x p1... y ij x pn Universidad de Granada Noviembre / 24

18 Derivadas matriciales Ejemplo Se considera la función matricial Y : M 1 2 R 2 M 2 1 dada por y 1 (x 1, x 2 ) x1 2 + x 2 3 Y (x 1, x 2 ) = =. y 2 (x 1, x 2 ) 2x 1 x 2 Entonces la derivada matricial de Y viene dada por Y X := y 1 X y 2 X = y 1 x 1 y 1 x 2 y 2 x 1 y 2 x 2 = 2x 1 3x 2 2 2x 2 2x 1 Universidad de Granada Noviembre / 24

19 Derivadas matriciales Reglas de derivación Sea C una matriz de orden p n (C será la variable independiente). Linealidad Si A, B : M p n M m q, entonces (A + tb) C = A C + t B C, t R Derivada del producto Sean A : M p n M m q y B : M p n M q r, entonces se verifica que (AB) C = A C (B I n) + (A I p ) B C Universidad de Granada Noviembre / 24

20 Matrices de permutación Definición Una matriz de permutación de orden mn, que notaremos por P m,n, es una matriz cuadrada de orden mn dividida en mn bloques de orden m n. El bloque (i, j) tiene todos sus elementos nulos, salvo el que está situado en el lugar (j, i) que vale 1. Ejemplos La matriz de permutación P 2,3 es cuadrada, tiene orden 3 2 = 6 y está formada por 6 bloques de orden 2 3. En este caso tenemos que: B 11 B P 2,3 = B 21 B 22 = B 31 B Universidad de Granada Noviembre / 24

21 Matrices de permutación Ejemplos La matriz de permutación P 3,2 es cuadrada, tiene orden 3 2 = 6 y está formada por 6 bloques de orden 3 2: ( ) B11 B P 3,2 = 12 B 13 = B 21 B 22 B De forma análoga tenemos P 2,2 = ( ) B11 B 12 = B 21 B Universidad de Granada Noviembre / 24

22 Matrices de permutación Proposición Si n, m N, se verifica: P m,1 = P 1,m = I m P t m,n = P n,m P m,n es una matriz ortogonal P m,n P n,m = I nm Universidad de Granada Noviembre / 24

23 Derivadas matriciales Reglas de derivación La variable independiente C es una matriz de orden p n. Derivada del producto de Kronecker Sean A : M p n M m q y B : M p n M s r, entonces se verifica que donde (A B) C (A I r ) C ( = A B C ( = (P r,m I p ) ) + ( I m B I p ) (A I r ) C I r A C ) (P q,r I n ). Universidad de Granada Noviembre / 24

24 Derivadas matriciales Reglas de derivación La variable independiente C es una matriz de orden p n. Regla de la cadena Sean A : M p n M s r e Y : M s r M m q, entonces se verifica que ( Y (A) Y (A) C = A I p También se verifica que Y (A) C = [ ( ( I s ) t ] Y (A) I p A ) t ( A ). C A ) ( ) Ir I n. C Universidad de Granada Noviembre / 24

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

Matrices y sus operaciones

Matrices y sus operaciones Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores

Más detalles

cuadrada de 3 filas y tres columnas cuyo determinante vale 2.

cuadrada de 3 filas y tres columnas cuyo determinante vale 2. PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

Concurso Nacional de Matemáticas Pierre Fermat 2012. Examen para Nivel Superior Primera Etapa. Problemas

Concurso Nacional de Matemáticas Pierre Fermat 2012. Examen para Nivel Superior Primera Etapa. Problemas 1 Concurso Nacional de Matemáticas Pierre Fermat 2012 Examen para Nivel Superior Primera Etapa Instrucciones: No utilizar celular (éste deberá de estar apagado), calculadora ó cualquier otro medio en el

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

CAPITULO 2: MATRICES Y DETERMINANTES

CAPITULO 2: MATRICES Y DETERMINANTES CAPITULO : MATRICES Y DETERMINANTES Cuando los sistemas de ecuaciones lineales son extensos, mayormente se utiliza matrices por su facilidad de manejo. Las matrices son ordenamientos de datos y se usan

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

Material elaborado por la Profesora Ana Aída Sforzini - Año 2009 1

Material elaborado por la Profesora Ana Aída Sforzini - Año 2009 1 UNIVERSIDAD NACIONAL DE RIO CUARTO FACULTAD DE CIENCIAS ECONOMICAS Cátedra: ÁLGEBRA LINEAL UNIDAD V ESPACIOS VECTORIALES 1.V Definición de vector VECTOR EN R n y PUNTO EN EL ESPACIO N-DIMENSIONAL SON,

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao

Conceptos Básicos de Algebra Lineal y Geometría Multidimensional. Alvaro Cofré Duvan Henao Conceptos Básicos de Algebra Lineal y Geometría Multidimensional Alvaro Cofré Duvan Henao ii Índice general 1 Sistemas de ecuaciones lineales 1 11 El método de eliminación de Gauss 3 12 Determinantes 8

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA CURSO: Matemática Intermedia JORNADA: Matutina SEMESTRE: do. Semestre AÑO: 03 TIPO DE EXAMEN: NOMBRE DEL AUXILIAR:

Más detalles

Aversión al riesgo, equivalente cierto y precios de reserva

Aversión al riesgo, equivalente cierto y precios de reserva Aversión al riesgo, equivalente cierto y precios de reserva Ricard Torres ITAM Economía Financiera, 2015 Ricard Torres (ITAM) Aversión al riesgo, equivalente cierto y precios de reserva Economía Financiera

Más detalles

Álgebra matricial. 2.1. Adición y trasposición

Álgebra matricial. 2.1. Adición y trasposición Capítulo 2 Álgebra matricial Estas notas están basadas en las realizadas por el profesor Manuel Jesús Gago Vargas para la asignatura Métodos matemáticos: Álgebra lineal de la Licenciatura en Ciencias y

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

2. [2014] [EXT-B] Determinar los valores de los parámetros a y b para los que tiene inversa la matriz A =

2. [2014] [EXT-B] Determinar los valores de los parámetros a y b para los que tiene inversa la matriz A = MasMatescom [204] [EXT-A] Estudiar, para los distintos valores del parámetro m, el siguiente sistema de ecuaciones Resolverlo cuando m = 3 mx-y+3z = 0 x+y+7z = 0 2x-my+4z = 0 2 [204] [EXT-B] Determinar

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de

Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de Calcular la dimensión, una base y unas ecuaciones implícitas linealmente independientes del núcleo e imagen de 1 (a) f(x 1, x 2, x 3 ) = (x 1 + x 3, x 2 + x 3, x 1 + x 3, x 2 + x 3 ) (b) f(x 1, x 2, x

Más detalles

CAPÍTULO II. 5 El grupo ortogonal

CAPÍTULO II. 5 El grupo ortogonal CAPÍTULO II 5 El grupo ortogonal Desde el punto de vista afín, no existen discriminaciones entre el sistema de referencia canónico y otro sistema de referencia arbitrario. Ello se debe a que uno puede

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

Álgebra Matricial y Optimización Ma130

Álgebra Matricial y Optimización Ma130 Álgebra Matricial y Optimización Ma130 Descripción del Curso Departamento de Matemáticas ITESM Descripción del Curso Ma130 - p. 1/8 El objetivo de este curso es presentar al estudiante algunas de las herramientas

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

José de Jesús Ángel Ángel, c 2010. Factorización

José de Jesús Ángel Ángel, c 2010. Factorización José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4

Más detalles

Espacio afín. Transformaciones afines y movimientos

Espacio afín. Transformaciones afines y movimientos Capítulo Espacio afín. Transformaciones afines y movimientos. Espacio afín y espacio afín métrico Definición. El espacio afín (tridimensional) está constituido por los siguientes elementos. El espacio

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna

Más detalles

Integración por el método de Monte Carlo

Integración por el método de Monte Carlo Integración por el método de Monte Carlo Georgina Flesia FaMAF 29 de marzo, 2012 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para seleccionar muestras aleatorias de una

Más detalles

Capítulo II Límites y Continuidad

Capítulo II Límites y Continuidad (Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

CURSO CERO DE MATEMÁTICAS

CURSO CERO DE MATEMÁTICAS CURSO CERO DE MATEMÁTICAS Dr. García Alonso, Fernando Luis. Dr. García Ferrández, Pedro Antonio. -- RESUMEN TEORÍA DE ÁLGEBRA Matrices Las matrices constituyen una herramienta fundamental para la ejecución

Más detalles

CAPÍTULO II. 2 El espacio vectorial R n

CAPÍTULO II. 2 El espacio vectorial R n CAPÍTULO II 2 El espacio vectorial R n A una n upla (x 1, x 2,..., x n ) de números reales se le denomina vector de n coordenadas o, simplemente, vector. Por ejemplo, el par ( 3, 2) es un vector de R 2,

Más detalles

Introducción al Algebra Matricial

Introducción al Algebra Matricial Introducción al Algebra Matricial Alvaro G. Parra Versión preliminar y bajo revisión. Marzo 00 Alumno de Magíster en Economía Financiera de la Ponti cia Universidad Católica de Chile. Todos los errores

Más detalles

Ignacio Romero 20 de Septiembre de 2004. Notación indicial

Ignacio Romero 20 de Septiembre de 2004. Notación indicial INGENIERÍA GEOLÓGICA: MECÁNICA DE MEDIOS CONTINUOS Ignacio Romero 20 de Septiembre de 2004 Notación indicial En Mecánica de Medios Continuos los objetos matemáticos más empleados son los escalares, vectores

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones.

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones. Tema 4 Producto escalar En bachiller habéis visto los conceptos de producto escalar, longitud, distancia y perpendicularidad en R y R 3 En este tema del curso se generalizan estos conceptos a R n, junto

Más detalles

4 Aplicaciones lineales

4 Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 4 Aplicaciones lineales 4. Aplicación lineal Sean V y W dos espacios vectoriales sobre el mismo cuerpo K (en general, R o C. Una aplicación

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es

La aplicación derivada sobre el espacio E de los polinomios en una variable, E D E, es Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS 1 Aplicaciones lineales Núcleo e Imagen Tipos de aplicaciones lineales Sean E y E k-espacios vectoriales Definición 11 Una

Más detalles

Apuntes de Álgebra Lineal

Apuntes de Álgebra Lineal Apuntes de Álgebra Lineal Mariano Echeverría Introducción al Curso El álgebra lineal se caracteriza por estudiar estructuras matemáticas en las que es posible tomar sumas entre distintos elementos de cierto

Más detalles

Contabilidad General

Contabilidad General Contabilidad General 1 Sesión No. 8 Nombre: Balance General, estado de situación financiera o estado de posición financiera. Primera parte. Objetivo El estudiante identificará los elementos que conforman

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html elena.martinez@iimas.unam.mx

Más detalles

ÁLGEBRA MATRICIAL. Álvaro G. Parra* Trabajo Docente Nº 75. Santiago, Agosto 2009

ÁLGEBRA MATRICIAL. Álvaro G. Parra* Trabajo Docente Nº 75. Santiago, Agosto 2009 Versión impresa ISSN: 0- Versión electrónica ISSN: 0-9 PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE INSTITUTO DE ECONOMÍA Oficina de Publicaciones Casilla, Correo, Santiago www.economia.puc.cl ÁLGEBRA MATRICIAL

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

Vectores. a) Para que sean linealmente dependientes, el determinante formado por los tres vectores ha de valer cero.

Vectores. a) Para que sean linealmente dependientes, el determinante formado por los tres vectores ha de valer cero. Vectores. Dados los vectores a y b del espacio. Siempre es posible encontrar otro vector c tal que multiplicado vectorialmente por a nos de el vector b?. Por que?. No siempre será posible. El vector a

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

MATRICES SELECTIVIDAD

MATRICES SELECTIVIDAD MATRICES SELECTIVIDAD 1.- Sea K un número natural y sean las matrices a) Calcular A k. b) Hallar la matriz X que verifica que A K X = B C. Solución: 1 K K 0 0 0 ; X 1 1 0 0 1 1 1 K A 0 1 0 1 1 1 A 0 1

Más detalles

Diferenciabilidad de funciones de R n en R m

Diferenciabilidad de funciones de R n en R m Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES

4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES Espacios Vectoriales y Aplicaciones Lineales 4. ESPACIOS VECTORIALES Y APLICACIONES LINEALES SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA 1.- Espacios Vectoriales..- Propiedades de un Espacio Vectorial..-

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

Álgebra II, licenciatura. Examen parcial I. Variante α.

Álgebra II, licenciatura. Examen parcial I. Variante α. Engrape aqu ı No doble Álgebra II, licenciatura. Examen parcial I. Variante α. Operaciones con matrices. Sistemas de ecuaciones lineales. Nombre: Calificación ( %): examen escrito tarea 1 tarea 2 asist.+

Más detalles

MATEMÁTICAS I. Licenciatura de Administración y Dirección de Empresas. Fernando Casas, María Vicenta Ferrer, Pura Vindel. Departament de Matemàtiques

MATEMÁTICAS I. Licenciatura de Administración y Dirección de Empresas. Fernando Casas, María Vicenta Ferrer, Pura Vindel. Departament de Matemàtiques MATEMÁTICAS I Licenciatura de Administración y Dirección de Empresas Fernando Casas, María Vicenta Ferrer, Pura Vindel Departament de Matemàtiques Universitat Jaume I 2 Estas notas constituyen el material

Más detalles

Teoría de la Empresa. La Tecnología de Producción

Teoría de la Empresa. La Tecnología de Producción Teoría de la Empresa La Tecnología de Producción La Empresa Qué es una Empresa? En la práctica, el concepto de empresa, y el papel que las empresa desempeñan en la economía, son extraordinariamente complejos.

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Francisco Palacios Escuela Politécnica Superiror de Ingeniería Manresa

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

Álgebra lineal y matricial

Álgebra lineal y matricial Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen

Más detalles

LAS MATRICES. OPERACIONES CON MATRICES.

LAS MATRICES. OPERACIONES CON MATRICES. DP. - AS - Matemáticas ISSN: - X www.aulamatematica.com LAS MATRICES. OPERACIONES CON MATRICES. Escribe una matri A de dimensión señala cuál es el elemento a B Escribe una matri B de dimensión señala cuál

Más detalles

Matemáticas para la economía y la empresa. Departamento de Economía Financiera y Matemática

Matemáticas para la economía y la empresa. Departamento de Economía Financiera y Matemática Matemáticas para la economía y la empresa M. J. Canós Darós, C. Ivorra Castillo, V. Liern Carrión Departamento de Economía Financiera y Matemática Índice General Prólogo vii Álgebra Lineal 1 Algebra matricial

Más detalles

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo Eleonora Catsigeras * 17 de Noviembre 2013 Notas para

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

1. Suma y producto de polinomios. Propiedades

1. Suma y producto de polinomios. Propiedades ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teoría Prof. Alcón 1. Suma y producto de polinomios. Propiedades Sea (A, +,.) un anillo conmutativo. Llamamos polinomio en una indeterminada x con coeficientes

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

Materia: Matemática de Octavo Tema: Medidas de tendencia central para datos agrupados Media Aritmética

Materia: Matemática de Octavo Tema: Medidas de tendencia central para datos agrupados Media Aritmética Materia: Matemática de Octavo Tema: Medidas de tendencia central para datos agrupados Media Aritmética En un examen de matemáticas con tiempo, los estudiantes resuelven un problema particular en diferentes

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

Relación de Problemas. Tema 6

Relación de Problemas. Tema 6 Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre

Más detalles