Expresiones Regulares y Derivadas Formales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Expresiones Regulares y Derivadas Formales"

Transcripción

1 Motivación e Ideas y Derivadas Formales La Derivación como Operación. Universidad de Cantabria

2 Esquema Motivación e Ideas 1 Motivación e Ideas 2 3

3 Motivación Motivación e Ideas Sabemos como son los conjuntos regulares y parece que hay alguna relación entre las gramáticas regulares y las expresiones regulares. Como hallar una gramática a partir de una expresión regular?

4 Ideas Motivación e Ideas Sea la siguiente expresión a. Qué lenguaje genera?

5 Ideas Motivación e Ideas Tomemos la siguiente gramática regular G = ({S}, {a, b}, S, { S as λ }). Qué lenguaje genera?

6 Motivación e Ideas El Lenguaje de los Prefijos Si nuestro lenguaje esta generado por ba, entonces una posible gramática que genere el mismo lenguaje es: G = ({S, S }, {a, b}, S, {S bs, S as λ })

7 Motivación e Ideas El Lenguaje de los Prefijos El lenguaje L(a ) se relaciona con L(ba ) porque todas las palabras de L(a ) pertenecen a L(ba ) si se les añade el prefijo b.

8 Idea Motivación e Ideas Buscar estos lenguajes de prefijos y tratar de hallar una gramática a partir de ellos.

9 Pregunta Motivación e Ideas Como hallar para un lenguaje generado por una expresión regular las palabras que están en ese mismo lenguaje añadiéndole un prefijo?

10 Motivación e Ideas Derivación Formal Definición Sea Σ un alfabeto finito, a Σ un símbolo del alfabeto, y α una expresión regular sobre el alfabeto Σ. Llamaremos derivada de α con respecto al símbolo α a la expresión regular D a (α) con la siguiente propiedad: L(D a (α)) = {ω Σ : aω L(α)}.

11 Notación Motivación e Ideas Por la relación con las derivadas formales, utilizaremos la siguiente notación D a (α) = α a.

12 Motivación e Ideas La Derivación Calculemos varias derivaciones de expresiones regulares sencillas: a =, λ a =, b =, b Σ, b a. a a a = λ.

13 Motivación e Ideas Complejas Si α y β son dos expresiones regulares sobre Σ: (α + β) a = α a + β a.

14 Motivación e Ideas Complejas (α) a = (α) a α.

15 Motivación e Ideas Complejas Ahora un poco para la concatenación de expresiones regulares: Pues no es cierto. (α β) a = α a β.

16 Motivación e Ideas Complejas Ahora un poco para la concatenación de expresiones regulares: Pues no es cierto. (α β) a = α a β.

17 Motivación e Ideas Complejas (α β) a = α a β + t(α) β a, donde t(α) es la función dada por la identidad siguiente: { } λ si λ L(α), t(α) := en caso contrario.

18 Ejemplo Motivación e Ideas Veamos la derivación de la expresión regular a : (a) a = (a) a (a) = a.

19 Ejemplo Motivación e Ideas Las derivaciones de la expresión regular (aa + bb) : (aa + bb) a = (aa + bb) (aa + bb) = a(aa + bb). a

20 Motivación e Ideas No Funciona el Camino Fácil Las derivadas no vuelven las expresiones regulares más sencillas. Pero si que dan información sobre el lenguaje generado. L(a ) = al(a ) λ. Y esto se traduce a una gramática.

21 Motivación e Ideas Regla de Leibnitz Teorema (Regla de Leibnitz para ) Dada una expresión regular α sobre un alfabeto finito Σ, supongamos que Σ = {a 1,..., a n }. Entonces, α a 1 D a1 (α) + + a n D an (α) + t(α), donde t(α) es la función definida anteriormente.

22 Aplicación Motivación e Ideas Asignemos a cada expresión una variable, y cada expresión regular y a partir de la Regla de Leibnitz hallemos la gramática: L(a ) = al(a ) {λ.}

23 Aplicación Motivación e Ideas Demos a cada expresión una variable, y cada expresión regular y a partir de la Regla de Leibnitz hallemos la gramática: S as λ.

24 Aplicación Motivación e Ideas El mismo resultado se aplica para (a + b)a, (a + b). Pero, que ocurre cuando las derivaciones son expresiones regulares igual de complejas? Como aplicar lo mismo para una expresión más compleja?

Lenguajes Regulares. Antonio Falcó. - p. 1

Lenguajes Regulares. Antonio Falcó. - p. 1 Lenguajes Regulares Antonio Falcó - p. 1 Cadenas o palabras I Una cadena o palabra es una sucesión finita de símbolos. cadena {c, a, d, e, n}. 10001 {0, 1} El conjunto de símbolos que empleamos para construir

Más detalles

TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD

TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD 1 Asignatura: Lógica 3 Curso 2004-2005 Profesor: Juan José Acero 20 25 de Octubre del 2004 TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD 1. El concepto de algoritmo. Los matemáticos

Más detalles

Introducción a Autómatas Finitos

Introducción a Autómatas Finitos Introducción a e. Universidad de Cantabria Esquema 1 Introducción 2 3 Grafo de λ Transiciones Eliminación de las λ-transiciones 4 El Problema Podemos interpretar un autómata como un evaluador de la función

Más detalles

Introducción a la Teoría de Automátas

Introducción a la Teoría de Automátas a la Teoría de Automátas Universidad de Cantabria Primeras Consideraciones Fijar un modelo de cálculo que haga referencia a los fundamentos de la comunicación y el lenguaje. Todo cálculo algorítmico consiste

Más detalles

Apuntes de Matemática Discreta 2. Operaciones con Conjuntos

Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 2 Operaciones con Conjuntos

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos

Más detalles

Tema 5. Derivación Matricial.

Tema 5. Derivación Matricial. Tema 5. Derivación Matricial. Análisis Matemático I 1º Estadística Universidad de Granada Noviembre 2012 1 / 24 Producto de Kronecker Definición Dadas dos matrices A M m n y B M p q, el producto de Kronecker

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Nivel del ejercicio : ( ) básico, ( ) medio,( ) avanzado.

Nivel del ejercicio : ( ) básico, ( ) medio,( ) avanzado. Universidad Rey Juan Carlos Curso 2007 2008 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 1 Lenguajes Formales Nivel del ejercicio : ( ) básico,

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Determinantes. Primera definición. Consecuencias inmediatas de la definición

Determinantes. Primera definición. Consecuencias inmediatas de la definición Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de

Más detalles

Fundamentos de Cinética Química: ecuación diferencial de velocidad

Fundamentos de Cinética Química: ecuación diferencial de velocidad Fundamentos de Cinética Química: ecuación diferencial de velocidad Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología de Alimentos ETSIAMN (Universidad

Más detalles

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Expresiones Algebraicas y Polinomios Prof. Glorymill Santiago Labrador Adaptado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

UNIDAD IV. LEYES DE SENOS Y COSENOS.

UNIDAD IV. LEYES DE SENOS Y COSENOS. UNIDAD IV. LEYES DE SENOS Y COSENOS. OBJETIVO. El estudiante resolverá problemas leyes de senos y cosenos, teóricos o prácticos de distintos ámbitos, mediante la aplicación las leyes y propiedades de Senos

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2) UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades.

Más detalles

Capítulo 1. El Conjunto de los números Reales

Capítulo 1. El Conjunto de los números Reales Capítulo El Conjunto de los números Reales Contenido. El conjunto de los números Naturales................................. 4. El conjunto de los números Enteros................................... 4. El

Más detalles

VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como:

VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como: VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del al origen

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

Demostración de la Transformada de Laplace

Demostración de la Transformada de Laplace Transformada de Laplace bilateral Demostración de la Transformada de Laplace Transformada Inversa de Laplace En el presente documento trataremos de demostrar matemáticamente cómo puede obtenerse la Transformada

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2014 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto:

Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto: I.- Teoría de conjuntos Definición de conjunto Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto: a) Por extensión

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

25/10/2010. Tema 2. Aritmética

25/10/2010. Tema 2. Aritmética Tema 2. Aritmética 1 Resumen de lo trabajado Estudio conceptual de las operaciones: - Qué es sumar, restar, multiplicar y dividir. - Tipos de problemas aditivos. - Tipos de problemas multiplicativos -

Más detalles

PROPORCIONES Y SEMEJANZA

PROPORCIONES Y SEMEJANZA PROPORCIONES Y SEMEJANZA Veamos el siguiente ejemplo: Cuando tomamos una fotografía con nuestra cámara, si pedimos al laboratorio fotográfico que nos imprima dos copias de tamaño 5 X 7 pulgadas, las figuras

Más detalles

Bienvenidos. En esta presentación en la que estudiaremos la ley de Ohm y la ley de Watt.

Bienvenidos. En esta presentación en la que estudiaremos la ley de Ohm y la ley de Watt. Teel 1011: Circuitos de Corriente Directa (DC) Unidad 3: Ley de Ohm y ley de Watt Introducción 1.1 Bienvenida Bienvenidos. En esta presentación en la que estudiaremos la ley de Ohm y la ley de Watt. 1

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

Programación Orientada a Objetos. Sesión 4: Herencia

Programación Orientada a Objetos. Sesión 4: Herencia Programación Orientada a Objetos Sesión 4: Herencia Contextualización Cuando hablamos de informática, podemos contemplar varios elementos que se utilizan dentro de ésta misma, por ejemplo, la herencia

Más detalles

PAIEP. Factorización de Expresiones algebraicas

PAIEP. Factorización de Expresiones algebraicas Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Factorización de Expresiones algebraicas Factorizar una expresión algebraica consiste en reescribir la expresión

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

Repaso de Matemáticas

Repaso de Matemáticas Repaso de Matemáticas Teoría Macroeconomica III Marcel Jansen Universidad Autónoma de Madrid En estas notas resumiremos algunas de las herramientas matemáticas que pueden encontrar útiles para este curso.

Más detalles

UNIDAD 14 CONJUNTOS. Objetivo 1. Recordarás la definición de un conjunto y sus elementos.

UNIDAD 14 CONJUNTOS. Objetivo 1. Recordarás la definición de un conjunto y sus elementos. UNIDAD 14 CONJUNTOS Objetivo 1. Recordarás la definición de un conjunto y sus elementos. Ejercicios resueltos: 1. {2, 4, 6} es un conjunto. Los elementos que forman este conjunto son: 2, 4, 6 2. Cuántos

Más detalles

Criterios de evaluación. Objetivos. Contenidos. Actitudes. Conceptos. Procedimientos

Criterios de evaluación. Objetivos. Contenidos. Actitudes. Conceptos. Procedimientos P R O G R A M A C I Ó N D E L A U N I D A D Objetivos Calcular potencias de base un número entero. 2 Conocer y utilizar las propiedades de las operaciones con potencias. 3 Conocer qué es una potencia cuyo

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

2.Teoría de Autómatas

2.Teoría de Autómatas 2.Teoría de Autómatas Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

TEMA II TEORÍA INTUITIVA DE CONJUNTOS

TEMA II TEORÍA INTUITIVA DE CONJUNTOS TEMA II TEORÍA INTUITIVA DE CONJUNTOS Policarpo Abascal Fuentes TEMA II Teoría intuitiva de conjuntos p. 1/4 TEMA II 2. TEORÍA INTUITIVA DE CONJUNTOS 2.1 CONJUNTOS 2.1.1 Operaciones con conjuntos 2.2 RELACIONES

Más detalles

Matemáticas. Grado 10º. Unidad 1. Circulo unitario y funciones trigonométricas

Matemáticas. Grado 10º. Unidad 1. Circulo unitario y funciones trigonométricas 1 Franklin Eduardo Pérez Quintero Licenciado en Matemáticas y Física Universidad de Antioquia Matemáticas Grado 10º Unidad 1 Circulo unitario y funciones trigonométricas 1 2 Franklin Eduardo Pérez Quintero

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas Funciones exponenciales y logarítmicas - Funciones exponenciales y sus gráficas Un terremoto de 85 grados en la escala de Richter es 00 veces más potente que uno de 65, por qué?, cómo es la escala de Richter?

Más detalles

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores.

Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores. Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas.

Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas. Boletín de la Asociación Matemática Venezolana, Vol. XV, No. 1 (2008) 131 Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas. Rafael Sánchez Lamoneda Introducción. El presente artículo

Más detalles

5.- Calcula el cociente y el resto de las divisiones siguientes:

5.- Calcula el cociente y el resto de las divisiones siguientes: 1.- Opera y simplifica las siguientes expresiones: 2.- Efectúa las siguientes operaciones y simplifica el resultado: 3º.- Multiplica cada expresión por el mín.c.m. de los denominadores y simplifica: 4.-

Más detalles

Colectivo Graca. Sitio web mantenido por Maicoliv desde el 25 de enero de 2009

Colectivo Graca. Sitio web mantenido por Maicoliv desde el 25 de enero de 2009 Colectivo Graca Sitio web mantenido por Maicoliv desde el 25 de enero de 2009 Los múltiplos de un número. Definición (de múltiplo de un número) Un número natural, b, diremos que es múltiplo de otro número

Más detalles

ENDOMORFISMOS Y DIAGONALIZACIÓN.

ENDOMORFISMOS Y DIAGONALIZACIÓN. ENDOMORFISMOS Y DIAGONALIZACIÓN. En lo que resta de este tema, nos centraremos en un tipo especial de aplicaciones lineales: los endomorfismos. Definición: Endomorfismo. Se llama endomorfismo a una aplicación

Más detalles

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones: MATEMÁTICAS EJERCICIOS RESUELTOS DE TRIGONOMETRÍA Juan Jesús Pascual TRIGONOMETRÍA A. Introducción teórica A. Razones trigonométricas de un triángulo rectángulo. A.. Valores del seno, coseno tangente para

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE)

SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) I. CONTENIDOS: 1. Ejercicios resueltos aplicando exponentes y logaritmos (2ª. Parte) 2. Derivación de funciones exponenciales y

Más detalles

FUNCIONES CONVEXAS. El concepto de convexidad es fundamental en el análisis y resolución de los problemas de optimización.

FUNCIONES CONVEXAS. El concepto de convexidad es fundamental en el análisis y resolución de los problemas de optimización. FUNCIONES CONVEXAS El concepto de conveidad es fundamental en el análisis y resolución de los problemas de optimización. FUNCIONES CONVEXAS Y CÓNCAVAS. Sea S R n, un conjunto conveo y no vacío, y sea f:

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

e st dt = e st TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS 1. Definición de Transformada de Laplace

e st dt = e st TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS 1. Definición de Transformada de Laplace TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS. Definición de Transformada de Laplace Sea E el espacio vectorial de las funciones continuas a trozos y de orden exponencial (esto es, dada una

Más detalles

20. Rectas y puntos notables

20. Rectas y puntos notables Matemáticas II, 2012-II Lugares geométricos En geometría es útil conocer varios lugares geométricos. Un lugar geométrico es un conjunto de puntos que satisfacen una cierta propiedad. Ejemplo 1. El lugar

Más detalles

En efecto, todo natural, todo número entero, acepta una escritura en forma de fracción:

En efecto, todo natural, todo número entero, acepta una escritura en forma de fracción: Conjuntos Numerícos página 1 Números Racionales domingo, 21 de febrero de 2016 05:33 p.m. En líneas generales, el Conjunto de los Números Racionales, son todos los números que aceptan una escritura en

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

Teoría de errores. Departamento de Análisis Matemático Universidad de La Laguna

Teoría de errores. Departamento de Análisis Matemático Universidad de La Laguna Teoría de errores BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado

PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado Vibraciones en máquinas LOS MOVIMIENTOS VIBRATORIOS en máquinas se presentan cuando sobre las partes elásticas actúan fuerzas variables. Generalmente, estos movimientos son indeseables, aun cuando en algunos

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Tema 1: Espacios de Medida. 12 de marzo de 2009

Tema 1: Espacios de Medida. 12 de marzo de 2009 Tema 1: Espacios de Medida 12 de marzo de 2009 1 Espacios de Medida 2 Espacios medibles 3 [0, ] 4 Medidas 5 Lebesgue 6 Primer Teorema Definición de Espacio de Medida (Ω,A,µ) Ω es un conjunto no vacío A

Más detalles

CAPITULO 7.SERIES DE FOURIER. 7.1. Sistemas de funciones ortogonales

CAPITULO 7.SERIES DE FOURIER. 7.1. Sistemas de funciones ortogonales CAPITULO 7.SERIES DE FOURIER La publicación por Fourier (1768-1830) de la " Teoría analítica del calor ", fue de una influencia decisiva en las matemáticas posteriores. Se supone en ella que cualquier

Más detalles

Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Sistemas de Ecuaciones Lineales Solución de Sistemas de Ecuaciones Lineales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Sistemas de Ecuaciones Lineales 2

Más detalles

Álgebra de BOOLE. Tema 4

Álgebra de BOOLE. Tema 4 Álgebra de BOOLE Tema 4 1. Definición formal del álgebra de Boole. 2. Leyes y reglas del álgebra de Boole. 3. Operaciones y expresiones booleanas. 4. Formas canónicas de las expresiones booleanas. 5. Expresiones

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '

Más detalles

Departamento de Matemáticas. Matemáticas. 2º Bachillerato

Departamento de Matemáticas. Matemáticas. 2º Bachillerato Matemáticas 2º Bachillerato 1.- CONTENIDOS DE MATEMÁTICAS II QUE SERVIRÁN DE BASE PARA LA ELABORACIÓN DE LAS PROPUESTAS DE EXAMEN EN LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD DE EXTREMADURA CURSO 2006-2007

Más detalles

Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y))

Definición 3.1 Dado z = x + iy lc se define la función exponencial compleja como. exp(z) = e x (cos(y) + i sen(y)) Capítulo 3 Funciones elementales En este capítulo se introducen la funciones elementales variable compleja: la exponencial, el logaritmo y las funciones trigonométricas e hiperbólicas. Como veremos, muchas

Más detalles

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Dr. Ricardo Soto [ricardo.soto@ucv.cl] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia

Más detalles

Lección 49. Funciones I. Definición

Lección 49. Funciones I. Definición Lección 49 Funciones I Definición Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x A exactamante un elemento y B. El elemento y B, se denota por f (x), y decimos

Más detalles

Lección 8: Potencias con exponentes enteros

Lección 8: Potencias con exponentes enteros GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como

Más detalles

TEMA 4 El tipo conjunto

TEMA 4 El tipo conjunto TEMA El tipo conjunto PROGRAMACIÓN Y ESTRUCTURAS DE DATOS Tipo conjunto. Definiciones generales. Diccionario.. Tabla de dispersión.. Trie.. Árboles de búsqueda digitales. Cola de prioridad.. Montículo..

Más detalles

Función lineal. Definición: f: R > R / f(x) = m.x+b donde m y b son números reales, es una función lineal.

Función lineal. Definición: f: R > R / f(x) = m.x+b donde m y b son números reales, es una función lineal. Función lineal Introducción: Recordemos que una función es una correspondencia entre los elementos de un conjunto de partida, llamado Dominio, y los elementos de un conjunto de llegada, llamado Codominio,

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

Inversas Generalizadas

Inversas Generalizadas Inversas Generalizadas Departamento de Matemáticas, CSI/IESM 5 de abril de 2 Índice.. Inversas generalizadas..........................................2. Uso de la inversa generalizada.....................................

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado 11 de noviembre 009 Ecuaciones de segundo grado con una incógnita método de solución, formula general e incompletas Algebra Ecuaciones de segundo grado con una incógnita Las

Más detalles

Computación Científica

Computación Científica Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2012 1 / 19 Capítulo 2 Métodos Gradientes 2 / 19 1 Métodos Gradiente Introducción El método del gran descenso "steepest descent") Criterios

Más detalles

Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007

Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 7. Álgebra de Boole Este El que éxito resulta de la diseñar tecnología y fabricar digital circuitos

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

si este límite es finito, y en este caso decimos que f es integrable (impropia)

si este límite es finito, y en este caso decimos que f es integrable (impropia) Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría

Más detalles

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS) UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.

Más detalles

TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS

TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS ASIGNATURA: ESTADÍSTICA II (Grado ADE,MIM,FBS) TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS 4.1. Hipótesis estadística. Tipos de hipótesis 4.2. Región crítica y región de aceptación 4.3. Errores

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho gcorbach@uc.cl Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto

Más detalles

Oferta de Trabajo. Economía Laboral Julio J. Elías LIE - UCEMA

Oferta de Trabajo. Economía Laboral Julio J. Elías LIE - UCEMA Oferta de Trabajo Economía Laboral Julio J. Elías LIE - UCEMA Introducción La oferta de trabajo es definida como las horas totales de trabajo ofrecidas al mercado en un período de tiempo dado, digamos

Más detalles

Funciones de varias variables

Funciones de varias variables Capítulo Funciones de varias variables Problema Sea f : IR 2 IR definida por: 2 y 2 f, y) = e +y 2 > y, y. i) Estudiar la continuidad de f en IR 2. ii) Definimos g : IR IR como g) = f, ). Analizar la derivabilidad

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos Profesor: Guillermo Corbacho Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto está bien

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles