OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD"

Transcripción

1 OPIMIZACIÓN CON RESRICCIONES DE IGUALDAD Localzacón de óptos de funcones sujetas a restrccones en fora de gualdad écnca de los ultplcadores de Lagrange Forulacón estándar del problea f =,,..., Se consderarán probleas en los que el núero de restrccones sea enor que el núero de varables de decsón S el núero de restrccones supera al de varables, puede ocurrr que el problea sea nfactble (nnguna solucón factble) Una restrccón de la fora g(=b es equvalente a g(-b=0 Método de elnacón de varables Convertr un problea con n varables y restrccones en un problea con n- varables sn restrccones Ejeplo: + y ene un íno en el punto (=(/,-/)=(/,/) y = x opt x + ( ene un íno en el punto x=/ El étodo de elnacón de varables no resulta operatvo cuando el problea tene uchas restrccones o las restrccones son coplejas Se utlzará un étodo alternatvo que adeás proporcona ás nforacón sobre el problea (étodo de los ultplcadores de Lagrange) Deduccón gráfca de las condcones necesaras de optaldad de prer orden Ejeplo: + y f ( = g( = El problea no tene áxo y tene un íno en el punto (=(/,/) Gradente de la funcón objetvo: f ( = x + y x ( y Gradente de la funcón de restrccón: g( = ( ( /,/ ) (/,/ ) f ( /,/ ) + λ(/,/ ) (/,/) Se observa una relacón de proporconaldad entre los dos vectores

2 eorea de los ultplcadores de Lagrange f =,,..., S los vectores gradentes ( x),..., son lnealente ndependentes, entonces: Exsten λ, λ,..., λ núeros reales tales que: ( Sea x un ópto local del problea x) + λ λ condcón de regulardad o cualfcacón Los núeros λ, λ,..., λ se conocen coo ultplcadores de Lagrange, varables duales o precos sobra El teorea de Lagrange establece una condcón necesara de optaldad (bajo las condcones de regulardad) odos los óptos que verfquen las condcones de regulardad establecdas tenen asocados los correspondentes ultplcadores Puntos estaconaros Se llaan puntos estaconaros del problea a las solucones del sguente sstea de ecuacones: + λ g(... λ Sstea de n+ ecuacones con n+ ncógntas Sepre que se cuplan las condcones de regulardad del teorea de Lagrange, todo punto ópto es estaconaro Ejeplo de problea en el que no se verfcan la condcones de regulardad n ( x ) y Puntos estaconaros: x + λ ( x ) y + λ ( ( x ) y x ( y ( x ) ( y Este sstea no tene solucón Sgnfca esto que el problea no tene nngún íno? ( x ) ( y 0 (,0) 0 El problea alcanza un íno en el punto (,0) Funcón lagrangana Funcón de n+ varables (las n varables de decsón y los ultplcadores), defnda de la sguente anera: L( λ ) = f + λg + λg ( λ g Los puntos estaconaros son los puntos crítcos de la funcón Lagrangana No se verfca la condcón de regulardad: el conjunto de vectores gradentes de las restrccones no es un conjunto de vectores lnealente ndependentes en el ópto

3 Bajo las condcones de regulardad exgdas, todo ópto de un problea con restrccones de gualdad es un punto estaconaro No todo punto estaconaro es ópto, puede ser tabén un punto de slla El eorea de Lagrange establece condcones necesaras de optaldad pero no sufcentes, salvo en un caso... EL CASO DE LOS PROBLEMAS CONVEXOS Probleas convexos con restrccones de gualdad n f =,,..., ax f =,,..., con f( funcón convexa y g ( funcones lneales odo punto estaconaro es íno global odo punto estaconaro es áxo global con f( funcón cóncava y g ( funcones lneales Condcones sufcentes de optaldad (caso general) f =,,..., Dado (x,λ) un punto estaconaro del problea { } n Se defne: M = p R o p =,,..., H xl( x, λ ) = Hf + λ Hg( x) λ Hg S se verfca: p H x λ) p > 0 p M, entonces x es un íno local estrcto del problea S se verfca: p H x λ) p < 0 p M, entonces x es un áxo local estrcto del problea H xl( x, λ ) = Hf + λ Hg( x) λ Hg es la atrz hessana de la funcón lagrangana pero restrngda a las varables x n { p R o,,..., } M = p = representa el espaco asocado al hperplano tangente a la regón factble en el punto x Ejeplo: + y tene dos puntos estaconaros: el punto (,) con λ = -/ y el punto (-,-) con λ = / p M (,) = ( p, p) (,) = p + p = = p 0 ) {( p, p p R} punto estaconaro (,) Aplcacón práctca de las condcones sufcentes S H x L(x,λ) es defnda postva entonces el punto corresponde a un íno local Por la propa defncón de atrz defnda postva p H x L(x,λ) p>0 para cualquer vector p Regón factble x +y = {( p, p p R} M (,) = ) S H x L(x,λ) es defnda negatva entonces el punto corresponde a un áxo local Por la propa defncón de atrz defnda negatva p H x L(x,λ) p<0 para cualquer vector p

4 S H x L(x,λ) es sedefnda postva entonces el punto podría ser un íno o un punto de slla S H x L(x,λ) es sedefnda negatva entonces el punto podría ser un áxo o un punto de slla S H x L(x,λ) es ndefnda entonces el punto podría ser un íno, un áxo o un punto de slla En estos tres últos casos para salr de dudas debería estudarse el sgno de la expresón p H x λ) p p M, ESUDIO DE LA EXPRESIÓN p H x λ) p p M, S el sgno es sepre estrctaente postvo el punto sería un íno. S el sgno es sepre estrctaente negatvo el punto sería un áxo. S el sgno es postvo o negatvo dependendo del vector p consderado el punto sería un punto de slla. Cuando el sgno es ayor o gual que cero, o enor o gual que cero, para los vectores p no nulos, se estaría ante un caso DUDOSO Interpretacón econóca de los ultplcadores de Lagrange EJEMPLO: Una copañía fabrca una sere de productos, tres de los cuales son defctaros, el objetvo de la epresa es nzar sus pérddas P(y,z) = x + yz La copañía tene frado dos contratos con sendos clentes: Contrato : Sunstrar al prer clente undades en total de los dos preros artículos Contrato : Sunstrar al segundo clente undades del tercer artículo n x + yz x + y = z = Problea de optzacón con restrccones de gualdad Solucón del problea: Produccones óptas: x =.57 y =.85 z = Pérddas ínas: P(.57,.85, ).908 Multplcadores de Lagrange: λ = - λ = La epresa se plantea una negocacón con sus clentes para odfcar o anular los contratos es nteresante tal negocacón? n z x + y = b z = b Punto ópto: x ( b, b ) Valor ópto: VOpt( b, b ) = f ( x ( b, b )) Multplcadores: λ b, b ) λ ( b, ) ( b Pérddas ínas para dferentes condcones de los contratos: b b x 0,8,55,,,55,55,55,55 y 5,8,8,58,7,85,8 5,85,85 Multplcadores del problea ncal: λ = λ = 9.90 z Pérddas ínas 0,9 0,9 0, 9,9,9 0,9,9 8,9 Interpretacón econóca de los ultplcadores de Lagrange f g( = b... = b Los ultplcadores de Lagrange den la varacón que sufre el valor ópto por varacones nfntesales en los paráetros de la derecha de las restrccones ValorOpto( b) = λ S λ < 0 el valor ópto del problea auenta al auentar el valor de b. S λ > 0, el valor ópto del problea dsnuye al auentar b. S λ no se dspone de nforacón sufcente para predecr la varacón del valor ópto. b

5 Los ultplcadores actúan coo un sstea de precos S una restrccón representa dsponbldad de atera pra: Matera pra gastada = Matera pra dsponble El ultplcador asocado a la restrccón ndcará el preco áxo a pagar por una undad adconal de atera pra Aproxacón de los valores óptos de probleas odfcados f g( = b... P g = b... = b VOpt VOpt( P ) VOpt( P) λ = b VOpt( P ) VOpt( P) λ f g( = b... P g = b +... = b Se realza una odfcacón en el térno de la derecha de una restrccón La aproxacón será ás fable cuanto enor sea el ncreento aplcado a la restrccón 5

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

2.- Considere un oligopolio de Cournot con n empresas que producen un bien

2.- Considere un oligopolio de Cournot con n empresas que producen un bien 2.- Consdere un olgopolo de Cournot con n epresas que producen un en hoogéneo. La funcón nversa de deanda es p ) = A y todas las epresas tenen el so coste argnal constante, c > 0 no hay costes fjos). Nota:

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

5. DIAGONALIZACIÓN DE MATRICES

5. DIAGONALIZACIÓN DE MATRICES Dagonalzacón Herraentas nforátcas para el ngenero en el estudo del algebra lneal 5. DIAGONALIZACIÓN DE MATRICES 5.1. INTRODUCCIÓN 5.2. VALORES Y VECTORES PROPIOS 5.3. MATRICES DIAGONALIZABLES 5.4. DIAGONALIZACIÓN

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

Programación y Métodos Numéricos Interpolación polinómica de de Hermite: PLANTEAMIENTO Y CASO DE PRIMER ORDEN

Programación y Métodos Numéricos Interpolación polinómica de de Hermite: PLANTEAMIENTO Y CASO DE PRIMER ORDEN Prograacón y Métodos Nuércos Interpolacón polnóca de de Herte: PLANTEAMIENTO Y CASO DE PRIMER ORDEN Alfredo López L Bento Carlos Conde LázaroL Arturo Hdalgo LópezL Marzo, 7 Departaento de Mateátca Aplcada

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu CONENIDO PROBLEMAS DE PROGRAMACIÓN NO LINEAL IPOS DE PROBLEMAS NLP CLASIFICACIÓN DE MÉODOS

Más detalles

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.

2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior. . EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas

Más detalles

EJERCICIO RESUELTO DE RIESGO MORAL

EJERCICIO RESUELTO DE RIESGO MORAL Pontfca Unversdad Católca del Perú Prograa de Maestría en Econoía Curso Mcroeconoía Avanzada Profesora Clauda Barrga Ch. Asstente Sandro A. Huaaní. EJERCICIO RESUELTO DE RIESGO MORAL Aplcacón al ercado

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Dstrbucones de probabldad Toda dstrbucón de probabldad es generada por una varable aleatora x, la que puede ser de dos tpos: Varable aleatora dscreta (x). Se le denomna varable porque puede tomar dferentes

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

Guía de Equilibrio General. Ejercicio extraído de Mas-Colell, Whinston y Green, con algunas modificaciones

Guía de Equilibrio General. Ejercicio extraído de Mas-Colell, Whinston y Green, con algunas modificaciones Guía de Equlbro General Ejercco extraído de Mas-Colell, Whnston y Green, con algunas odfcacones - Consdere una econoía caja de Edgeworth en que dos consudores tenen referencas con no sacedad local. Sea

Más detalles

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1 odelos de secuencacón de tareas en máqunas Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu ODELOS DE SECUENCIACIÓN EN ÁQUINAS odelos de secuencacón de tareas

Más detalles

RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTORY OF

RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTORY OF RELACIÓN DE PROBLEMAS DE CLASE DE MODELADO DE DECISIÓN MULTICRITERIO PROBLEMA 1: FÁBRICA DE COMPONENTES ELECTRÓNICOS (FACTOR OF ELECTRONIC PARTS) Una empresa fabrca tres tpos de componentes electróncos,

Más detalles

+ y 1 ; U 2 (x 2,y 2 ) = ax 2 (x 2) 2 2

+ y 1 ; U 2 (x 2,y 2 ) = ax 2 (x 2) 2 2 13. Consdere un mercado en el que hay dos consumdores con las sguentes funcones de utldad: U 1 (x 1,y 1 = 4x 1 (x 1 + y 1 ; U (x,y = ax (x + y con 4 > a >0 donde x, =1,, es la cantdad del ben x consumda

Más detalles

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D.

CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 01. Ing. Diego A. Patiño G. M.Sc, Ph.D. CAPITULO 3º SOLUCIÓN ECUACIÓN DE ESTADO- 0 Ing. Dego A. Patño G. M.Sc, Ph.D. Solucón de la Ecuacón de Estado Solucón de Ecuacones de Estado Estaconaras: Para el caso estaconaro (nvarante en el tempo),

Más detalles

Rendimiento de sistemas paralelos. Arquitectura de Computadoras II Fac. Cs. Exactas UNCPBA Prof. Marcelo Tosini 2015

Rendimiento de sistemas paralelos. Arquitectura de Computadoras II Fac. Cs. Exactas UNCPBA Prof. Marcelo Tosini 2015 Rendento de ssteas paralelos Arqutectura de Coputadoras II Fac. Cs. Exactas UNCBA rof. Marcelo Tosn 205 Rendento de un sstea paralelo Rendento en un sstea con un procesador: T cpu RI x CI x t cclo Con

Más detalles

Apéndice A. Principio de Mínima Acción y Energía Mecánica total.

Apéndice A. Principio de Mínima Acción y Energía Mecánica total. Apéndce A Prncpo de Mína Accón y Energía Mecánca total. E l prncpo de ína accón es equvalente a decr que la tayectora que sgue una partícula en el espaco de conguracón es aquella para la cual la dferenca

Más detalles

TEMA 4. TEORÍA DE LA DUALIDAD.

TEMA 4. TEORÍA DE LA DUALIDAD. Investgacón Operatva TEMA. TEORÍA DE LA DUALIDAD. TEMA. TEORÍA DE LA DUALIDAD..... INTRODUIÓN... ALGORITMO DUAL DEL SIMPLEX.... EJEMPLO.... EJEMPLO.... EJEMPLO... TEORÍA DE LA DUALIDAD.... PROLEMA PRIMAL

Más detalles

315 M de R Versión 1 Segunda Parcial 1/8 Lapso 2008/2

315 M de R Versión 1 Segunda Parcial 1/8 Lapso 2008/2 5 M de R Versón Segunda Parcal /8 Lapso 8/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 5 MOMENTO: Segunda Parcal

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

Cantidad de Momento, Conservación, Choques, Centro de Masa

Cantidad de Momento, Conservación, Choques, Centro de Masa Cantdad de Moento, Conseracón, Choques, Centro de Masa Moentu líneal Las fuerzas aplcadas en una dreccón que no pasa por el centro de graedad de un objeto producen un gro en éste objeto. Para edr la agntud

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

Introducción a la Optimización Multiobjetivo

Introducción a la Optimización Multiobjetivo Introduccón a la Optmzacón Multobjetvo Optmzacón Multobjetvo (MOP) Práctcamente en cualquer área y en una varedad de contetos se presentan problemas con múltples objetvos que se contraponen entre sí A

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal

Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal Solucón de los Ejerccos de ráctca # 1 Econometría 1 rof. R. Bernal 1. La tabla de frecuencas está dada por: Marca A Marca B

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Valoración de Forwards de Tipo de Cambio

Valoración de Forwards de Tipo de Cambio VERSIÓN DICIEMBRE Valoracón de Forwards de Tpo de Cabo VERSIÓN DICIEMBRE VALMER Págna VERSIÓN DICIEMBRE CONTENIDO. INTRODUCCIÓN.... CONSTRUCCIÓN DE CURVAS... 5.. Extranjera (Curva Lbor... 5... Característcas

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO ) CAPÍTULO II.- AÁLISIS DE UA CARACTERÍSTICA (DISTRIBUCIOES UIDIMESIOALES) TEMA 6.- MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMETOS. DIPLOMATURA E CIECIAS EMPRESARIALES UIVERSIDAD DE

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Colección de problemas de. Teoría Microeconómica IV

Colección de problemas de. Teoría Microeconómica IV Coleccón de problemas de Teoría Mcroeconómca IV Curso 3º - LE- 0-0 Iñak Agurre Norma Olazola Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Teoría de Juegos No

Más detalles

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO. ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO..- PERSPECTIVA HISTÓRICA MATERIA { MOLÉCULAS } { ÁTOMOS}, sendo los átomos y/o moléculas estables por la nteraccón electromagnétca. Desde la perspectva electromagnétca

Más detalles

CONDICIONES DE KUHN Y TUCKER APLICACIONES A LA ECONOMIA Y AL MERCADO DE CAPITALES

CONDICIONES DE KUHN Y TUCKER APLICACIONES A LA ECONOMIA Y AL MERCADO DE CAPITALES CONDICIONES DE KUHN Y TUCKER APLICACIONES A LA ECONOMIA Y AL MERCADO DE CAPITALES Bernardello, Alca Blanca y Vcaro, Aldo Omar Departamento de Matemátca Facultad de Cencas Económcas de la Unversdad de Buenos

Más detalles

Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes:

Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes: CAÍTULO III ACCIONES Artículo 9º Clasfcacón de las accones Las accones a consderar en el proyecto de una estructura o elemento estructural se pueden clasfcar según los crteros sguentes: - Clasfcacón por

Más detalles

11. Procesos estocásticos y cadenas de Markov

11. Procesos estocásticos y cadenas de Markov . Proceo etocátco y cadena de Marov Proceo etocátco Cadena de Marov Clafcacón de etado en una cadena de Marov Probabldade en etado etaconaro Anál de etado trantoro Proceo de decón arovano Proceo etocátco.

Más detalles

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos

Bloque 2 Análisis de circuitos alimentados en corriente continua. Teoría de Circuitos Bloque Análss de crcutos almentados en corrente contnua Teoría de Crcutos . Métodos sstemátcos de resolucón de crcutos : Método de mallas Métodos sstemátcos de resolucón de crcutos Permten resolver los

Más detalles

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes

Más detalles

22. COLUMNA DE DESTILACION SIMPLIFICADA

22. COLUMNA DE DESTILACION SIMPLIFICADA 22. COLUMNA DE DESTILACION SIMPLIFICADA 1. OBJETIVOS 1.1. Especfcar en fora splfcada una coluna de destlacón 1.2. Estar un taaño y desepeño splfcado de una coluna de destlacón edante el procedento de Fenske-Underwood-Glland

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

CAPÍTULO 2º - Elementos de análisis tensorial y sistemas de coordenadas

CAPÍTULO 2º - Elementos de análisis tensorial y sistemas de coordenadas CAPÍTULO 2º - Eleentos de análss tensoral y ssteas de coordenadas 2. Eleentos de Análss Tensoral: repaso a) Espaco y plano puntuales: 3 y 2. son espacos puntuales (espacos afnes euclídeos trdensonal y

Más detalles

Cátedra Investigación Operativa

Cátedra Investigación Operativa Cátedra Investgacón Operatva Prof. Ttular Prof. Adunto JTP JTP Dr. Ing. Jorge E. Núñez Mc Leod Ing. Horaco Day Ing. Roberto Martín (lcenca) Ing. Romna Calvo Olvares Clases: Aula: Vernes 9:-: hs. Teórco-práctcos

Más detalles

3.1. Características del comportamiento estratégico Características del comportamiento estratégico

3.1. Características del comportamiento estratégico Características del comportamiento estratégico 3.1. Característcas del Matlde Machado 1 3.1. Característcas del El análss formal de una stuacón de empeza por la formulacón de un juego. Componentes de un juego: Jugadores Estratégas posbles para cada

Más detalles

Y ahora observamos que lo que está entre paréntesis es la derivada de un producto, de modo que

Y ahora observamos que lo que está entre paréntesis es la derivada de un producto, de modo que Estas son ms notas para las clases del curso Mecánca Raconal (62.11) en la Facultad de Ingenería-UBA. Están aún en proceso de ser completadas, no tenen carácter de texto acabado, por el contraro seguramente

Más detalles

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton

Circuitos eléctricos en corriente continúa. Subcircuitos equivalentes Equivalentes en Serie Equivalentes en Paralelo Equivalentes de Thevenin y Norton ema II Crcutos eléctrcos en corrente contnúa Indce Introduccón a los crcutos resstvos Ley de Ohm Leyes de Krchhoff Ley de correntes (LCK) Ley de voltajes (LVK) Defncones adconales Subcrcutos equvalentes

Más detalles

ANEXO A: Método de Interpolación de Cokriging Colocado

ANEXO A: Método de Interpolación de Cokriging Colocado ANEXO A: Método de Interpolacón de Corgng Colocado A. Conceptos Báscos de Geoestadístca Multvarada La estmacón conunta de varables aleatoras regonalzadas, más comúnmente conocda como Corgng (Krgng Conunto),

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

EL PROBLEMA DE DETERMINAR DEPENDENCIAS FUNCIONALES ENTRE ATRIBUTOS EN LOS ESQUEMAS EN EL MODELO RELACIONAL

EL PROBLEMA DE DETERMINAR DEPENDENCIAS FUNCIONALES ENTRE ATRIBUTOS EN LOS ESQUEMAS EN EL MODELO RELACIONAL EL PROBLEMA DE DETERMINAR DEPENDENCIAS FUNCIONALES ENTRE ATRIBUTOS EN LOS ESQUEMAS EN EL MODELO RELACIONAL THE PROBLEM DETERMINATION OF FUNCTIONAL DEPENDENCIES BETWEEN ATTRIBUTES RELATION SCHEME IN THE

Más detalles

3.1. Características del comportamiento estratégico Características del comportamiento estratégico

3.1. Características del comportamiento estratégico Características del comportamiento estratégico 3.1. Característcas del Matlde Machado 1 3.1. Característcas del El análss formal de una stuacón de empeza por la formulacón de un juego. Componentes de un juego: Jugadores Estrategas posbles para cada

Más detalles

Geometría convexa y politopos, día 1

Geometría convexa y politopos, día 1 Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n

Más detalles

1).- Para > 0, B= {x R L : p. x I} = {x R L

1).- Para > 0, B= {x R L : p. x I} = {x R L Pontfca Unversdad Católca del Perú Programa de Maestría en Economía Curso: Mcroeconomía Intermeda Profesores: Clauda Barrga & José Gallardo Asstente: César Gl Malca Propedades de las funcones de demanda

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

[1] [1 ] Esta condición evita que haya rotación del sistema Composición de fuerzas paralelas.

[1] [1 ] Esta condición evita que haya rotación del sistema Composición de fuerzas paralelas. Tea 4 Ssteas de partículas 4.. Estátca y equlbro. 4... Condcones de equlbro. Las condcones de equlbro conssten en que para que un sstea esté en equlbro, la fuerza total externa aplcada debe ser nula: F

Más detalles

Tallerine: Energías Renovables. Fundamento teórico

Tallerine: Energías Renovables. Fundamento teórico Tallerne: Energías Renovables Fundamento teórco Tallerne Energías Renovables 2 Índce 1. Introduccón 3 2. Conceptos Báscos 3 2.1. Intensdad de corrente................................. 3 2.2. Voltaje..........................................

Más detalles

Gases ideales. Introducción a la Física Ambiental. Tema 3. Tema 3.- " Gases ideales ".

Gases ideales. Introducción a la Física Ambiental. Tema 3. Tema 3.-  Gases ideales . Gases deales. Introduccón a la Físca Abental. Tea 3. Tea 3. IFA (Prof. RAMOS) 1 Tea 3.- " Gases deales ". Ecuacón de estado: Gases deales. Energía nterna y Entalpía. Capacdades calorífcas: relacón de Mayer.

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization)

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization) Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multobjectve Optmzaton) Patrca Jaramllo A. y Rcardo Smth Q. Insttuto de Sstemas y Cencas de la Decsón Facultad de Mnas Unversdad Naconal de Colomba, Medellín,

Más detalles

Diagramas de Heissler para la solución de problemas de conducción transitoria.

Diagramas de Heissler para la solución de problemas de conducción transitoria. Dagraas de Hessler para la solucón de probleas de conduccón transtora. Cuando el núero de Bot odfcado, descrto en la seccón anteror supera el valor de 0,1, la resstenca nterna ya no es desprecable, de

Más detalles

Apellidos y nombre: i. El valor anual de la amortización de la construcción es fijo y vale A. 2. Cada punto de venta tiene una demanda anual dem

Apellidos y nombre: i. El valor anual de la amortización de la construcción es fijo y vale A. 2. Cada punto de venta tiene una demanda anual dem 4º IIND Métodos Matemátcos 5 de septembre de 00 Apelldos y nombre: PROBLEMA (4 puntos) Una empresa tene puntos de venta stuados sobre una ruta que, a efectos de planfcacón, puede ser consderada como una

Más detalles

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria

Objetivo del tema. Esquema del tema. Economía Industrial. Tema 2. La demanda de la industria Economía Industral Tema. La demanda de la ndustra Objetvo del tema Entender el modelo económco de comportamento del consumdor, fnalmente resumdo en la funcón de demanda. Comprender el carácter abstracto

Más detalles

Unidad Nº III Unidad Aritmética-Lógica

Unidad Nº III Unidad Aritmética-Lógica Insttuto Unverstaro Poltécnco Santago Marño Undad Nº III Undad Artmétca-Lógca Undad Artmétca-Lógca Es la parte del computador que realza realmente las operacones artmétcas y lógcas con los datos. El resto

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño EDO: Ecuacón Dferencal Ordnara Solucones numércas Jorge Eduardo Ortz Trvño Organzacón general Errores en los cálculos numércos Raíces de ecuacones no-lneales Sstemas de ecuacones lneales Interpolacón ajuste

Más detalles

PRÁCTICA Nº 5. CIRCUITOS DE CORRIENTE CONTINUA

PRÁCTICA Nº 5. CIRCUITOS DE CORRIENTE CONTINUA PÁCTICA Nº 5. CICUITOS DE COIENTE CONTINUA OBJETIVO Analzar el funconamento de dferentes crcutos resstvos empleando la Ley de Ohm y las Leyes de Krchhoff. FUNDAMENTO TEÓICO Corrente Eléctrca Una corrente

Más detalles

315 M/R Versión 1 Segunda Parcial 1/7 Lapso 2009/2

315 M/R Versión 1 Segunda Parcial 1/7 Lapso 2009/2 35 M/R Versón Segunda Parcal /7 UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Segunda Parcal VERSIÓN:

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 20 DE JUNIO DE horas

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 20 DE JUNIO DE horas EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 0 DE JUNIO DE 018 15.30 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e-mal: Pregunta 1 A B C En Blanco

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

Estadística Teórica I

Estadística Teórica I Estadístca Descrptva EXCEL SPSS Facultad Cencas Econócas y Epresarales Departaento de Econoía Aplcada Profesor: Santago de la Fuente Fernández Estadístca Teórca I ESTADÍSTICA UIDIMESIOAL Estadístca Descrptva

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

Enrique Kawamura Microeconomía I para economistas. FCE-UBA. Noviembre 2011

Enrique Kawamura Microeconomía I para economistas. FCE-UBA. Noviembre 2011 Análss de equlbro general en economías cerradas con produccón. Preferencas Cobb-Douglas Tecnologías Cobb-Douglas con rendmentos constantes a escala. Enrque awamura Mcroeconomía I para economstas. FCE-UBA.

Más detalles

FUNCIONES DE DAR ZARROUK

FUNCIONES DE DAR ZARROUK MÉODO LÉCRICO D PROPCCIÓN AMBIGÜDAD DL PROBLMA INVRO La solucón del problea nverso no es en general únca, ya que curvas de resstvdad aparente que dferen entre sí en enos del error experental pueden dar

Más detalles

VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES

VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha:

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha: ÁLGEBRA LINEAL Tarea. Investque a) Defncón de vector b) Operacones de vectores c) Defncón de matr d) Operacones de matrces e) Defncón de matr traspuesta Bblografía: ÁLGEBRA LINEAL Tarea. a) Investque )

Más detalles

4º IEM Gestión de operaciones 25/06/2013 GESTIÓN DE PRODUCTOS FINANCIEROS (3.5 PUNTOS)

4º IEM Gestión de operaciones 25/06/2013 GESTIÓN DE PRODUCTOS FINANCIEROS (3.5 PUNTOS) 4º IEM Gestón de operacones GESTIÓN DE PRODUCTOS FINANCIEROS (3.5 PUNTOS) El gestor de una empresa dspone de un mllón de euros para nvertr durante un año. Analzado el mercado de productos fnanceros consdera

Más detalles

Mosto Vino joven Vino crianza Vino reserva Gran reserva Precio [ /l] Coste [ /l] Evap [%]

Mosto Vino joven Vino crianza Vino reserva Gran reserva Precio [ /l] Coste [ /l] Evap [%] PROBLEMA: EL BODEGUERO Un bodeguero ha tendo una buena cosecha que estma sea de 10000 ltros. El bodeguero ha de decdr qué cantdad de la cosecha dedcarla a hacer mosto, qué cantdad conservarla un año en

Más detalles

Método de reponderación aplicado en la EPA

Método de reponderación aplicado en la EPA Método de reponderacón aplcado en la EPA La Encuesta de Poblacón Actva (EPA), como cualquer otra encuesta a hogares, puede tener dstorsones en las estmacones que produce, debdo a una sere de causas lgadas

Más detalles

3.2. Competencia en cantidades modelo de Cournot Competencia en cantidades modelo de Cournot

3.2. Competencia en cantidades modelo de Cournot Competencia en cantidades modelo de Cournot Matlde Machado Supuestos báscos del : El producto de las empresas es homogéneo El preco de mercado resulta de la oferta agregada de las empresas (preco unco) Las empresas determnan smultaneamente la cantdad

Más detalles

Práctica 4ª: RESOLUCIÓN DE SISTEMAS LINEALES. METODOS ITERATIVOS.

Práctica 4ª: RESOLUCIÓN DE SISTEMAS LINEALES. METODOS ITERATIVOS. practca4srnb Apelldos Nombre: Práctca 4ª: RESOLUCIÓN DE SISTEMAS LINEALES METODOS ITERATIVOS Normas vectorales normas matrcales Número de condcón de una matr Cuando se construe una sucesón de vectores

Más detalles

Tema 4. Números Complejos

Tema 4. Números Complejos Tema. Números Complejos. Números complejos...... Defncón de números complejo..... Conjugado y opuesto de números complejos..... Representacón gráfca de los complejos.... Operacones con complejos..... Suma

Más detalles

Balances de Materia y Energía en PFRs

Balances de Materia y Energía en PFRs Balances de Matera y Energía en Ps En este tpo de reactores, el balance de atera se epresa coo: V r Y recordando el balance de energía: U D( π ( r Ĥ uando al cobnacón dáetro de tubo-longtud de tubo lo

Más detalles

Optimización con restricciones. Prof. Cesar de Prada ISA-UVA

Optimización con restricciones. Prof. Cesar de Prada ISA-UVA Optmacón con restrccones Prof. Cesar de Prada ISA-UVA prada@autom.uva.es Indce Restrccones Problemas con restrccones de gualdad Multplcadores de Lagrange Problemas generales NLP Condcones de Karus-Kun-Tucer

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton V Th Th L 3.6 Máxma transferenca de potenca José. Pereda,

Más detalles

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía TMA 3: Dnáca II Captulo. Trabajo y energía Bran Cox sts the world's bggest acuu chaber (BBC Two) https://www.youtube.co/watch?43-cfukgs TMA 3: Dnáca II. Captulo : trabajo y energía Concepto de trabajo.

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller Unversdad Smón Bolívar Conversón de Energía Eléctrca Prof José anuel Aller 41 Defncones báscas En este capítulo se estuda el comportamento de los crcutos acoplados magnétcamente, fjos en el espaco El medo

Más detalles

EQUILIBRIO DE UN CUERPO RIGIDO

EQUILIBRIO DE UN CUERPO RIGIDO Manual e Laboratoro e ísca I C - UNMSM EQUILIBRIO E UN CUERPO RIGIO EXPERIENCIA Nº 6 Cuerpo rígdo: La dstanca entre dos puntos cualesquera del cuerpo permanece nvarante en el tempo. I. OBJETIVOS - Estudar

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

ASIGNACION 2 INEL3105 A revisar a partir del 1 marzo.

ASIGNACION 2 INEL3105 A revisar a partir del 1 marzo. SIGNION INEL305 revsar a partr del marzo. Problema. Para un crcuto con bpolos, formamos el gráfco, o grafo (graph) susttuyendo cada bpolo por una línea que une los dos nodos a los que está conectado. Esta

Más detalles

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES EN INGENIERIA Y CIENCIAS FISICO MATEMATICAS ESCUELA: CARRERA: ESPECALDAD: COORDNACON: DEPARTAMENTO: UPCSA NGENERA EN TRANSPORTE ACADEMAS DE MATEMATCAS CENCAS BASCAS ASGNATURA: MATEMATCAS APLCADAS : TMMA SEMESTRE: 4 CREDTOS: 8 VGENTE: ENERO 2000

Más detalles

Www.apuntesdemates.weebl.es TEMA AMO EALARE Y VETORIALE. INTRODUIÓN e entende por magntud cualquer cualdad o propedad medble. ueden clasfcarse en: - Magntudes escalares: Quedan totalmente defndas cuando

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 013-014 Iñak Agurre Jaromr Kovark Javer Arn Peo Zuazo Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema 3. Monopolo 1. Los costes de

Más detalles

El Modelo IS-LM. El modelo IS-LM

El Modelo IS-LM. El modelo IS-LM El Modelo IS-LM El modelo IS-LM 4. Introduccón 4.2 La demanda agregada: La funcón de nversón 4.3 Equlbro del mercado de benes: La curva IS 4.4 Equlbro del mercado de dnero: La curva LM 4.5 Equlbro de la

Más detalles