Distribuciones de probabilidad

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Distribuciones de probabilidad"

Transcripción

1 Dstrbucones de probabldad Toda dstrbucón de probabldad es generada por una varable aleatora x, la que puede ser de dos tpos: Varable aleatora dscreta (x). Se le denomna varable porque puede tomar dferentes valores, aleatora, porque el valor tomado es totalmente al azar y dscreta porque solo puede tomar valores enteros y un número fnto de ellos. x 0, 1,, 3, 4, 5, etc, burbujas por envase x 0, 1,, 3,...,5 productos defectuosos en el lote x 0, 1,, 3, 4, 5,...,40 alumnos aprobados en probabldad Varable aleatora contnua (x). Se le denomna varable porque puede tomar dferentes valores, aleatora, porque los valores que toma son totalmente al azar y contnua porque puede tomar tanto valores enteros como fracconaros y un número nfnto de ellos.

2 Espacos muestrales según el número de elementos, o puntos, que contene Fntos cuando el númerode posbldades es fjo : Número de días que llueve en marzo. Infntos cuando exsten nfndad de posbldades : -Escoger un número de la recta numérca. -Elegr una funcón matemátca del conjunto de funcones. x 5.0, 4.99, 4.98, 5.0, 5.01, 5.0, 4.96 x 0.5 cm, 0.1, 0.0, 19.8, 0,6, 0.0, 0.0 x 14.8 gramos, 1.0, 10.0, 4.3, 15.0, 18.4, 19.0, 1.0, 0.8 Como se observa en los ejemplos anterores, una varable contnua puede tomar cualquer valor, entero o fracconaro, una forma de dstngur cuando se trata de una varable contnua es que esta varable nos permte medrla, mentras que una varable dscreta se puede contar, es una varable de tpo atrbuto, cuando se nspeccona un producto este puede ser defectuoso o no, blanco o negro, cumple con las especfcacones o no cumple, etc. Dstrbucón de probabldad dscreta Dstrbucón bnomal Dstrbucón de Posson 1. Es generada por una varable dscreta (x). x Varable que solo toma valores enteros x 0, 1,, 3, 4, 5, 6, 7, 8,... etc.. p( x ) 0 Las probabldades asocadas a cada uno de los valores que toma x deben ser mayores o guales a cero. p 3. ( x ) = 1 La sumatora de las probabldades asocadas a cada uno de los valores que toma x debe ser gual a 1.

3 4. Dstrbucones de probabldad dscreta: Dstrbucón Bnomal o Bernoull Dstrbucón Posson Meda o valor esperado de x (Esperanza matemátca) Para determnar la meda de la dstrbucón dscreta se utlza la sguente fórmula: µ= Ex ( ) = x px ( ) E x) = x P + x P ( 1 1 x P k k Donde: µ = meda de la dstrbucón E(x) = valor esperado de x x = valores que toma la varable p(x ) = probabldad asocada a cada uno de los valores de la varable x Nota: Es mportante tener presente que cada térmno x es postvo cuando representa utldades, ngresos o ganancas (cantdades que recbmos) y negatvo cuando representa pérddas, sancones o défct (cantdades que debemos pagar). Cuando la esperanza matemátca es cero y no se favorece a nngún jugador, se dce que son justos o equtatvos Cuando x son cantdades de dnero o el equvalente en efectvo de la mercancía; se acostumbra hacer referenca a esperanza matemátca como el valor monetaro esperado o VME. Se ha sugerdo que el comportamento de una persona es raconal s, cuando elge entre las opcones de stuacones en que ntervenen ncertdumbres y resgos, la persona opta por la opcón que tene la esperanza matemátca más alta. Quzá parezca razonable este crtero del comportamento raconal, y en muchos casos lo es, pero exsten excepcones que nvolucran análss de decsón. Desvacón estándar (σ) Para determnar la desvacón estándar de la dstrbucón dscreta se utlza la sguente fórmula: Donde: µ = meda o valor esperado de x ( x ) p( x) x = valores que toma la varable x p(x ) = probabldad asocada a cada uno de los valores que toma x σ= µ

4 Según estadístcas la probabldad de que el motor de un auto nuevo, de certo modelo, y marca sufra de algún desperfecto en los prmeros 1 meses de uso es de 0.0, s se prueban tres automóvles de esta marca y modelo, encuentra el número esperado de autos que no sufren de algún desperfecto en los prmeros doce meses de uso y su desvacón estándar. N = no sufre de algún desperfecto en el motor los prmeros 1 meses de uso S = sufre de algún desperfecto en el motor los prmeros 1 meses de uso Espaco muestral = {NNN, NNS, NSN, NSS, SNN, SNS, SSN, SSS} x = varable que nos defne el número de autos que no sufre de algún desperfecto en el motor durante los prmeros 1 meses de uso. x = 0, 1, o 3 autos que no sufren algún desperfecto en el motor en los prmeros 1 meses de uso p(x=0)=p(sss)=(0.0)(0.0)(0.0)= p(x=1)=p(nss,sns,ssn)=(0.98)(0.0)(0.0)+(0.0)(0.98)(0.0)+(0.0)(0.0)(0.98)= p(x=)=p(nns,nsn,snn)=(0.98)(0.98)(0.0)+(0.98)(0.0)(0.98)+(0.0)(0.98)(0.98)= p(nnn) = (0.98)(0.98)(0.98) = Por tanto la meda o valor esperado se determna de la sguente manera: µ = Ex ( ) = x px ( ) = (0)( )+(1)( )+()( )+(3)( )= = =.94 3 autos que no sufren algún desperfecto en el motor en los prmeros 1 meses de uso.

5 La nterpretacón de la meda o valor esperado es; se espera que los 3 autos probados no sufran de algún desperfecto en el motor en los prmeros 1 meses de uso. σ = ( x µ ) p( x ) = ( 0 3) ( ) + ( 1 3) ( ) ( 3 3) ( ) + =± Es decr ±0.0 autos que no sufren algún desperfecto en su motor en los prmeros 1 meses de uso. Lo cual quere decr que en este expermento se espera que los 3 autos probados no sufran de algún desperfecto en su motor en los prmeros 1 meses de uso y la varabldad de este expermento es de cero. Nota: La meda y la desvacón estándar se redondean a un valor entero ya que son la meda y desvacón de una dstrbucón de probabldad dscreta. Se ha detectado en una línea de produccón que 1 de cada 10 artículos fabrcados es defectuoso; se toman de esa línea tres artículos uno tras otro. a) obtén la dstrbucón de probabldad del expermento. b) encuentra el número esperado de artículos defectuosos en esa muestra y su desvacón estándar. Tambén hacendo uso de n dagrama de árbol, se obtene el espaco muestral d a)d = objeto defectuoso N = objeto no defectuoso d={ddd, DDN, DND, DNN, NDD, NDN, NND, NNN} x = Varable que nos defne el número de objetos defectuosos encontrados x = 0, 1, o 3 objetos defectuosos p(x=0)=p(nnn)=(0.9)(0.9(0.9)=0.79 p(x=1)=p(dnn, NDN, NND)=(0.1)(0.9)(0.9)+(0.9)(0.1)(0.9)+(0.9)(0.9)(0.1)=0.43 p(x=)=p(ddn, DND, NDD)=(0.1)(0.1)(0.9)+(0.1)(0.9)(0.1)+(0.9)(0.1)(0.1)=0.07 p(x=3)=p(ddd)=(0.1)(0.1)(0.1)=0.001 Dstrbucón de probabldad x P(x) = b) µ = x p( x) (0)(0.79)+(1)(0.43)+()(0.07)+(3)(0.001)=0.3 Es decr 0 productos defectuosos. Se espera que nnguno de los productos nspecconados sea defectuoso

6 σ = ( x µ ) p( x) = ( 0 0) ( 0.79) + ( 1 0) ( 0.43 ) ( 3 0) ( 0.001) + = 0.36 =± 0.6 =± 1 producto defectuoso Interpretacón: En este expermento se espera que nnguno de los productos nspecconados sea defectuoso, pero los resultados de este expermento pueden varar en ± 1 producto defectuoso, por lo que al nspecconar los 3 productos el numero de productos defectuosos puede varar desde 1 producto defectuoso, hasta 1 producto defectuoso, pero, es posble obtener 1 producto defectuoso?, claro que esto no puede ocurrr, luego el número de productos defectuosos en el expermento varará de 0 a 1 producto defectuoso solamente. Según estadístcas, la probabldad de que un pozo petrolero que se perfore en certa regón pueda ser benefcado es de Se perforan tres pozos en esa regón, encuentra el número esperado de pozos que pueden ser benefcados y su desvacón estándar. Espaco muestral {BBB, BBN, BNB, BNN, NBB, NBN, NNB, NNN} B = se puede el pozo que se perfora N = no se puede benefcar el pozo que se perfora x = varable que nos defne el número de pozos que se pueden benefcar x = 0, 1, o 3 pozos que se pueden benefcar p (x = 0) = p(nnn) = (0.7)(0.7)(0.7)= p(x = 1) = p(bnn, NBN, NNB) = (0.3)(0.7)(0.7)(3)=0.441 p(x = ) = p(bbn, BNB, NBB) = (0.3)(0.3)(0.7)(3)=0.189 p(x = 3) = p(bbb) =(0.3)(0.3)(0.3)= 0.07 µ = x p( x) = ( 0 )( 0.343) + ( 1)( 0.441) + ( 3)( 0.07) = 0.9 aproxmadamente un pozo benefcado Interpretacón: Se espera que solo 1 de los tres pozos perforados sea el que pueda ser benefcado. σ = ( x µ ) p( x) = ( 0 1) ( 0.343) + ( 1 1) ( 0.441) + ( 1) ( 0.189) + ( 3 1) ( 0.0.7) = 0.8 La cantdad esperada de pozos que se pueden benefcar puede varar en 1 ± 1 pozo, esto es la cantdad de pozos que se pueden benefcar puede varar de 0 a pozos. La dstrbucón de probabldad de x, el número de defectos por cada 10 metros de una tela sntétca en rollos contnuos de ancho unforme, es x p(x) a) Determna la dstrbucón de probabldad acumulada de x; P(x). b) Determna el número esperado de defectos por cada 10 metros de tela sntétca en rollos contnuos de ancho unforme y la desvacón estándar del número de defectos por cada 10 metros de tela... c) Determna la probabldad de que en 10 metros de tela sntétca se encuentren como máxmo defectos.

7 a) X p(x) P(x) µ = Ex ( ) = b) x px ( ) = ( 0)( 0.41) + ( 1)( 0.37 ) ( 4)( 0.01) = 0.88 Se espera que por cada 10 metros de tela se encuentre un defecto. σ = ( x µ ) p( x) = ( 0 1) ( 0.41) + ( 1 1) ( 0.37 ) ( 4 1) ( 0.01) = El número de defectos esperado puede varar en ± 1 defecto, es decr que el número de defectos esperado por cada 10 metros de tela puede varar de 0 a. c) px ( ) = p(x=0) + p(x=1) + p(x=) = = 0.94 d) p(x ) = p(x=) + p(x=3) + p(x=4) = = 0. Dstrbucón de probabldad contnua Dstrbucón normal 1. Es generada por una varable contnua (x). x Es una varable que puede tomar tanto valores enteros como fracconaros. x 1.0, 3.7, 4.0, 4.6, 7.9, 8.0, 8.3, 11.5,...,. f( x) 0Las probabldades asocadas a cada uno de los valores que toma x deben ser mayores o guales a cero. Dcho de otra forma, la funcón de densdad de probabldad deberá tomar solo valores mayores o guales a cero. La funcón de densdad de probabldad sólo puede estar defnda en los cuadrantes I y II. 3. f( x) dx = 1La sumatora de las probabldades asocadas a cada uno de los valores que toma x debe ser gual a 1. El área defnda bajo la funcón de densdad de probabldad deberá ser de 1.

8 4. Dstrbucones de probabldad contnua: Dstrbucón t de Student Dstrbucón J cuadrada Dstrbucón F Dstrbucón normal Meda o valor esperado de x Para calcular la meda de una dstrbucón de probabldad contnua se utlza la sguente fórmula: µ = xf( x) dx x = varable aleatora contnua f(x) = funcón de densdad de la dstrbucón de probabldad Donde: µ = E(x) = meda o valor esperado de la dstrbucón Desvacón estándar La fórmula para determnar la desvacón estándar de una dstrbucón contnua es: ( x ) σ µ = f( x) dx σ = σ 1 Para la sguente funcón, f( x) = x cuando 0 x 3, f(x) = 0 para 9 cualquer otro valor a) D s esta funcón nos defne una dstrbucón de probabldad. b) S la funcón defne una dstrbucón de probabldad, entonces, determne su meda y desvacón estándar. c) Determna la probabldad de que 1 x. a) Para verfcar que la funcón nos defne una dstrbucón de probabldad, es necesaro que cumpla con las característcas que se habían menconado. 1. x sí es una varable contnua porque puede tomar cualquer valor entre 0 y 3. f(x) 0, lo que se comprueba s damos dferentes valores a x para ver que valores toma f(x), dándonos cuenta de que efectvamente f(x) solo toma valores mayores o guales a cero Para comprobar que la sumatora de las probabldades que toma cada valor de x es de 1, se ntegra la funcón de 0 a 3 como se muestra a contnuacón:

9 x A= f( x) dx = x dx 0 ( 3 0 ) 1 = = = A= área bajo la funcón 1 Con las operacones anterores comprobamos que la funcón x sí nos defne una 9 dstrbucón de probabldad contnua. b) Cálculo de meda y desvacón estándar x 3 µ = xf ( x) dx = x x dx x dx = = = x x 5.065x σ = µ = = ( x ) f ( x) dx ( x.5) x dx dx = ( ) = p x x dx = = = c) ( ) Con las operacones anterores nos damos cuenta que para evaluar probabldades para varables de tpo contnuo, es necesaro evaluar la funcón de densdad de probabldad en el rango de valores que se desea; que vendría sendo el área que se encuentra entre f(x) y el eje de las x y entre el rango de valores defndos por la varable x.

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

Tema 21: Distribución muestral de un estadístico

Tema 21: Distribución muestral de un estadístico Análss de Datos I Esquema del Tema 21 Tema 21: Dstrbucón muestral de un estadístco 1. INTRODUCCIÓN 2. DISTRIBUCIÓN MUESTRAL DE LA MEDIA 3. DISTRIBUCIÓN MUESTRAL DE LA PROPORCIÓN Bblografía * : Tema 15

Más detalles

Variable aleatoria: definiciones básicas

Variable aleatoria: definiciones básicas Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES

VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

Análisis estadístico de incertidumbres aleatorias

Análisis estadístico de incertidumbres aleatorias Análss estadístco de ncertdumbres aleatoras Errores aleatoros y sstemátcos La meda y la desvacón estándar La desvacón estándar como error de una sola medda La desvacón estándar de la meda úmero de meddas

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana? Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,

Más detalles

T. 5 Estadísticos de forma de la distribución

T. 5 Estadísticos de forma de la distribución T. 5 Estadístcos de forma de la dstrbucón 1 1. Asmetría 2. Apuntamento o curtoss Ya ha sdo abordado en temas precedentes el análss de la forma de la dstrbucón de frecuencas desde una aproxmacón gráfca.

Más detalles

3.3 Caracterización de grupos: Estadísticos de forma de la distribución

3.3 Caracterización de grupos: Estadísticos de forma de la distribución 3.3 Caracterzacón de grupos: Estadístcos de forma de la dstrbucón 1. Smetría 2. Apuntamento o curtoss 3. Descrpcón estadístca de una varable: tabla resumen Ya ha sdo abordado en temas precedentes el análss

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO. ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO..- PERSPECTIVA HISTÓRICA MATERIA { MOLÉCULAS } { ÁTOMOS}, sendo los átomos y/o moléculas estables por la nteraccón electromagnétca. Desde la perspectva electromagnétca

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1 odelos de secuencacón de tareas en máqunas Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu ODELOS DE SECUENCIACIÓN EN ÁQUINAS odelos de secuencacón de tareas

Más detalles

MICROECONOMIA Y REGIMEN DE LA COMPETENCIA EN LA UE COLUSION EN OLIGOPOLIOS

MICROECONOMIA Y REGIMEN DE LA COMPETENCIA EN LA UE COLUSION EN OLIGOPOLIOS MICROECONOMIA Y REGIMEN DE LA COMPETENCIA EN LA UE PARTE COLUSION EN OLIGOPOLIOS TEMA 8: JUEGOS REPETIDOS: TEOREMAS Y PARADOJAS 1. Juegos repetdos: Conceptos báscos y ejemplos. 2. Paradojas en los juegos

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS

CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS El conocmento de las meddas de centralzacón no es sufcente para caracterzar completamente a una dstrbucón por ejemplo: s las edades medas de

Más detalles

Análisis de Varianza no paramétricos

Análisis de Varianza no paramétricos Capítulo VII Análss de Varanza no paramétrcos Anova de Kruskal-Walls Anova de Fredman Anova de Q de Cochran Introduccón Las técncas de análss de varanza no paramétrcos son útles cuando los supuestos de:

Más detalles

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO bofsca@rubenprofe.com.ar El crcuto funcona así: ESISTENCIS EN PLELO.- Las cargas salen del extremo postvo de la fuente y recorren el conductor (línea negra) hasta llegar al punto, allí las cargas se dvden

Más detalles

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema

Más detalles

DISTRIBUCION DE RENDIMIENTOS: APLICACIONES

DISTRIBUCION DE RENDIMIENTOS: APLICACIONES DISTRIBUCION DE RENDIMIENTOS: APLICACIONES Puntos a desarrollar Como es el modelo de dstrbucon normal de los rendmentos Como se puede utlzar para hacer predccones futuras sobre precos de actvos Como se

Más detalles

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto: -.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una

Más detalles

CAPÍTULO IV METODOLOGÍA. Para llevar a cabo la investigación se ha tenido en cuenta el siguiente diseño:

CAPÍTULO IV METODOLOGÍA. Para llevar a cabo la investigación se ha tenido en cuenta el siguiente diseño: CAPÍTUL IV METDLGÍA 1. Dseño y técnca de nvestgacón Para llevar a cabo la nvestgacón se ha tendo en cuenta el sguente dseño: 1. Investgacón con medcón preva y posteror con grupo de control.. Las undades

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Notar que A = A S = A ( ). Por la propiedad distributiva, se tiene que n A = A, donde la

Notar que A = A S = A ( ). Por la propiedad distributiva, se tiene que n A = A, donde la 4.3.2 Probabldad Total y Regla de ayes Regla de la Probabldad Total. Sean 1,, n una coleccón de eventos que forman una partcón del espaco muestral S esto es n S y φ para. Sea A otro evento defndo sobre

Más detalles

En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de

En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos.4. SEGURO

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUCCIÓN A LA PROBABILIDAD José Lus Quntero Expermento aleatoro Expermento Bnomal Teoría de Conjuntos Probabldad Teorema de Bayes Técncas de Conteo Unversdad Central de Venezuela Facultad de Ingenería

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD

OPTIMIZACIÓN CON RESTRICCIONES DE IGUALDAD OPIMIZACIÓN CON RESRICCIONES DE IGUALDAD Localzacón de óptos de funcones sujetas a restrccones en fora de gualdad écnca de los ultplcadores de Lagrange Forulacón estándar del problea f =,,..., Se consderarán

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Cuaderno de actividades 4º ESO

Cuaderno de actividades 4º ESO Estadístca Undmensonal 1 Conceptos báscos. Cuaderno de actvdades º ESO Cualquer elemento o ente que sea portador de nformacón sobre alguna propedad en la cual se está nteresado se denomna ndvduo. El conjunto

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

INTRODUCCIÓN... 43 OBJETIVOS GENERALES... 3. Estadística Aplicada OBJETIVOS PARTICULARES... 4 CONCEPTOS BÁSICOS... 5 ACTIVIDADES

INTRODUCCIÓN... 43 OBJETIVOS GENERALES... 3. Estadística Aplicada OBJETIVOS PARTICULARES... 4 CONCEPTOS BÁSICOS... 5 ACTIVIDADES Índce INTRODUCCIÓN... OBJETIVOS GENERALES... 3 OBJETIVOS PARTICULARES... 4 CONCEPTOS BÁSICOS... 5 ESTADÍSTICA DESCRIPTIVA INTRODUCCIÓN... 8 RECOLECCIÓN DE DATOS... 8 TEORÍA DEL MUESTREO... 8 TRATAMIENTO

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

Matemáticas A 4º E.S.O. pág. 1

Matemáticas A 4º E.S.O. pág. 1 Matemátcas A º E.S.O. pág. HOJA : ESTADÍSTICA º.- Agrupa en ntervalos y construye una tabla de frecuencas (con la marca de clase ncluda) y la frecuenca absoluta de las sguentes alturas, meddas en centímetros,

Más detalles

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES )

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES ) TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. (º A.D.E.) e-mal: mozas@el.uned.es PREGUTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS E EXÁMEES DE LOS CAPÍTULOS, Y 4 (DISTRIBUCIOES DE FRECUECIAS UIDIMESIOALES

Más detalles

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO 7. Anualdad de Vda Como se elca en el caítulo 4, una anualdad es una sere de agos que se realzan durante un temo determnado, nombrándose a esta

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes:

Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes: CAÍTULO III ACCIONES Artículo 9º Clasfcacón de las accones Las accones a consderar en el proyecto de una estructura o elemento estructural se pueden clasfcar según los crteros sguentes: - Clasfcacón por

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo EVALUACION DE LA CAPACIDAD DE CALIDAD DE UN PROCESO INDUSTRIAL METODOS ESTADISTICOS SUGERIDOS POR LA NORMA ISO 9000 ANGEL FRANCISCO ARVELO L. Ingenero Industral Master en Estadístca Matemátca CARACAS,

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO ) CAPÍTULO II.- AÁLISIS DE UA CARACTERÍSTICA (DISTRIBUCIOES UIDIMESIOALES) TEMA 6.- MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMETOS. DIPLOMATURA E CIECIAS EMPRESARIALES UIVERSIDAD DE

Más detalles

HOMOGENEIDAD DE POBLACIONES ESTADISTICAS. EL PROBLEMA DE LA MIXTURA DE COMPONENTES

HOMOGENEIDAD DE POBLACIONES ESTADISTICAS. EL PROBLEMA DE LA MIXTURA DE COMPONENTES HOMOGENEIDAD DE POBLACIONES ESTADISTICAS. EL PROBLEMA DE LA MIXTURA DE COMPONENTES Mguel Ángel Fajardo Caldera - fajardo@unex.es Jesús Perez Mayo - jperez@unex.es Lyda Andrades Caldto andrades@unex.es

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

Introducción al riesgo de crédito

Introducción al riesgo de crédito Introduccón al resgo de crédto Estrella Perott Investgador Senor Bolsa de Comerco de Rosaro eperott@bcr.com.ar. Introduccón El resgo credtco es el resgo de una pérdda económca como consecuenca de la falta

Más detalles

Regresión y Correlación

Regresión y Correlación Regresón Correlacón 1.- El número de turstas (en mllones) entrados en España mensualmente durante los años 001 00 se epone en la sguente estadístca. Nº Turstas 001,76,6,9 3,8 4,4 4,81 8,93 9,98 5,91 4,34,6

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2

Más detalles

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x Dstrbucones de Probabldad dscretas-bn1b DISTRIBUIONES DISRETAS DE PROBABILIDAD Dstrbucones dscretas son aquellas en las que la varable sólo puede tomar valores aslados. Ejemplo: lanzar una moneda ( valores:

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

Material realizado por J. David Moreno y María Gutiérrez Universidad Carlos III de Madrid Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez Universidad Carlos III de Madrid Asignatura: Economía Financiera Economía Fnancera- Unversdad Carlos III de Madrd Tema 3- Caracterzacón de los actvos y carteras: Rentabldad resgo Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura:

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles

CAPITULO 4 MEDIDAS DE TENDENCIA CENTRAL

CAPITULO 4 MEDIDAS DE TENDENCIA CENTRAL CAPITULO 4 MEDIDAS DE TENDENCIA CENTRAL La estadístca descrptva en su uncón básca de reducr datos, propone una sere de ndcadores que permten tener una percepcón rápda de lo que ocurre en un enómeno. La

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios

Teoría de Modelos y Simulación Enrique Eduardo Tarifa Facultad de Ingeniería - Universidad Nacional de Jujuy. Generación de Números Aleatorios Teoría de Modelos y Smulacón Enrque Eduardo Tarfa Facultad de Ingenería - Unversdad Naconal de Jujuy Generacón de Números Aleatoros Introduccón Este capítulo trata sobre la generacón de números aleatoros.

Más detalles

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA

INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA LABORATORIO 1-008 PRACTICA 4: LEYES DE LOS GASES 1. OBJETIVOS ) Comprobacón expermental de las leyes de los gases. En este caso nos vamos a concentrar en el estudo

Más detalles

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit. Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

Metodología para el diseño de mecanismos en el esquema de seguridad social en Colombia. Wilson Mayorga M.

Metodología para el diseño de mecanismos en el esquema de seguridad social en Colombia. Wilson Mayorga M. . La Caldad Académca, un Compromso Insttuconal Close up marquta - hoja Mayorga M., Wlson (2009). Metodología para el dseño de mecansmos en el esquema de segurdad socal en Colomba. Crtero Lbre, 7 (), 5-46

Más detalles

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS SIARGAF 4.0 FEBRERO 008 CONTENIDO..... Valor en Resgo aramétrco... A) Meddas de Sensbldad... B) Meddas Estadístcas... 6 C) Volatldad... 7 D) Valor

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Inferencia Estadística: Prueba de Hipótesis

Inferencia Estadística: Prueba de Hipótesis Inferenca Estadístca: Prueba de Hpótess Inferenca Estadístca: Hemos estudado cómo a partr de una muestra de una poblacón podemos obtener una estmacón puntual o ben establecer un ntervalo más o menos aproxmado

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

Tema 4. Números Complejos

Tema 4. Números Complejos Tema. Números Complejos. Números complejos...... Defncón de números complejo..... Conjugado y opuesto de números complejos..... Representacón gráfca de los complejos.... Operacones con complejos..... Suma

Más detalles

62 EJERCICIOS de NÚMEROS COMPLEJOS

62 EJERCICIOS de NÚMEROS COMPLEJOS 6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles