I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA"

Transcripción

1 I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMERÍA Noa: Los ejerccos con asersco no corresponden al programa acual de Prncpos de Economería

2 I EJERCICIOS RESUELOS Un nvesgador ha esmado el sguene modelo con una muesra de 5 observacones: Y = β + βx + u Una vez realzada la esmacón exravía oda la nformacón de que dsponía excepo la que aparece en la sguene abla: Núm. obs. X ? 5 6? Con la nformacón aneror el nvesgador debe calcular una esmacón de la varanza de las perurbacones aleaoras Cómo debe proceder? Un nvesgador consdera que la relacón enre consumo ( C ) y rena ( R )debe ser esrcamene proporconal. Por ello, planea el sguene modelo: C = βr + u a) Deduzca la fórmula para esmar β b) Deduzca la fórmula para esmar σ c) En ese modelo, a qué es gual u? 3 En lenguaje esadísco se suelen hacer en muchas ocasones afrmacones como la sguene: Sea una muesra aleaora smple de amaño exraída de una varable X con dsrbucón normal N( ασ, ). a) Exprese el modelo aneror con lenguaje economérco, nroducendo un érmno de perurbacón. b) Deduzca la formula para esmar α c) Deduzca la formula para esmar σ = d) En ese modelo, a qué sería gual = u u? 4 Sea el sguene modelo que relacona el gaso en educacón ( E ) con la rena dsponble ( R ): E = β+ βr + u De la nformacón obenda de una muesra de0 famlas se han obendo los sguenes resulados:

3 0 0 0 = = = E = 7 R = 50 R = E = 6 RE = Se pde: a) Obenga una esmacón de β y β. b) Esme la elascdad gaso en educacón-rena para el promedo de las famlas de la muesra. c) Descomponga la varanza oal del gaso en educacón de la muesra en varanza explcada y varanza resdual. d) Calcule el coefcene de deermnacón. e) Esme la varanza de las perurbacones f) Conrase s la rena dsponble ene o no una nfluenca sgnfcava sobre el gaso en educacón. g) Para E=7 y R=50, conrase s la elascdad gaso en educacón-rena dsponble es o no superor a. 5 Sea el sguene modelo Y = β+ β X + u =,,, Al esmar ese modelo con una muesra de amaño se han obendo los sguenes resulados: = X = Y = X = B = Se pde: ) Obener la esmacón de β y β ) Obener la suma de cuadrados de los resduos Y = E = X Y = 3) Obener el esadísco para conrasar H0 : β H: β 0 4) Conrasar las hpóess del puno 3 bajo el supueso de que EB= 5) Calcular el coefcene de deermnacón bajo el supueso de que EB= 6) Conrasar las hpóess del puno 3 bajo el supueso de que EB= Solucones El prmer problema que enemos que resolver es hallar los valores de los resduos para las observacones número 4 y 5. Para ello, enemos en cuena que las dos ecuacones normales de los coefcenes mponen resrccones sobre los resduos, ya que = = u ux 3

4 Por lo ano, en nuesro caso concreo se verfcará que u + u + u 3 + u 4 + u 5 ux + ux + ux ux ux 5 5 Susuyendo los valores de la abla se obene que u4 + u u4 + 6u5 es decr, u 4 + u 5 = 5u4 + 6u5 = 7 Resolvendo, el ssema aneror, se obene que u4 = u5 = El esmador nsesgado de la varanza de las perurbacones vene dado por = σ = Aplcando la fórmula nuesro caso se obene que 5 u u = + ( 3) ( ) + σ = = = Obsérvese que en el denomnador de la fórmula fgura - (en lugar de ), debdo precsamene a que se perden grados de lberad por las resrccones que mponen las ecuacones normales. Para que exsa una esrca proporconaldad enre el consumo y la rena se debe verfcar la sguene relacón eórca: C consane R = El modelo propueso s prescndmos de la perurbacón, que no alera el valor medo de la varable endógena - se verfca esa propedad ya que C = β R En cambo, en un modelo con érmno ndependene no se verfcaría esa propedad, ya que en ese caso C β + βr β = = + β consane R R R a) Para esmar β hay que mnmzar la sguene expresón: Por lo ano, S = [ u ] = C βr ds d = = = C βr R β = 4

5 es decr, = β = = CR b) El esmador de la varanza de las perurbacones [ u ] C βr = = σ = = En la expresón aneror, en el denomnador aparece -, debdo a que se ha perddo un solo grado de lberad, ya que solamene hay una ecuacón normal que mponga resrccones sobre los resduos. c) Como no hay érmno ndependene, la reca ajusada pasa por el orgen. En ese caso, a dferenca del caso en que ajusamos una reca sn resrccones (es decr, con érmno ndependene), solamene enemos una ecuacón normal para el ajuse, que vene dada por C βr R = [ u ] R = = En cambo, al no haber érmno ndependene, no enemos una ecuacón normal relava a ese érmno, y por ano, no podemos esablecer que se cumpla que = R u =0. Recordemos que esa propedad se deducía de la prmera ecuacón normal de la reca asocada al érmno ndependene. En ese caso, al prescndr del érmno ndependene, se prescnde ambén de la prmera ecuacón normal. En consecuenca, no podemos predecr cuál es el valor de u. 3 a)en el lenguaje economérco el modelo se puede expresar de la sguene forma: X = α + u donde u ~ NID(0, σ ) El hecho de que la muesra se ha exraído en un muesreo aleaoro smple mplca que las X y, por ano, las perurbacones aleaoras son ndependenes enre sí. Es decr, Euu ( ) 0 =, para. Por ora pare, la varanza de las X exraídas endrán la msma varanza ya que provenen de una poblacón consane. De acuerdo con lo aneror, se deduce que EX ( ) = E( α + u) = α EX ( α) = Eu ( ) = σ = 5

6 Por ano, X ~ N( ασ, ) Una dferenca de carácer meramene formal. En lenguaje esadísco se suele ulzar la desvacón ípca como medda de dspersón, menras que en economería es más usual ulzar la varanza. b) Para esmar α aplcamos el crero mínmo-cuadráco: Por lo ano, es decr, S = u = [ X α] = = ds = [ X α ] d α = X = α = = X Como puede verse, la ecuacón normal nos ndca que [ X α] = u = = lo que mplca una resrccón sobre los resduos. c) El esmador de σ vendrá dado por u [ X ] α = = σ = = En ese caso, dado que solo hay una resrccón sobre los resduos, el número de grados de lberad es -. d) Como ya hemos vso en el aparado b), u =0 4 a) = ( R R)( E E) ( R E ER RE + RE) = = β = = ( R R) ( R RR + R ) = = R E E R R E + RE RE ER RE + RE = = = = = = R RR + R R RR + R = = = 6

7 RE RE = = = =, R R = β 7 0, , 4779 = E βr = = Por lo ano, la reca de regresón ajusada es la sguene: E = β+ βr = 0, ,496 R b) La elascdad gaso en educacón-rena esmada para el promedo de las famlas de la muesra será la sguene: de R R 50 εe/ R= = β,496 =, 0683 dr E E 7 c) La descomposcón de la varanza oal del gaso en educacón será gual a E E E E u = = = = + Para la muesra dsponble se obenen los sguenes resulados: Varanza oal: 0 0 = = E E E 0 E = = = 3, Varanza explcada: 0 0 E E ( β βr) ( β βr) + + = = = β ( R R ) ( R R ) = = = = β ( R R)( E E) ( R R) ( R R)( E E) = = = β 0 0 ( R R) = = β = 845,496 =, Varanza resdual: La varanza resdual se obene como dferenca enre la varanza oal y la varanza explcada por la regresón: u E E E E = = = = = 3,, 6376, d) El coefcene de deermnacón se defne como la proporcón de la varanza oal explcada por la regresón, es decr, 7

8 R = 0 0 E E, 6376 = =,9574 3, E E = e) La esmacón de la varanza de las perurbacones vendrá dada por u = 5, 64 σ = =, f) Para conrasar s la rena dsponble ene o no una nfluenca sgnfcava sobre el gaso en educacón, seguremos las sguenes eapas: ) Las hpóess nula y alernava son las sguenes: H0 : β H: β 0 ) El esadísco para el conrase es el sguene: 0 β β β 0 0,496 0,496 = = = = = 3, 4 σ σ 0,8385 0, 05 β ( R R) = El esadísco, bajo la hpóess nula se dsrbuye como de Suden con - grados de lberad, es decr, ~ 3) Regla de decsón S selecconamos un nvel de sgnfcacón del 5%, enonces en las ablas de la de Suden con - grados de lberad, se encuenra el sguene valor en las ablas: α / 0,05/ = 8 =,306 / Como > α, es decr, como 3, 4 >,306, se rechaza la hpóess nula. g) -,306 0,306 3, 4 8

9 ) Para conrasar s la elascdad gaso en educacón-rena dsponble es o no superor a, para E=7 y R=50 (es decr, para el promedo de las famlas de la muesra), sabemos que R 50 εe/ R= β = β E 7 50 Debemos conrasar s εe/ R= β =, frene a la alernava ε E/ R>. 7 Por lo ano, las hpóess nula y alernava son las sguenes: 7 H0 : β =,4 50 H: β > 0,4 ) El esadísco para el conrase es el sguene: 0 β β 0,496 0,4 = =,860 σ 0, 05 β 3) Regla de decsón S selecconamos un nvel de sgnfcacón del 5%, enonces en las ablas de la de Suden con - grados de lberad, se encuenra el sguene valor en las ablas para un conrase de una cola: α 0,05 = 8 =, 860 Como < α, es decr, como 0,86 <,860, no puede acepar la hpóess alernava, con un nvel de sgnfcacón del 5%, de que la elascdad gasos en educacón-rena dsponble es superor a en el puno (E=7;R=50). 0 0,86,860 5 ) La fórmula general del esmador de la pendene es la sguene = β = ( Y Y)( X X) = ( X X) 9

10 En ese caso concreo, dado que vendrá dado por X y = = Y, el esmador YX = = = β = X B Por ora pare, β = Y β X β 0= 0 ) La fórmula general de la descomposcón de la varanza del regresando es la sguene: ( Y Y) ( Y Y) u = = = = + En ese caso concreo, la descomposcón de la varanza es la sguene: La varanza explcada es gual a Y Y u = = = = + Y ( βx) βx = = = B = = = = B B Por lo ano, la varanza resdual es gual a u Y Y = = = E EB = = = B B El esmador nsesgado de la varanza de las perurbacones será gual a 0

11 u σ EB = = = B ( ) 3) La varanza del esmador β es la sguene: σ EB σ B ( ) EB ( ) = = = β B B X = Por ano, el esadísco para conrasar las hpóess H0 : β H: β 0 es el sguene, 0 0 β β = = B = σ β EB EB B ( ) ( ) 4) enendo en cuena que EB= y que =, el esadísco de conrase es gual a = = EB = 9 = 3 ( ) El esadísco calculado, bajo la hpóess nula se dsrbuye como de Suden con 9 grados de lberad, es decr, ~ Para los nveles de sgnfcacón del 0%, 5% y %, en las ablas de la de Suden con 9 grados de lberad, se encuenran los sguenes valores en las ablas: Como / α 9 0,0/ 9 =, 833 0,05/ 9 =, 6 0,0/ 9 = 3, 50 >, para α=0,0 y para α=0,05 se rechaza la hpóess nula / para ese nvel de sgnfcacón. En cambo, dado que α para α=0,0, no se puede rechazar la hpóess nula para ese nvel de sgnfcacón.

12 5) El coefcene de deermnacón en ese caso concreo será gual a R = = Y = = B = = E BE = Y 0, 5 6) Bajo el supueso hpoéco de que EB =, enonces EB 0 = = B ( ) B ( ) σ β Dado que la varanza del esmador es nula no cabe realzar conrases de hpóess. El supueso de que EB= sgnfca que Y X = XY = = = La gualdad aneror se cumple s Y = X

Ejercicios resueltos y exámenes

Ejercicios resueltos y exámenes Prncpos de Economería y Economería Empresaral I Ejerccos resuelos y exámenes Recoplados por Ezequel Urel I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES

Más detalles

RESTRICCIONES LINEALES

RESTRICCIONES LINEALES ESTICCIONES LINELES esrccones Lneales uores: enaas Kzys (rkzys@uocedu), Ángel Juan (ajuanp@uocedu) ESQUEM DE CONTENIDOS Conrase de sgnfcacón global Conrase de sgnfcacón ndvdual ormulacón general de resrccones

Más detalles

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Movimiento Rectilíneo Uniformemente Acelerado (MRUA) 7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo

Más detalles

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

E C O N O M E T R I A

E C O N O M E T R I A UNIVERSIDAD NACIONAL DE PIURA FACULAD DE ECONOMÍA DEPARAMENO ACADÉMICO DE ECONOMÍA E C O N O M E R I A I M. Sc. Eco. LUIS A. ROSALES GARCÍA CASILLA, OCUBRE DEL 9. CAPIULO I MODELOS DINÁMICOS. INRODUCCIÓN..

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Sabes cuáles son las caraceríscas del momeno reclíneo unormemene acelerado? INTRODUCCION Prmero debemos saber que denro de la cnemáca exsen derenes pos de

Más detalles

FASCÍCULO: MATRICES Y DETERMINANTES

FASCÍCULO: MATRICES Y DETERMINANTES FSÍULO: MRIES Y DEERMINNES on el avance de la ecnología en especal con el uso de compuadoras personales, la aplcacón de los concepos de marz deermnane ha cobrado alcances sn precedenes en nuesros días.

Más detalles

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema

Más detalles

ALTERNATIVAS AL ESTIMADOR DE REGRESIÓN EN POBLACIONES FINITAS. APLICACIÓN A UN COLECTIVO DE EMPRESAS

ALTERNATIVAS AL ESTIMADOR DE REGRESIÓN EN POBLACIONES FINITAS. APLICACIÓN A UN COLECTIVO DE EMPRESAS LTENTIVS L ESTIMDO DE EGESIÓN EN POBLCIONES FINITS. PLICCIÓN UN COLECTIVO DE EMPESS Sanago Murgu Izquerdo Deparameno de Economía plcada Unversdad de Valenca e-mal: Sanago.Murgu@uv.es Mª Cruz Molés Machí

Más detalles

INDICE DE COSTES DE LA CONSTRUCCIÓN

INDICE DE COSTES DE LA CONSTRUCCIÓN INDICE DE COSTES DE LA CONSTRUCCIÓN. INTRODUCCION Y OBJETIVOS El índce de coses de la consruccón es un ndcador coyunural que elabora el Mnsero de Fomeno y que ene como objevo medr la evolucón, en érmnos

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

Tema 21: Distribución muestral de un estadístico

Tema 21: Distribución muestral de un estadístico Análss de Datos I Esquema del Tema 21 Tema 21: Dstrbucón muestral de un estadístco 1. INTRODUCCIÓN 2. DISTRIBUCIÓN MUESTRAL DE LA MEDIA 3. DISTRIBUCIÓN MUESTRAL DE LA PROPORCIÓN Bblografía * : Tema 15

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo REF.: Modfca Crcular N 2062 que nsruye respeco al raameno de recálculo de pensón, en pólzas de seguros de rena valca del D.L. N 3.500, de 1980. Sanago, CIRCULAR N Para odas las endades aseguradoras y reaseguradoras

Más detalles

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO Fabrco Morán Rugel 1, José Zúñga Basdas 2, Francsco Marro García 3 RESUMEN Después de haber analzado las écncas

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

UNA INTRODUCCIÓN A LOS MODELOS DE SERIES TEMPORALES NO LINEALES

UNA INTRODUCCIÓN A LOS MODELOS DE SERIES TEMPORALES NO LINEALES UNA INTRODUCCIÓN A LOS MODELOS DE SERIES TEMPORALES NO LINEALES Juan Gabrel Rodríguez Hernández* Mayo 00 *Unversdad Rey Juan Carlos. Campus de Vcálvaro, 803 Madrd. Ese rabajo se a benefcado de los comenaros

Más detalles

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 Una fuene lumnosa eme luz monocromáca de longud de onda en el vacío lo = 6 l0-7 m (luz roja) que se propaga en el agua de índce de refraccón

Más detalles

UNIDAD VI. Qué son las Variables Ficticias?

UNIDAD VI. Qué son las Variables Ficticias? UNIA VI Qué son las Varables Fccas? UNIA VI Qué son las Varables Fccas? Un modelo económco es un conjuno de suposcones que descrben en forma aproxmada la conduca de un secor económco G.S. Maddala, 996

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

Econometría de Económicas Ejercicios para el tema 1

Econometría de Económicas Ejercicios para el tema 1 Economería de Económicas Ejercicios para el ema 1 Curso 2005-2006 Profesores Amparo Sancho Perez Guadalupe Serrano Pedro Perez Formas funcionales alernaivas a la lineal Las hipóesis realizadas en el modelo

Más detalles

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto: -.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una

Más detalles

SISTEMAS DE ECUACIONES SIMULTANEAS

SISTEMAS DE ECUACIONES SIMULTANEAS Apunes de eoría Economérca I. Profesor: Vvana Fernández SISEMAS DE ECUACIONES SIMULANEAS I INRODUCCION A la fecha, nos hemos cenrado en modelos unecuaconales, eso es, aquellos que nvolucran sólo una ecuacón

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Análisis estadístico de incertidumbres aleatorias

Análisis estadístico de incertidumbres aleatorias Análss estadístco de ncertdumbres aleatoras Errores aleatoros y sstemátcos La meda y la desvacón estándar La desvacón estándar como error de una sola medda La desvacón estándar de la meda úmero de meddas

Más detalles

Los esquemas de la reproduccio n de Marx

Los esquemas de la reproduccio n de Marx Los esquemas de la reproducco n de Marx Alejandro Valle Baeza Los esquemas de la reproduccón smple y amplada consuyen sólo una pare del análss del proceso de crculacón del capal. Fueron presenados en la

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

62 EJERCICIOS de NÚMEROS COMPLEJOS

62 EJERCICIOS de NÚMEROS COMPLEJOS 6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV)

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV) Dnero, precos, asa de nerés y acvdad económca: un modelo del caso colombano (984:I 23:IV) José Fernando Escobar. y Carlos Eseban osada. esumen A parr de un esquema de ofera y demanda de dnero se esmó un

Más detalles

Estimación a partir de muestras intencionadas: fiabilidad del Índice de Producción Industrial en la Comunitat Valenciana( )

Estimación a partir de muestras intencionadas: fiabilidad del Índice de Producción Industrial en la Comunitat Valenciana( ) ESTADÍSTICA ESPAÑOLA Vol. 51, núm. 171, 2009, págs. 227 a 236 Esmacón a parr de muesras nenconadas: fabldad del Índce de Produccón Indusral en la Comuna Valencana() por SANTIAGO MURGUI IZQUIERDO Mª CONSUELO

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL José E. Durán Lma, Ofcal de Asunos Económcos Claudo Aravena, Analsa Esadísco Carlos Ludeña, Consulor Inernaconal Asesoría Técnca de la

Más detalles

El circuito eléctrico de la figura está formado por un conjunto de Resistencias, condensadores, bobinas y una fuente de tensión.

El circuito eléctrico de la figura está formado por un conjunto de Resistencias, condensadores, bobinas y una fuente de tensión. El crcuto eléctrco de la fgura está formado por un conjunto de esstencas, condensadores, bobnas y una fuente de tensón. L L Para el sstema de la fgura, se pde: Modelo de bond graph del sstema, ncluyendo

Más detalles

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales ... Méodo de Euler Haca Adelane Anexo -4. Méodos Numércos Aplcados a Ecuacones Dferencales Párase del más smple po de ecuacón dferencal ordnara, que la de po lneal de prmer orden, el clásco Problema de

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Pronóstico con Modelos Econométricos

Pronóstico con Modelos Econométricos Pronósco con Modelos conomércos Hldegar A. Ahumada UD A common complan (n he UK): When weaher forecass go awr, meeorologss ge a new supercompuer When economs ms-forecas, we ge our budges cu (Hendr, 200)

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS

6.1 EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS TEMA NÚMEROS COMPLEJOS. EN QUÉ CONSISTEN LOS NÚMEROS COMPLEJOS DEFINICIONES Al resolver ecuacones del tpo : x + = 0 x = ± que no tene solucón en los números reales. Los números complejos nacen del deseo

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

Circuitos Rectificadores 1/8

Circuitos Rectificadores 1/8 Crcuos Recfcadores 1/8 1. Inroduccón Un crcuo recfcador es un crcuo que ene la capacdad de converr una señal de c.a. en una señal de c.c. pulsane, ransformando así una señal bpolar en una señal monopolar.

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS

CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS CAPITULO CUATRO MEDIDAS DE DISPERSION, ASIMETRIA Y CURTOSIS El conocmento de las meddas de centralzacón no es sufcente para caracterzar completamente a una dstrbucón por ejemplo: s las edades medas de

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

MMII_L1_c2: Ecuaciones casi lineales de primer orden: Método de las características

MMII_L1_c2: Ecuaciones casi lineales de primer orden: Método de las características MMII_L_c: Ecacone ca lneale de prmer orden: Méodo de la caraceríca Gón de la clae: En ea clae e dearrolla la búqeda de olcone paramérca del problema de Cach defndo por ecacone ca lneale de prmer orden.

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas

Más detalles

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa SOLUCIONARIO GUÍA Íem Alernaa Deena 1 C En un gráco elocdad / empo, al realzar el cálculo de la pendene y área bajo la cura, obenemo la aceleracón y danca recorrda, repecamene. A Según la expreón para

Más detalles

Macroeconomic Effects of Fiscal Shocks in the European Union: A GVAR Model

Macroeconomic Effects of Fiscal Shocks in the European Union: A GVAR Model Unversy of Exremadura Deparmen of Economcs Macroeconomc Effecs of Fscal Shocks n he European Unon: A GVAR Model Ths verson: February 212 Alejandro RICCI RISQUETE Julán RAMAJO HERNÁNDEZ Unversdad de Exremadura

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES )

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES ) TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. (º A.D.E.) e-mal: mozas@el.uned.es PREGUTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS E EXÁMEES DE LOS CAPÍTULOS, Y 4 (DISTRIBUCIOES DE FRECUECIAS UIDIMESIOALES

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

Algoritmos para la determinación de soluciones en problemas de programación por metas fraccionales. XVII Jornadas ASEPUMA V Encuentro Internacional

Algoritmos para la determinación de soluciones en problemas de programación por metas fraccionales. XVII Jornadas ASEPUMA V Encuentro Internacional Algormos para la deermnacón de solucones en problemas de programacón por meas fracconales. Algormos para la deermnacón de solucones en problemas de programacón por meas fracconales. Caballero Fernández,

Más detalles

VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX

VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX Rafael E. Borges P. Escuela de Esadísca, Unversdad de Los Andes, Mérda 511, Venezuela. e-mal: borgesr@ula.ve Temáca: Méodos Esadíscos en Epdemología. Resumen

Más detalles

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES

UNIDAD 7.- Matrices (tema 1 del libro) = MATRICES UNIDD.- Marces (ema del lbro). MTRICES Ua mar se puede eeder como ua abla de úmeros ordeados e flas columas Defcó.- Se llama mar de dmesó m a u cojuo de úmeros reales dspuesos e m flas columas de la sguee

Más detalles

En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de

En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos.4. SEGURO

Más detalles

Un Modelo Macroeconómico del Riesgo de Crédito en Uruguay

Un Modelo Macroeconómico del Riesgo de Crédito en Uruguay Un Modelo Macroeconómco del Resgo de Crédo en Uruguay Gabrel Illanes Aleandro Pena Andrés Sosa 002-204 688-7565 Un Modelo Macroeconómco del Resgo de Crédo en Uruguay Gabrel Illanesª, Aleandro Pena b**,

Más detalles

Autor: Jorge Mauricio Oviedo 1

Autor: Jorge Mauricio Oviedo 1 odelos Economércos ulecuaconales de Esmacón de Demandas Auor: Jorge aurco Ovedo Resumen: En ese arículo se efecúa una revsón de los prncpales éodos Economércos para esmar ecuacones smuláneas de demanda

Más detalles

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

EJERCICIOS DE INECUACIONES

EJERCICIOS DE INECUACIONES EJERCICIOS DE INECUACIONES REPASO DE DESIGUALDADES: 1. Dadas las siguientes desigualdades, indicar si son V o F utilizando la recta real. Caso de ser inecuaciones, indicar además la solución mediante la

Más detalles

El tipo de cambio real dólar-euro y el diferencial de tipos de interés real

El tipo de cambio real dólar-euro y el diferencial de tipos de interés real El po de cambo real dólar-euro y el dferencal de pos de nerés real (Versón prelmnar) Paz Rco Belda Unversdad de Valenca Faculad de Economía Avd. de los Naranjos, s/n 46022 Valenca Paz.Rco@uv.es Absrac

Más detalles

Estadística de Precios de Suelo

Estadística de Precios de Suelo Esadísca de Precos de Suelo Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Cálculo del area de intercambio del rehervidor y del condensador.

Cálculo del area de intercambio del rehervidor y del condensador. M.M.J. Págna 1 de 16 0 Sepembre 005 Revsón (0) Cálculo del area de nercambo del rehervdor y del condensador. Rehervdor. Procedmeno de dseño: En ese rabajo se preende proporconar un procedmeno sencllo,

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Roacones Aplcacones I Jame Felcano Hernández Unversdad Auónoma Meropolana - Izapalapa Méco, D. F. 5 de agoso de 0 INTRODUCCIÓN. En esa hoja de rabajo vamos a aplcar el conocmeno que hemos consrudo

Más detalles

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX PREDICCIÓN DE VOLILIDD CON LOS ÍNDICES DE VOLILIDD VIX Y VDX El objevo de ese rabajo es esudar la capacdad predcva de los índces de volaldad. Para el perodo 99-0, analzamos daos de los índces amercanos

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS NORMA PARTIULAR 3.2 NORMAS PARA LA ONSTITUIÓN DE PREVISIONES PARA RIESGOS REDITIIOS a. Prevsones para resgos credcos ) Prevsón según caegoría de resgo ) Mono de resgo sujeo a prevsón ) Deduccón de garanías

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

Ejercicios Resueltos de NÚMEROS COMPLEJOS

Ejercicios Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Ejerccos Resueltos de NÚMEROS COMPLEJOS Números Complejos. Formas de epresarlos.- Halla las raíces de los sguentes números: 00 Solucón: ± 00 00 ± 0 ± ±.- Representa

Más detalles

5. Los sistemas de pensiones y el ahorro nacional

5. Los sistemas de pensiones y el ahorro nacional 5. Los ssemas de pensones y el ahorro naconal Uno de los aspecos más mporanes ras la reforma a un ssema de pensones es su mpaco sobre el ahorro naconal dado el vínculo enre ése y el desempeño de la economía.

Más detalles

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana? Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

T8 T9. Capítulo. Dinámica de los sistemas libres de un grado de libertad

T8 T9. Capítulo. Dinámica de los sistemas libres de un grado de libertad Capíulo T8 T9 Dnáca de los sseas lbres de un grado de lberad 9. INTODUCCIÓN A lo largo de ese capíulo, se va a planear la respuesa de los sseas dnácos resolvendo analícaene las ecuacones que aparecen.

Más detalles

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático

Campo eléctrico. Líneas de campo. Teorema de Gauss. El campo de las cargas en reposo. Campo electrostático qco sθ qz Ez= 4 zπε0 2+ R2 = 4πε0 [z2 +R2 ]3/ 2 El campo de las cargas en reposo. Campo electrostátco ntroduccón. Propedades dferencales del campo electrostátco. Propedades ntegrales del campo electromagnétco.

Más detalles

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL EMENINA EN CHILE Evelyn Benvn y Marcela Percará ƒ Esa versón: Marzo 2007 Resumen En ese rabajo hemos aplcado écncas de descomposcón mcroeconomércas con

Más detalles

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales: EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n

Más detalles

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo P S 2015 M C P S 2015 Inroduccón El Premo Salmón es hoy el prncpal reconocmeno enregado a los Fondos Muuos en Chle. Movo de orgullo y cenro de campañas publcaras, ese reconocmeno ha cambado su foco hace

Más detalles

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS ESCUELA DE ECONOMÍA Y ADMINISTRACIÓN Deermnanes de los spreads de asas de los bonos corporavos: revsón de la leraura SEMINARIO PARA

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles