TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas."

Transcripción

1 TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A es semejante a B si existe una matriz cuadrada P invertible tal que A = P 1 BP Propiedades de las matrices semejantes 1 Si A es semejante a B, entonces A = B 2 Si A es semejante a B, A k es semejante a B k 3 Si A es semejante a B y p(t) es un polinomio con coeficientes en R, entonces p(a) es semejante a p(b) 4 Si A es semejante a B y A es regular, entonces B es regular y A 1 es semejante a B 1 2 Autovalores y Autovectores Definición 2 Dada una matriz cuadrada A, decimos que λ K es un autovalor o valor propio de A si X K n, X Θ / AX = λx Al vector X se le llama autovector o vector propio asociado al autovalor λ Definición 3 Se llama espectro de A, y se designa σ(a), al conjunto de todos los autovalores de la matriz A σ(a) {λ K /λ es autovalor de A} Definición 4 (Subespacio propio) Al conjunto de todos los autovectores asociados a un autovalor λ junto con el vector 0 se le suele notar A λ y se le llama subespacio propio asociado al autovalor λ A λ = {X / AX = λx} { 0} 21 Propiedades de los autovalores 1- Dos autovalores distintos } no tiene autovectores comunes λ 1, λ 2 σ(a) A λ 1 λ λ1 A λ2 = { 0} 2 Es equivalente a decir: Un autovector X admite sólo un autovalor El recíproco, en general, no es cierto 2- A y A t tienen los mismos autovalores 3- Si λ es autovalor de A, kλ es un autovalor de ka 4- Si λ es un autovalor de A, λ k es un autovalor de A ki ITI MECÁNICA Curso 2006/07 1 FUNDAMENTOS MATÉMATICOS

2 TEMA 11 F MATEMÁTICOS 5- Si λ es un autovalor de A, y A es regular ( A = 0), 1 λ es autovalor de A 1 6- Autovectores correspondientes a autovalores distintos son linealmente independientes 7- Si λ es autovalor de A, λ k es autovalor de A k 3 Polinomio característico λ K es un autovalor o valor propio de A si X K n, X Θ / AX = λx En este caso AX λx = Θ = (A λi)x = Θ Esta última relación representa un sistema homogéneo Recordemos que para que un sistema homogéneo admita solución distinta de la trivial, debe ocurrir que el determinante de la matriz del sistema sea cero, es decir A λi = 0 Para obtener pues, los autovalores de A, bastará resolver la ecuación A λi = 0, llamada ecuación característica de A a 11 λ a 12 a 1n a 21 a 22 λ a 2n A λi = = 0 a n1 a n2 a nn λ que desarrollando se obtiene el polinomio en λ llamado polinomio característico de A P (λ) = a 0 λ n + a 1 λ n a n 1 λ + a n = 0 Los autovalores de A son, pues, los ceros de su polinomio característico Definición 5 (Multiplicidad algebraica) Si λ 0 es una raíz de multiplicidad α de la ecuación característica de A, se dirá que λ 0 es un autovalor de orden α de A A α se le llama multiplicidad algebraica de λ y se suele notar m a (λ) Se observa fácilmente que: a 0 = ( 1) n a 1 = ( 1) n 1 traza(a) a n = A Teniendo en cuenta las relaciones existentes entre los coeficientes de una ecuación y sus soluciones, se observa que si λ 1, λ 2,, λ n son las raíces del polinomio característico (no necesariamente autovalores de A, pues pudiera darse el caso de que λ i / K) λ 1 + λ λ n = traza(a) λ 1 λ 2 λ n = A Una vez resuelta la ecuación característica y obtenidos por tanto, los autovalores de A, para calcular los autovectores habrá que resolver el sistema (A λ i I)X = Θ para obtener los autovectores correspondientes Nota- De la igualdad λ 1 λ 2 λ n = A, se deduce que si A es una matriz regular, no puede tener ningún autovalor nulo Proposición 6 Si B y A son semejantes, tienen el mismo polinomio característico y, por lo tanto, los mismos autovalores ITI MECÁNICA Curso 2006/07 2 FUNDAMENTOS MATÉMATICOS

3 TEMA 11 F MATEMÁTICOS Cálculo del polinomio característico de una matriz mediante sus menores diagonales Anteriormente, al estudiar el polinomio característico A λi de una matriz, sólo obtuvimos tres de sus coeficientes Intentamos ahora calcular esos coeficientes que restan sin necesidad de desarrollar A λi Definición 7 (Menor diagonal) Se llama menor diagonal de orden p de una matriz a los menores de las submatrices de orden p que están situadas simétricamente respecto de la diagonal; esto es, aquellas que se obtienen tomando los índices de sus filas iguales a los de sus columnas Teorema 1 Se verifica A λi = ( 1) n λ n + ( 1) n 1 Traza(A)λ n 1 + a n 2 λ n a 2 λ 2 + a 1 λ + A [ ( ) ] n donde a h = ( 1) h suma de los menores de orden n h de A h 4 Subespacios invariantes Proposición 8 El subespacio propio asociado a un autovalor λ (A λ ) de una matriz es un subespacio vectorial invariante Definición 9 (Multiplicidad geométrica) Se llama multiplicidad geométrica de λ al número de autovectores linealmente independientes asociados o, lo que es lo mismo, a dim(a λ ) Se suele notar m g (λ) Proposición 10 Sea A M n y λ σ(a) La dimensión del subespacio vectorial propio A λ por dim(a λ ) = dim(n(a λi)) = n rango(a λi) viene dado Proposición 11 Sea A M n y λ σ(a) Si m a (λ) = r entonces la multiplicidad geométrica de λ verifica 1 m a (λ) r 5 Teorema de Cayley-Hamilton Teorema 2 (Teorema de Cayley-Hamilton) Toda matriz cuadrada A sobre un cuerpo K es raíz de su polinomio característico Es decir, si p(λ) = a 0 λ n + a 1 λ n a n es el polinomio característico y Θ n es la matriz nula de orden n, entonces p(a) = a 0 A n + a 1 A n a n I = Θ n ITI MECÁNICA Curso 2006/07 3 FUNDAMENTOS MATÉMATICOS

4 TEMA 11 F MATEMÁTICOS 51 Aplicación al cálculo de A 1 51 Aplicación al cálculo de A 1 Sea A una matriz invertible (es decir, A = 0 ) Teniendo en cuenta que a 0 A n + a 1 A n a n I = Θ n, se obtiene a 0 A n + a 1 A n a n 1 A = a n I Al ser a n = A = 0, I = a 0 A n a 1 A n 1 a 2 A n 2 a n 1 A a n a n a n Multiplicando por A 1 A 1 = a 0 A n 1 a 1 A n 2 a 2 A n 3 a n 1 I a n a n a n a n a n 6 Matrices diagonalizables Definición 12 (Matriz diagonalizable) Sea A M n (K) Diremos que A es diagonalizable sobre K si es semejante a una matriz diagonal Dada una matriz A K n, queremos ver si es semejante a una matriz diagonal, es decir, si P M n tal que P 1 AP = D Supongamos P = X 1 X 2 X n D = D{d 1,, d n } = d 1 d 2 dn Si σ(a) = {λ 1, λ 2,, λ n } y existe una base de A λ formada por autovectores B = { x 1, x 2,, x n }, entonces se verifica que P 1 AP = D{λ 1,, λ n } Recíprocamente, si A es diagonalizable, entonces P M n tal que P 1 AP = D y, por lo tanto, B = { x 1, x 2,, x n }, donde las coordenadas de cada vector x i vienen dadas por las componentes de la columna i de la matriz A, es una base formada por autovectores Así pues, es bastante importante obtener la mencionada base formada por autovectores Es siempre posible encontrar dicha base? En general, la respuesta es NO Teorema 3 La condición necesaria y suficiente para que una matriz sea diagonalizable sobre el cuerpo K es: a) que el polinomio característico se pueda factorizar en K b) que la multiplicidad de cada autovalor λ sea igual a la dimensión del subespacio propio asociado A λ, es decir, que las multiplicidades algebraica y geométrica coincidan m a (λ) = m g (λ) ITI MECÁNICA Curso 2006/07 4 FUNDAMENTOS MATÉMATICOS

5 TEMA 11 F MATEMÁTICOS 7 Forma canónica de Jordan Hasta ahora hemos visto cuándo una matriz es diagonalizable Hemos dado condiciones en las cuales una matriz cuadrada A era semejante a una matriz diagonal Ahora bien, ese resultado no es siempre posible (basta encontrar autovalores múltiples cuya multiplicidad algebraica no coincida con su multiplicidad geométrica, o bien que el polinomio característico no se pueda factorizar en el cuerpo en que estemos trabajando) Ejemplo- La matriz cuadrada de orden n : J (n) λ = λ λ λ λ λ 1 0 λ no es diagonalizable (estas matrices se conocen con el nombre de bloques de Jordan) El problema es que aunque λ tiene multiplicidad algebraica igual a n, no da lugar a n autovectores independientes sino a uno sólo Finalizaremos con el resultado más conocido para matrices no diagonalizables: el teorema de Jordan Este teorema prueba que cualquier matriz cuadrada es semejante a una matriz formada por bloques de Jordan Teorema 4 Sea A una matriz cuadrada Entonces existen r autovalores λ 1, λ 2,, λ r (que pueden ser iguales) y r números naturales m 1, m 2,, m r tales que A es semejante a la matriz diagonal por bloques: J = J (m 1) λ 1 J (m 2) λ 2 J (mr) λ r Esta matriz recibe el nombre de forma canónica de Jordan de la matriz A En ella un mismo autovalor λ aparece en tantos bloques como indica m g (λ) y el número de veces que aparece en la diagonal de J es m a (λ) Si P es la matriz que reduce A a su forma de Jordan, entonces sus m 1 primeras columnas satisfacen: Ax 1 = λ 1 x 1, ie, x 1 es un autovector correspondiente a λ 1 Ax i = λ 1 x i + x i 1 i = 2,, m 1 Los vectores x i (i = 2,, m 1 ) se llaman autovectores generalizados de A, y la sucesión x 1,, x m1 se dice que es una cadena de Jordan correspondiente a λ 1 Naturalmente, cada bloque tiene su cadena correspondiente En el caso de que haya autovalores complejos (simples o múltiples), la forma canónica real de Jordan de la matriz A adopta la forma ITI MECÁNICA Curso 2006/07 5 FUNDAMENTOS MATÉMATICOS

6 TEMA 11 F MATEMÁTICOS P 1 AP = B = D I 2 D I 2 D I 2 D [ ] [ ] a b 1 0 siendo D = e I b a 2 = para λ = a ± ib, pues si λ es un autovalor, 0 1 también lo es su conjugado λ y con la misma multiplicidad Para clarificar los conceptos veamos un ejemplo: Sea A una matriz cuadrada de orden 9 con λ 1 autovalor real simple siendo x 1 su correspondiente autovector, λ 2 autovalor real doble siendo x 2 su autovector y x 3 su autovector generalizado, λ 3 = a + ib autovalor complejo simple y x 4 = u 1 +i v 1 su correspondiente autovector y por último λ 4 = c+id autovalor complejo doble con x 5 = u 2 + i v 2 como autovector y x 6 = u 3 + i v 3 como autovector generalizado: A x 1 = λ 1 x 1 A x 2 = λ 2 x 2 A x 3 = λ 2 x 3 + x 2 { A u1 = a u A x 4 = λ 3 x 4 A( u 1 + i v 1 ) = (a + ib)( u 1 + i v 1 ) 1 b v 1 { A v 1 = b u 1 + a u 1 A u2 = c u A x 5 = λ 4 x 5 A( u 2 + i v 2 ) = (c + id)( u 2 + i v 2 ) 2 d v 2 A v 2 = d u 2 + c u { 2 A u3 = c u A x 6 = λ 4 x 4 + x 5 A( u 3 + i v 3 ) = (c + id)( u 3 + i v 3 ) + ( u 2 + i v 2 ) 3 d v 3 + u 2 A v 3 = d u 3 + c u 3 + v 2 En definitiva, AP=PB siendo P = x 1 x 2 x 3 u 1 v 1 u 2 v 2 u 3 v 3 y B = λ 1 [ λ2 1 λ 2 ] [ a b ] b a [ ] [ ] c d 1 0 d c [ 0 1 ] c d d c 8 Método de Caros para el cálculo de J 1 ō Se calculan los autovalores de A λ 1, λ 2,, λ k con sus multiplicidades correspondientes m 1, m 2,, m k 2 ō Para cada autovalor λ de multiplicidad m se calculan los rangos de las matrices (A λi) p (a lo sumo habría que calcular la potencia (A λi) m rg(a λi) = r 1 x 1 = n r 1 si x 1 < m, seguimos rg(a λi) 2 = r 2 x 2 = r 1 r 2 si x 1 + x 2 < m, seguimos rg(a λi) p = r p x p = r p 1 r p si x 1 + x x p = m, FIN ITI MECÁNICA Curso 2006/07 6 FUNDAMENTOS MATÉMATICOS

7 TEMA 11 F MATEMÁTICOS x 1 + x x p = multiplicidad de λ 3 ō Al valor propio λ le corresponden: x 1 x 2 bloques de Jordan de orden 1 x 2 x 3 bloques de Jordan de orden 2 x p 1 x p bloques de Jordan de orden p 1 x p bloques de Jordan de orden p 9 Cálculo de P Una vez calculada la matriz J por el método de CAROS, procedemos a calcular la matriz P Para ello, llamemos N k,λ = N(A λi) k Tomemos un vector v i N i,λ \ N i 1,λ o lo que es lo mismo, un vector para el cual, según el método de CAROS, exista un bloque de Jordan de orden i Una vez obtenido v i, calculamos: v i 1 v i 2 = (A λi) v i = (A λi) v i 1 v 2 = (A λi) v 3 v 1 = (A λi) v 2 y el vector v 1 resulta ser un autovector de A (o una combinación lineal de ellos) y los vectores { v j } j = 2,, i son sus autovectores generalizados Esta operación se repite para cada bloque de Jordan que nos indique el método de CAROS, obteniendo así m autovectores (propios o generalizados) asociados al autovalor λ Repitiendo el proceso para cada λ llegamos a obtener la matriz P ITI MECÁNICA Curso 2006/07 7 FUNDAMENTOS MATÉMATICOS

8 TEMA 11 F MATEMÁTICOS Ejercicios 1 Calcular los autovalores y subespacios invariantes asociados a las matrices: A = B = Diagonalizar las siguientes matrices, calculando la matriz de paso A = B = Determinar la matriz A = (1ad2be3cf de manera que admita por autovectores a los vectores (1,0,1), (-1,1,0) y (0,1,-1) 4 Sea la matriz A = a b 1 2 p q c 1 r Sabiendo que admite como autovectores (1, 1, 0), ( 1, 0, 2), (0, 1, 1), hallar los autovalores y los elementos de la matriz 5 Sea A = Expresar A 1 en función de I 3 y de A Dada la matriz A = a a) Calcular los valores de a para los que A es diagonalizable b) Para dichos valores de a, calcular los autovalores y los autovectores de A 1 c) Para dichos valores de a, calcular A n 7 Dada la matriz A = 3 1 b 3 0 a 2 0 c a) Calcular A de forma que (2, 0, 1) sea un autovector cuyo autovalor correspondiente es λ = 1 b) Hallar los demás autovalores y autovectores 8 Estudiar para qué valores de los parámetros a y b, la matriz A = b es diagonalizable Calculando: 3 0 a a) Forma canónica de Jordan y matriz de paso para los valores a = 1 y b = 1 b) Forma canónica de Jordan y matriz de paso para a = 1 y b = 10 Calcular en este caso A a) Determinar una matriz A cuadrada de orden tres, sabiendo que tiene por autovalores λ = 1 (doble) y λ = 0 y siendo los autovectores para λ = 1 el (1, 2, 1) y su vector asociado es (0,1,0) y el autovector asociado a λ = 0 es (1,-2,0) b) Dada la matriz A = ( , obtener la forma canónica de Jordan y su matriz de paso 10 Sabiendo que la matriz A = 0 c a 1 0 b es diagonalizable, tiene un autovector de la forma (d, 0, 1) con d > 0, y el autovalor correspondiente a (d, 0, 1) es doble, calcular a, b y c ITI MECÁNICA Curso 2006/07 8 FUNDAMENTOS MATÉMATICOS

9 TEMA 11 F MATEMÁTICOS 11 Estudiar, según los diferentes valores de a y b, la diagonabilidad de la matriz A = 9 a b 12 0 b Obtener la forma de Jordan y la matriz de paso para a = 2 y b = 3 12 Dada la matriz A = 2α α 2α 0 4 α (a) Estudiar para qué valores de α es diagonalizable (b) Calcular la forma canónica de Jordan y la matriz de paso para α = 0 13 Hallar la forma canónica de Jordan de la matriz, calculando la matriz de paso, de las matrices: A = B = Resolver la ecuación en diferencias Z n = Z n Z n 2 con valores iniciales Z 1 = 2 y Z 2 = 1 15 Resolver la ecuación en diferencias dada por x n = 3x n 1 + 4x n 2, con x 1 = 1 y x 2 = 4 16 Obtener la expresión general de la sucesión {X n } dada por la ecuación en diferencias X n = 2 n 1 + 3X n 2, X 1 = 1, X 2 = 2 17 Resolver la ecuación en diferencias D n = 5D n 1 6D n 2, D 1 = 5, D 2 = 19 ITI MECÁNICA Curso 2006/07 9 FUNDAMENTOS MATÉMATICOS

Autovalores y autovectores. Diagonalización y formas canónicas

Autovalores y autovectores. Diagonalización y formas canónicas Capítulo 4 Autovalores y autovectores Diagonalización y formas canónicas Dado un homomorfismo, nos hemos planteado el problema de elegir bases cualesquiera de manera que la matriz del homomorfismo sea

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

λ = es simple se tiene que ( )

λ = es simple se tiene que ( ) Sección 6 Diagonalización 1- (enero 1-LE) Sea 1 1 = 1 1 a) Es diagonalizable la matriz? En caso afirmativo, calcula las matrices P y D tales que 1 P P = D b) Existe algún valor de a para el que ( 3, 6,

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Ejercicios resueltos del capítulo 1

Ejercicios resueltos del capítulo 1 Ejercicios resueltos del capítulo Ejercicios impares resueltos..b Resolver por el método de Gauss el sistema x +x x +x 4 +x = x x +x 4 = x +x +x = x +x x 4 = F, ( ) F 4, () F, ( ) F, () 8 6 8 6 8 7 4 Como

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

ENDOMORFISMOS Y DIAGONALIZACIÓN.

ENDOMORFISMOS Y DIAGONALIZACIÓN. ENDOMORFISMOS Y DIAGONALIZACIÓN. En lo que resta de este tema, nos centraremos en un tipo especial de aplicaciones lineales: los endomorfismos. Definición: Endomorfismo. Se llama endomorfismo a una aplicación

Más detalles

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema 5: Diagonalización de matrices La intención en este tema es dada una matriz cuadrada ver si existe otra matriz semejante a ella que sea diagonal Recordemos (ver Tema : Matrices determinantes y sistemas

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema 5: Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES EJERCICIOS RESUELTOS DE SISTEMAS LINEALES 1. Dado el sistema de ecuaciones lineales: 2x + 3y 3 4x +5y 6 a) Escribir la expresión matricial del sistema. b) Discutir el sistema. c) Resolver el sistema por

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

Lección 1. Algoritmos y conceptos básicos.

Lección 1. Algoritmos y conceptos básicos. Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado 11 de noviembre 009 Ecuaciones de segundo grado con una incógnita método de solución, formula general e incompletas Algebra Ecuaciones de segundo grado con una incógnita Las

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

Seno y coseno de una matriz

Seno y coseno de una matriz Miscelánea Matemática 5 (200 29 40 SMM Seno y coseno de una matriz Rafael Prieto Curiel Instituto Tecnológico Autónomo de México ITAM rafaelprietocuriel@yahoocom Introducción En muchas áreas de las matemáticas

Más detalles

Ecuaciones diferenciales lineales con coeficientes constantes

Ecuaciones diferenciales lineales con coeficientes constantes Tema 4 Ecuaciones diferenciales lineales con coeficientes constantes Una ecuación diferencial lineal de orden n tiene la forma a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = b(x) (41) Vamos

Más detalles

10. 1 Definición de espacio euclídeo.

10. 1 Definición de espacio euclídeo. ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 6 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar

Más detalles

TEMA 4: Espacios y subespacios vectoriales

TEMA 4: Espacios y subespacios vectoriales TEMA 4: Espacios y subespacios vectoriales 1. Espacios vectoriales Sea K un cuerpo. Denominaremos a los elementos de K escalares. Definición 1. Un espacio vectorial sobre K es un conjunto V cuyos elementos

Más detalles

Matemáticas I: Hoja 1

Matemáticas I: Hoja 1 Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para

Más detalles

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j,

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j, Ecuaciones de rectas y planos. Coordenadas en el espacio. Planos coordenados. El vector OP tiene unas coordenadas( x, y, z ) respecto de la base B, que se pueden tomar como coordenadas del punto P respecto

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

Matrices escalonadas y escalonadas reducidas

Matrices escalonadas y escalonadas reducidas Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo

Más detalles

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO 82 Sea T una transformación afín definida por sus ecuaciones: = 2+ 2x y ' = 2+ 2y z' = 2+ 2z a) Clasificar T y hallar sus elementos característicos b)

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 6 de julio de 2016 2 Índice general 1. Álgebra 5 1.1. Año 2000............................. 5 1.2. Año 2001.............................

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Tema 4.- Espacios vectoriales. Transformaciones lineales.

Tema 4.- Espacios vectoriales. Transformaciones lineales. Ingeniería Civil Matemáticas I -3 Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 4- Espacios vectoriales Transformaciones lineales 4- Espacios y subespacios

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian 40 Matemáticas I Parte II Álgebra Lineal 41 Matemáticas I : Álgebra Lineal Tema 4 Espacios vectoriales reales 4.1 Espacios vectoriales Definición 88.- Un espacio vectorial real V es un conjunto de elementos

Más detalles

UNIVERSIDAD CARLOS III DE MADRID

UNIVERSIDAD CARLOS III DE MADRID UNIVERSIDAD CARLOS III DE MADRID Departamento de Economía Tema 1: Matrices y sistemas de ecuaciones lineales Empezaremos por recordar conceptos ya conocidos de álgebra lineal como las matrices, determinantes,

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C..... El espacio vectorial de los vectores Definición. Vectores fijos Dado dos puntos cualesquiera A e del espacio nos

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

PROBLEMAS DE ÁLGEBRA II - 1ER CUATRIMESTRE HTTP://FISICAUNED.WORDPRESS.COM ÍNDICE

PROBLEMAS DE ÁLGEBRA II - 1ER CUATRIMESTRE HTTP://FISICAUNED.WORDPRESS.COM ÍNDICE PROBLEMAS DE ÁLGEBRA II - ER CUATRIMESTRE ÍNDICE Parte. Teoría básica Endomorfismos vectoriales con significado geométrico 3 Diagonalización de matrices 4 Matrices diagonalizables 5 Definiciones que aparecen

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de innovación didáctica Departamento de Matemáticas Universidad de Extremadura Índice Puntos y vectores en En R 3, conviene distinguir

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya

Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya FUNDAMENTOS DEL ÁLGEBRA LINEAL. EJERCICIOS Y CUESTIONES. SOLUCIONES CON MATHEMATICA Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya ISBN: 978-84-606-6054-5 Depósito legal: BI-355-2015

Más detalles

cuadrada de 3 filas y tres columnas cuyo determinante vale 2.

cuadrada de 3 filas y tres columnas cuyo determinante vale 2. PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 6 Sistemas de ecuaciones lineales 61 Sistemas de ecuaciones lineales Se llama ecuación lineal en n incógnitas sobre R a una expresión de la forma a 1 x 1 + a 2 x 2 + + a n x n = b con los a i en R para

Más detalles

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A)

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A) TEMA 3: Matrices y sistemas de ecuaciones lineales Álgebra y estructuras finitas/discretas Grupos A Curso 2007-2008 1 2 1 Anillos y cuerpos Definición 1 Un anillo viene dado por un conjunto R y por dos

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Sistemas Lineales / 8 Contenidos Introducción Métodos directos Gauss Gauss

Más detalles

Diagonalización de Matrices

Diagonalización de Matrices Tema Diagonalización de Matrices Introducción En los dos temas previos de este bloque hemos visto cómo problemas de la realidad son escritos, tratados y resueltos a través de espacios vectoriales y sistemas

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

Luego, en el punto crítico

Luego, en el punto crítico Matemáticas Grado en Química Ejercicios propuestos Tema 5 Problema 1. Obtenga y clasique los puntos críticos de las siguientes funciones: a fx, y = x +y, b fx, y = x y, c fx, y = x 3 + y. Solución del

Más detalles

Curso de Álgebra Lineal

Curso de Álgebra Lineal Curso de Álgebra Lineal 1. NÚMEROS COMPLEJOS 1.1 Definición, origen y operaciones fundamentales con números complejos Definición. Un número complejo, z, es una pareja ordenada (a, b) de números reales

Más detalles

Aplicaciones lineales y matrices.

Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 2.1. Introducción. Supondremos al alumno familiarizado con la idea de matriz o tabla de orden n, m con n, m números naturales que denotan el número de filas y columnas,

Más detalles

5. RECURRENCIAS LINEALES

5. RECURRENCIAS LINEALES . RECURRENCIAS LINEALES.1. Recurrencias lineales homogéneas Definiciones Una relación o fórmula de recurrencia de orden k 1 para una sucesión {a 0,a 1,a,...,a n,...} es una expresión que relaciona cada

Más detalles

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO.

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. ESPACIO AFÍN 1.- CONCEPTO DE ESPACIO AFÍN. 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. 4.- PROBLEMAS DE INCIDENCIA. 5.- POSICIONES RELATIVAS

Más detalles

Formas cuadráticas Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)

Formas cuadráticas Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar) 1. Formas Cuadráticas Formas cuadráticas Notas para los cursos 1 y (J.L. Mancilla Aguilar) Después de las funciones lineales, las formas cuadráticas son las más usuales en las aplicaciones ingenieriles.

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

2 - Matrices y Determinantes

2 - Matrices y Determinantes Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

Complejos, C. Reales, R. Fraccionarios

Complejos, C. Reales, R. Fraccionarios NÚMEROS COMPLEJOS Como ya sabemos, conocemos distintos cuerpos numéricos en matemáticas como por ejemplo el cuerpo de los números racionales, irracionales, enteros, negativos,... Sin embargo, para completar

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

1. NUMEROS COMPLEJOS.

1. NUMEROS COMPLEJOS. Apunte de Números complejos o imaginarios: Representación gráfica. Complejos conjugados y opuestos. Forma trigonométrica, de De Moivre, exponencial. Operaciones. Raíces.Fórmula de Euler. 1. NUMEROS COMPLEJOS.

Más detalles

Resumen de álgebra vectorial y tensorial

Resumen de álgebra vectorial y tensorial Apéndice A Resumen de álgebra vectorial y tensorial Se resumen aquí algunos conceptos y definiciones importantes de vectores y tensores, con pretensión de sencillez y brevedad. En aras de esta sencillez,

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles