Los gases de la combustión

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Los gases de la combustión"

Transcripción

1 Los gases de la combustión El incremento de todo tipo de combustión es un agente contaminante del ambiente con concentraciones siempre mayores de polución. La formación de humos, la lluvia ácida y el aumento del número de alergias son consecuencias directas de este desarrollo. La solución para una producción de energía que no perjudique el medio ambiente debe, por lo tanto, suponer una reducción de las emisiones contaminantes. Los contaminantes en los gases de combustión sólo pueden reducirse eficazmente si los sistemas existentes operan con el máximo rendimiento posible o si se cierran las calderas nocivas. El análisis de los gases de la combustión ofrece un medio para determinar las concentraciones de contaminantes y para ajustar el máximo rendimiento en las instalaciones de calor. 1. Unidades de medición La presencia de contaminantes en los gases de combustión puede detectarse a partir de la concentración de los componentes del gas. Generalmente, se utilizan las siguientes unidades: ppm (partes por millón) Como el tanto por ciento (%) ppm describe una proporción. Por ciento significa un número x de partes de cada cien, mientras que ppm significa un número x de partes en cada millón. Por ejemplo, si en un cilindro de gas hay 250 ppm de monóxido de carbono (CO), entonces, si partimos de un millón de partículas de gas, 250 son de monóxido de carbono. Las otras partículas son de nitrógeno (N2) y de oxígeno (02). La unidad ppm es independiente de la presión y la temperatura, y se utiliza en concentraciones bajas. Si la concentración presente es elevada, se expresa en porcentaje (%). La conversión es la siguiente: ppm = 1 % ppm = 0,1 % Temarios Formativos Profesionales Página 1

2 100 ppm = 0,01 % 10 ppm = 0,001 % 1 ppm = 0,0001 % Unidades de medida ppm Una concentración de oxígeno del 21% es equivalente a una concentración de ppm de O2. mg/nm3 (miligramos por metro cúbico) Con la unidad mg/nm3, el volumen normal (normal metros cúbicos, Nm3) se toma como una variable de referencia y la masa del gas que poluciona se indica en miligramos (mg). Como esta unidad varia con la presión y la temperatura, se toma como referencia el volumen en condiciones normales. Las condiciones normales son como sigue: Temperatura: 0ºC Presión: 1013 mbar (hpa) De todas formas, esta información por sí sola no es suficiente, ya que los volúmenes respectivos en los gases de la combustión varían según la proporción de oxígeno. Por tanto, los valores respectivos medidos deben convertirse a un volumen particular de oxígeno, el contenido de oxígeno de referencia (O2 referencia). Sólo los datos con el mismo contenido en oxígeno de referencia pueden ser comparados. La medida del contenido de oxígeno (O2) en los gases de combustión también es necesaria para convertir ppm en mg/nm3. A continuación se indican las conversiones para monóxido de carbono (CO), óxido de nitrógeno (NOx) y dióxido de azufre (SO2). Temarios Formativos Profesionales Página 2

3 Conversiones a mg/nm3 Los factores en las fórmulas corresponden a la densidad estándar de los gases en mg/m3. mg/kwh (miligramos por kilovatio hora de energía) Los cálculos se han realizado con los datos específicos del combustible con el fin de determinar las concentraciones de gas que polucionan con una unidad relacionada a la energía mg/kwh. Por tanto hay diferentes factores de conversión para cada combustible. Abajo se muestran los factores de conversión de ppm y mg/m3 a unidad relacionada con la energía mg/kwh. Antes de convertir a mg/kwh, los valores medidos en concentraciones de emisión deben primero convertirse en gases de combustión no diluidos (0% de oxígeno de referencia). Los factores de conversión para los combustibles sólidos también dependen de la forma en que estos están disponibles (en una pieza, como gravilla, polvo, fragmento, etc.). Por ello los factores deben chequearse cuidadosamente. Factores de conversión para las unidades relacionadas a la energía Los factores de las fórmulas corresponden a la densidad estándar de los gases en mg/m3. 2. Componentes de los gases de combustión A continuación se listan los principales componentes que intervienen en una combustión: Los componentes de los gases de combustión se listan a continuación ordenados según la concentración en el gas. Temarios Formativos Profesionales Página 3

4 Nitrógeno (N2) El nitrógeno (N2) es el principal componente (79% en vol.) del aire que respiramos. Este gas incoloro, inodoro y sin sabor no interviene en la combustión. Entra en la caldera como un lastre, se calienta y sale por la chimenea. Valores típicos en el aire ambiente: Calderas gasoil/gas: 78 % 80 % Dióxido de carbono (CO2) El dióxido de carbono es un gas incoloro e inodoro con un ligero sabor agrio. Bajo la influencia de la luz solar y el verde de las hojas, la clorofila, las plantas convierten el dióxido de carbono (CO2) en oxígeno (O2). La respiración humana y animal convierte el oxígeno (O2) otra vez en dióxido de carbono (CO2). Esto crea un equilibrio que los productos gaseosos de la combustión distorsionan. Esta distorsión acelera el efecto invernadero. El valor límite de efecto al ser humano es de 5000 ppm. A concentraciones superiores al 15% en volumen ( ppm) en la respiración, se produce una inmediata pérdida de consciencia. Valores típicos en los gases de combustión: Calderas de gasoil: 11 % 14 % Calderas de gas: 5 % 10 % Temarios Formativos Profesionales Página 4

5 Vapor de agua (humedad) El hidrógeno contenido en el combustible se combina con el oxígeno para formar agua (H2O). Este agua sale del combustible y del aire combustionado, dependiendo de la temperatura de los gases de combustión (TH), en forma de humedad del gas de combustión (a una temperatura de los gases de combustión TH elevada) o como condensado (a una baja temperatura de los gases de combustión). Oxígeno (O2) El oxígeno restante no utilizado en la combustión. En el caso de utilizar aire en exceso aparece como componente de los gases de combustión y se utiliza para medir el rendimiento de la combustión. La concentración de O2 Se utiliza para determinar las pérdidas por chimenea y el contenido de dióxido de carbono. Valores típicos en los gases de combustión: Calderas de gasoil: 2% 8% Calderas de gas: 2% 9% Monóxido de carbono (CO) El monóxido de carbono es un gas venenoso al respirar, incoloro, inodoro y es el producto de una combustión incompleta. En concentraciones demasiado altas, no permite que la sangre absorba oxígeno. Si, por ejemplo, el aire de una habitación es de 700 ppm de CO, una persona respirando durante 3 horas moriría. El valor límite del CO en el ambiente es de 50 ppm. Valores típicos en los gases de combustión: Calderas de biomasa 40 ppm 200 ppm Calderas de gasoil: 40 ppm 150 ppm Calderas de gas: 30 ppm 100 ppm Óxidos de nitrógeno (NO y NO2, suman NOX) A altas temperaturas en procesos de combustión, el nitrógeno (N2) presente en el combustible y en el aire de combustión se combina con el oxígeno del aire (O2) y forma el monóxido de nitrógeno (NO). Después de algún tiempo, este gas incoloro se oxida en combinación con el oxígeno (O2) para formar dióxido de nitrógeno (NO2). Temarios Formativos Profesionales Página 5

6 El NO2 es soluble en agua, tóxico si se respira (produce daños irreversibles en el pulmón) y contribuye a la formación del ozono en combinación con la radiación ultravioleta (luz solar). El NO y NO2 en conjunto se llaman óxidos de nitrógeno (NOX). Se utilizan diferentes tecnologías para limpiar los gases de combustión de NOx, por ejemplo el proceso de la Reacción Selectiva Catalítica (Selective Catalytic Reaction (SOR)). Además se han desarrollado medidas especiales (suministro de aire por estadios), para reducir la formación de óxidos nitrógenos durante el proceso de combustión. Valores típicos en los gases de combustión: Calderas de gasoil/gas: 20 ppm 100 ppm Dióxido de azufre (SO2) El dióxido de azufre (SO2) es un gas tóxico incoloro con un olor muy fuerte. Se forma a partir de la oxidación del azufre que está presente en el combustible. El valor límite en el lugar de trabajo es de 5 ppm. Junto con agua o condensados forma el ácido sulfuroso (H2SO3) y el ácido sulfúrico (H2SO4), ambos son muy dañinos por ejemplo en la naturaleza y en edificios (lluvia ácida). Se utilizan filtros/depuradoras para limpiar los gases de combustión de óxidos de azufre. Valores típicos en los gases de combustión: Calderas de gas: 0 ppm Calderas de gasoil: 0 ppm 5 ppm Sulfuro de hidrógeno El sulfuro de hidrógeno es un gas tóxico, incoloro en concentraciones muy bajas (aprox. 2,5 lg/m3) tiene un olor muy fuerte y característico. Es un componente del crudo del petróleo y del gas natural y por tanto está presente en refinerías y plantas de Gas natural pero también se genera durante otros procesos industriales y, como producto de una combustión incompleta, en el catalizador de vehículos de motor. El H2S se elimina de los gases de escape por conversión a SO2 a través de procesos de absorción o, en grandes cantidades, con una reacción de sulfuro elemental (proceso Claus) Temarios Formativos Profesionales Página 6

7 Hidrocarburos inquemados (CxHy o HC) Los hidrocarburos son un amplio grupo de compuestos químicos compuestos a partir de enlaces de hidrógeno y carbono. Los HC son la base de la química orgánica; en la naturaleza se encuentran en el crudo de petróleo, gas natural y carbón. Las emisiones tienen lugar durante la producción de productos hidrocarbonados (ej. En refinerías) así como durante su uso y quemado. Otros ejemplos son disolventes, plásticos, barnices, combustibles de vehículos etc. Las fuentes de emisión de HC también se forman debido a un proceso de combustión incompleta. Las emisiones de hidrocarburos también contribuyen al efecto invernadero. Los hidrocarburos incluyen miles de componentes, metano (CH4), propano (C3H8), butano (C4H10), benzeno (C6H6), acetileno (C2H2), etc y también componentes cancerígenos como el benzopireno. La cantidad total de hidrocarburos volátiles en un gas de combustión normalmente se describe como hidrocarburo total. Normalmente en el control de emisiones se especifica y mide el valor del hidrocarburo total. Valores típicos en los gases de combustión: Calderas de gasoil: < 50 ppm Hollín El hollín es carbono puro (C) resultante de una combustión incompleta. Valor típico en los gases de combustión: Calderas de gasoil: Número de opacidad debe ser inferior o igual a 1 en la escala de Bacharach Calderas de biomasa: Número de opacidad debe ser inferior o igual a 2 en la escala de Bacharach Partículas sólidas Las partículas sólidas (polvo) es el nombre que se da a pequeñas partículas sólidas distribuidas en el aire. Esto puede ocurrir en cualquier forma y densidad. Se forman a partir de las cenizas y de los minerales que componen los combustibles sólidos. Temarios Formativos Profesionales Página 7

8 Composición del combustible LOS GASES DE LA COMBUSTION El combustible está compuesto básicamente por carbono (C) e hidrógeno (H2). Cuando estas sustancias se queman con aire, se consume oxígeno (O2). Este proceso se llama oxidación. Los elementos de la combustión del aire y del combustible forman nuevos enlaces formándose nuevos compuestos. 3. Parámetros medidos directamente por un Analizador de los Productos de la Combustión Concentración de los gases medidos Según el tipo de analizador y su configuración mediremos las concentraciones de diferentes tipos de gases. Un gas que es obligado medir en un analizador de los Productos de la combustión es el Oxígeno (O2), ya que a partir de él se calcularan muchos otros parámetros de relevante importancia. Temperatura ambiente (TA) La temperatura ambiente se mide de forma distinta dependiendo del sistema de la caldera: - Calderas de tiro natural: La temperatura se mide en el ambiente de la sala en la cual se encuentra la caldera. - Calderas de tiro forzado: La temperatura se mide en la entrada de aire situada en el conducto de salida de los productos de la combustión, justo cuando el aire se ha calentado con el calor desprendido por los productos de la combustión, Temarios Formativos Profesionales Página 8

9 Temperatura de gases de combustión (TH) La temperatura de los gases de combustión se mide en el lugar más caliente de la corriente de los gases, justo en el centro de la salida de los productos de la combustión. En este punto coincide que la temperatura y la concentración de dióxido de carbono (CO2) tienen su concentración máxima y el contenido de oxígeno (O2) su concentración mínima. Tiro En calderas de tiro natural, el tiro es la condición básica para que los gases de combustión salgan por la chimenea. Debido a que la densidad de los gases residuales calientes es menor que la del aire frío externo, en la chimenea se crea un vacío parcial. Esto se conoce como tiro. El tiro succiona el aire de la combustión y supera cualquier resistencia de la caldera o del tubo de gas. En calderas presurizadas, el ratio de presión en la chimenea puede despreciarse ya que en este caso el tiro forzado crea la presión necesaria para eliminar los gases residuales. En instalaciones de este tipo pueden utilizarse chimeneas con un diámetro de tubería menor. Valor típico del tiro de chimenea: Quemador de gasoil o caldera atmosférica de gas: presión negativa entre 0,03 y 0,4 hpa (mbar) 4. Parámetros calculados por un Analizador de los Productos de la Combustión Pérdidas por chimenea (qa) Las perdidas por chimenea son la diferencia entre el nivel de calor del gas de salida y el nivel de calor del aire ambiente en relación con el valor del poder calorífico inferior del fuel. Después de determinar el contenido en oxígeno y la diferencia entre la temperatura ambiente y la de los gases de la combustión, se pueden calcular los factores específicos del combustible para el cálculo de las pérdidas por chimenea. En el lugar del contenido de oxígeno, se puede utilizar la concentración de dióxido de carbono (CO2) para su cálculo. La temperatura de los gases de la combustión (TH) y el Temarios Formativos Profesionales Página 9

10 contenido de oxígeno o el contenido de dióxido de carbono (CO2) deben medirse simultáneamente en un único punto. El ahorro conseguido mediante un ajuste óptimo del sistema de calefacción basado en los cálculos de las pérdidas por chimeneas es obvio: pérdidas por chimeneas del 1% = consumo de combustible adicional del 1% ó Pérdida energética / año = Pérdidas por chimeneas x consumo de combustible/año El siguiente ejemplo ayudará a clarificar esto: Pérdidas por chimenea calculadas = 10 % Consumo de combustible / año = 3000 L fueloil ligero La pérdida energética corresponde aproximadamente a 300 L de fueloil ligero / año. Las fórmulas para el cálculo del exceso de aire son las siguientes, en función de los valores que se dispongan: Fórmula de Siegert, se utiliza cuando los factores específicos del combustible, A2 o B son cero. Temarios Formativos Profesionales Página 10

11 Concentración de dióxido de carbono (CO2) El contenido de dióxido de carbono de los gases de la combustión da una indicación del rendimiento de la caldera. Si la proporción de CO2 es tan elevada como sea posible con un ligero exceso de aire (combustión completa), las pérdidas por chimenea son menores. Para cada combustible hay un contenido en los gases de CO2 máximo (CO2 máx) determinado por la composición química del combustible y que en la práctica no es posible alcanzar. CO2 máx valores para distintos combustibles: Para calcular los valores de CO2 utilizan los valores de CO2 máx y el contenido de oxígeno de los gases de combustión. En el caso de no conocer la composición de un combustible, la concentración de CO2 debe medirse. Exceso de aire λ El oxígeno necesario para la combustión se suministra a la caldera a través del aire ambiente. Para conseguir una combustión completa, la combustión necesita disponer de exceso de aire respecto al teóricamente necesario. El ratio del exceso de aire de combustión para el aire teóricamente necesario se llama exceso de aire λ (Lambda). La proporción de aire se determina a partir de la concentración de CO, CO2 y O2. Estas relaciones se muestran en el diagrama de combustión. Durante la combustión, el nivel de CO2 se relaciona con un nivel de CO (con defecto de aire/λ<1) o de O2 (con exceso de aire/λ>1) Dado que el valor de CO2 presenta un máximo, no está claro en sí mismo, de modo que resulta necesaria una medición de CO o de O2. En los casos en los que se opere con exceso de aire (la manera más usual de operar), es preferible la determinación del O2. Existe un diagrama específico para cada combustible y un valor específico para el CO2 máx. Temarios Formativos Profesionales Página 11

12 Diagrama de combustión: Diagrama de la combustión Fórmulas para el cálculo del exceso de aire: Valores típicos: Calderas de gas de tiro natural: 1,5 3 Calderas de gas de tiro forzado: 1,3 2 Rendimiento Se calcula a partir de las partir de las pérdidas por chimenea (qa), las pérdidas por inquemados (qi) y las pérdidas por radiación (qr), de acuerdo con la siguiente fórmula: REN= 100 qa qi qr Temarios Formativos Profesionales Página 12

13 CO-Corregido Medición de CO exento de aire y vapor de agua. Es el valor de CO establecido por la normativa UNE Nota: CO corregido = CO no diluido Temperatura del punto de rocío El punto de rocío de un gas es la temperatura a la que el vapor de agua contenido en el gas cambia al estado líquido. Este cambio se denomina condensación y el líquido formado es el condensado. Por debajo de la temperatura del punto de rocío la humedad está presente como líquido y por encima del punto de rocío como gas. Un ejemplo es la formación y desaparición de la niebla o rocío dependiendo de la temperatura. La temperatura del punto de rocío se determina a partir del grado de humedad: el punto de rocío del aire con un grado de humedad del 30% es de aproximadamente 70 C, mientras que el aire seco con un grado de humedad de tan sólo el 5% tiene un punto de rocío de 35 C. Grado de humedad del aire dependiendo del punto de rocío (presión del aire: 1013 mbar) Temarios Formativos Profesionales Página 13

NORMATIVA INFORMATIVA RESPETO LOS ANÁLISIS DE COMBUSTIÓN

NORMATIVA INFORMATIVA RESPETO LOS ANÁLISIS DE COMBUSTIÓN RMATIVA INFORMATIVA RESPETO LOS ANÁLISIS DE COMBUSTIÓN Tipo A Tipo B Tipo B BS Tipo C Tipos de aparatos de gas Circuito abierto y evacuación no conducida Circuito abierto y evacuación conducida Tiro natural

Más detalles

1/PROTEGEMOS EL MEDIO AMBIENTE

1/PROTEGEMOS EL MEDIO AMBIENTE UNIDAD DIDÁCTICA DE MEDIO AMBIENTE Con la colaboración de: 1/PROTEGEMOS EL MEDIO AMBIENTE SOSTENIBILIDAD Seguro que en la tele o en el cole has oído hablar más de una vez de sostenibilidad o desarrollo

Más detalles

1. MÉTODOS DE PREVENCIÓN.

1. MÉTODOS DE PREVENCIÓN. 1. MÉTODOS DE PREVENCIÓN. Con respecto a las medidas a tomar para evitar la acidificación de las aguas, la solución a largo plazo es la reducción de las emisiones. Con respecto las medidas a corto plazo

Más detalles

Análisis de gases de combustión en la Industria

Análisis de gases de combustión en la Industria Análisis de gases de combustión en la Industria Guía práctica para Medir Emisiones y Procesos C O 2 CO NO x qa Eta CO 2 P m/s m 3 /h SO 2 t/a 2. Edición Índice 1. Prólogo 5 2. El proceso de combustión

Más detalles

PROBLEMAS DE INGENIERÍA TÉRMICA

PROBLEMAS DE INGENIERÍA TÉRMICA PROBLEMAS DE INGENIERÍA TÉRMICA Pedro Fernández Díez Carlos Renedo Estébanez Pedro R. FernándezGarcía PROBLEMAS SOBRE COMBUSTIÓN Combustión.- En los cálculos estequiométricos hay que distinguir continuamente

Más detalles

AHORRO Y EFICIENCIA ENERGETICA EN INSTALACIONES TERMICAS DEL SECTOR HOTELERO

AHORRO Y EFICIENCIA ENERGETICA EN INSTALACIONES TERMICAS DEL SECTOR HOTELERO AHORRO Y EFICIENCIA ENERGETICA EN INSTALACIONES TERMICAS DEL SECTOR HOTELERO Tipos de Calderas de Agua Caliente, según Directiva 92/42/CEE Resumen de características Caldera Estándar La temperatura en

Más detalles

Quemadores. Ahorro energético con seguridad. Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico

Quemadores. Ahorro energético con seguridad. Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico Quemadores Ahorro energético con seguridad Combustión Quemadores digitales Emisiones de NOx Variación de velocidad Control de O2 Caso práctico 1 Combustión Combustión eficiente y segura 2 COMBUSTIÓN: Equilibrio

Más detalles

actualizar la regulación en materia de emisión de contaminantes atmosféricos provenientes de calderas y hornos de tipo indirecto.

actualizar la regulación en materia de emisión de contaminantes atmosféricos provenientes de calderas y hornos de tipo indirecto. DRS-IC- 004-2012 DECRETO EJECUTIVO Nº 37301-S-MTSS- MINAET LA PRESIDENTA DE LA REPÚBLICA LA MINISTRA DE SALUD, LA MINISTRA DE TRABAJO Y SEGURIDAD SOCIAL Y EL MINISTRO DE AMBIENTE, ENERGÍA Y TELECOMUNICACIONES

Más detalles

NORMAS DE LA CALIDAD DEL AIRE

NORMAS DE LA CALIDAD DEL AIRE CAPÍTULO 6 NORMAS DE LA CALIDAD DEL AIRE Fuente: National Geographic - Noviembre 2000 INTRODUCCIÓN La exigencia de un aire limpio y puro proviene, en principio, del público en general ante su creciente

Más detalles

Estequiometría. En química, la estequiometría (del griego "στοιχειον"

Estequiometría. En química, la estequiometría (del griego στοιχειον Estequiometría En química, la estequiometría (del griego "στοιχειον" = stoicheion (elemento) y "μετρον"=métron, (medida) es el cálculo de las relaciones cuantitativas entre reactivos y productos en el

Más detalles

ANEXO 9: ESTUDIO DE LA INCENERACIÓN

ANEXO 9: ESTUDIO DE LA INCENERACIÓN ANEXO 9: ESTUDIO DE LA INCENERACIÓN 108 1.8. ESTUDIO Y RESULTADOS DE LA INCINERACIÓN DE LOS RESIDUOS. 1.8.1. Cantidad teórica de aire en combustión neutra Si tenemos en cuenta que los principales elementos

Más detalles

9. PROCESO DE COMBUSTIÓN

9. PROCESO DE COMBUSTIÓN 9. PROCESO DE COMBUSTIÓN La gran mayoría de los procesos de generación de energía, implica la utilización de algunas fuentes de energía, las cuales al combustionarse producen reacciones químicas como es

Más detalles

FEROX BUNKER Reporte técnico No. 59 Fecha: 10 de noviembre 2008 Referencia: Solicitud de campo DEFINICIONES

FEROX BUNKER Reporte técnico No. 59 Fecha: 10 de noviembre 2008 Referencia: Solicitud de campo DEFINICIONES FEROX BUNKER Reporte técnico No. 59 Fecha: 10 de noviembre 2008 Referencia: Solicitud de campo DEFINICIONES Los combustibles de bunker se refieren a cualquier variedad de aceites combustibles o combustible

Más detalles

QUÍMICA 2º Bachillerato Ejercicios: Cálculos en Química

QUÍMICA 2º Bachillerato Ejercicios: Cálculos en Química 1(8) Ejercicio nº 1 Se dispone de tres recipientes que contienen 1 litro de metano gas, dos litros de nitrógeno gas y 1,5 litros de ozono gas, respectivamente, en las mismas condiciones de presión y temperatura.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 15 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 6, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 6, Opción A Reserva 3,

Más detalles

CONCEPTOS BÁSICOS EN QUÍMICA

CONCEPTOS BÁSICOS EN QUÍMICA CONCEPTOS BÁSICOS EN QUÍMICA MOLES, ÁTOMOS Y MOLÉCULAS 1.-/ Calcule la masa molar de las siguientes sustancias: a) Disulfuro de carbono. b) Óxido de nitrógeno (III). c) Hidróxido de berilio. d) Carbonato

Más detalles

TRANSFORMACIONES Y REACCIONES QUÍMICAS

TRANSFORMACIONES Y REACCIONES QUÍMICAS TRANSFORMACIONES Y REACCIONES QUÍMICAS 1. TRANSFORMACIONES FÍSICAS Y QUÍMICAS a. Transformaciones físicas: Cambios que sufre la materia y que no alteran su naturaleza. (Ej.: el agua al congelarse) b. Transformaciones

Más detalles

(g) CO 2. (g) + 2 H 2. Procediendo en la misma forma con la segunda ecuación, obtenemos: (g) 3 CO 2. (g) + 4 H 2

(g) CO 2. (g) + 2 H 2. Procediendo en la misma forma con la segunda ecuación, obtenemos: (g) 3 CO 2. (g) + 4 H 2 Para ajustar el oxígeno, escribiremos otro dos delante de la molécula de oxígeno gaseoso en los reactivos. De este modo, la ecuación ajustada del primer proceso es: CH (g) + 2 O 2 (g) CO 2 (g) + 2 H 2

Más detalles

1. COMBUSTIÓN Y COMBUSTIBLES

1. COMBUSTIÓN Y COMBUSTIBLES 1. COMBUSTIÓN Y COMBUSTIBLES 1.1. La combustión. Tipos de combustión La combustión es una reacción química entre dos sustancias, combustible y comburente, en la que se libera energía, en forma de calor

Más detalles

BALANCE TÉRMICO EN CALDERAS

BALANCE TÉRMICO EN CALDERAS BALANCE TÉRMICO EN CALDERAS 1. Definición: Es el registro de la distribución de energía en un equipo. Puede registrarse en forma de tablas o gráficos, lo que permite una mejor visualización de la situación.

Más detalles

Unidades de masa atómica

Unidades de masa atómica Unidades de masa atómica La estructura química y las fórmulas químicas sirven para estudiar las relaciones de masa de átomos y moléculas. Estas relaciones ayudan a explicar la composición de los compuestos

Más detalles

10. CONTAMINACIÓN ATMOSFÉRICA 2 10.1. Emisiones 2 10.1.1.Actividades industriales 2 10.1.2.Tránsito de vehículos 3 10.1.3.Las fuentes domésticas y de

10. CONTAMINACIÓN ATMOSFÉRICA 2 10.1. Emisiones 2 10.1.1.Actividades industriales 2 10.1.2.Tránsito de vehículos 3 10.1.3.Las fuentes domésticas y de 10. CONTAMINACIÓN ATMOSFÉRICA 2 10.1. Emisiones 2 10.1.1.Actividades industriales 2 10.1.2.Tránsito de vehículos 3 10.1.3.Las fuentes domésticas y de servicios 4 10.2. Valoración global de la calidad atmosférica

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa

JMLC - Chena IES Aguilar y Cano - Estepa Termodinámica es la parte de la física que estudia los intercambios de calor y trabajo que acompañan a los procesos fisicoquímicos. Si estos son reacciones químicas, la parte de ciencia que los estudia

Más detalles

Tema 13: La materia Ciencias Naturales 1º ESO página 1. Materia es todo aquello que posee masa y ocupa un volumen. Está formada de partículas muy

Tema 13: La materia Ciencias Naturales 1º ESO página 1. Materia es todo aquello que posee masa y ocupa un volumen. Está formada de partículas muy Tema 13: La materia Ciencias Naturales 1º ESO página 1 TEMA 13: LA MATERIA, BASE DEL UNIVERSO 1. Qué es materia? Materia es todo aquello que posee masa y ocupa un volumen. Está formada de partículas muy

Más detalles

VALORIZACIÓN ENERGÉTICA del RSU. Tecnología de gasificación

VALORIZACIÓN ENERGÉTICA del RSU. Tecnología de gasificación VALORIZACIÓN ENERGÉTICA del RSU Tecnología de gasificación Contenido 1. Los Residuos Sólidos Urbanos (RSU) 2. Gestión integral de los RSU 3. Valorización energética. Gasificación - Ventajas de la Gasificación

Más detalles

6. Evapotranspiración (árboles y plantas) y transpiración (animales).

6. Evapotranspiración (árboles y plantas) y transpiración (animales). Resumen Prueba Global Química Agua: 1. Ciclo del agua: 1. Evaporación. 2. Condensación 3. Precipitación: sólida liquida 4. infiltración 5. Fusión 6. Evapotranspiración (árboles y plantas) y transpiración

Más detalles

Es una roca combustible sólido, con un alto contenido en carbono.

Es una roca combustible sólido, con un alto contenido en carbono. COMBUSTIBLES FOSILES Proceden de restos vegetales y otros organismos vivos (como plancton) que hace millones de años fueron sepultados por efecto de grandes cataclismos o fenómenos naturales y por la acción

Más detalles

Alternativas de Ahorro en Plantas Térmicas.

Alternativas de Ahorro en Plantas Térmicas. Alternativas de Ahorro en Plantas Térmicas. 1. Introducción El objetivo de este artículo es llamar la atención sobre las interesantes alternativas existentes, para reducir los costos operacionales en Plantas

Más detalles

ESTABLECE FUENTES ESTACIONARIAS A LAS QUE LES SON APLICABLES LAS NORMAS DE EMISIÓN DE MONÓXIDO DE CARBONO CO) Y DIÓXIDO DE AZUFRE (SO2)

ESTABLECE FUENTES ESTACIONARIAS A LAS QUE LES SON APLICABLES LAS NORMAS DE EMISIÓN DE MONÓXIDO DE CARBONO CO) Y DIÓXIDO DE AZUFRE (SO2) Resolución Exenta 2.063 SEREMI Región Metrpolitana, Ministerio Salud Promulgación: 26.01.2005 Publicación Diario Oficial: 02.02.2005 Original: ESTABLECE FUENTES ESTACIONARIAS A LAS QUE LES SON APLICABLES

Más detalles

GUÍA N 1: Unidades de medida y Leyes Ponderales. 1.- Convierta las siguientes unidades de temperatura en C, F y K según corresponda:

GUÍA N 1: Unidades de medida y Leyes Ponderales. 1.- Convierta las siguientes unidades de temperatura en C, F y K según corresponda: 1 PRIMERA PARTE: Ejercicios de desarrollo. GUÍA N 1: Unidades de medida y Leyes Ponderales. Considerando las siguientes tablas de conversión de unidades del SISTEMA INTERNACIONAL DE UNIDADES (S.I.), desarrolla

Más detalles

4. TEORÍA ATÓMICO-MOLECULAR

4. TEORÍA ATÓMICO-MOLECULAR 4. TEORÍA ATÓMICO-MOLECULAR Sustancias que reaccionan 1. Explica qué son los procesos o cambios físicos y pon ejemplos de ellos. Los procesos o cambios físicos no producen modificaciones en la naturaleza

Más detalles

MANUAL DE INSTALACIONES, OPERACIÓN Y MANTENIMIENTO DE SILENCIONADORES Y PURIFICADORES CATALITICOS MINE-X

MANUAL DE INSTALACIONES, OPERACIÓN Y MANTENIMIENTO DE SILENCIONADORES Y PURIFICADORES CATALITICOS MINE-X MANUAL DE INSTALACIONES, OPERACIÓN Y MANTENIMIENTO DE SILENCIONADORES Y PURIFICADORES CATALITICOS MINE-X INDICE 1.- PRODUCTOS 2.- INSTALACION CODIGO: DP O DPQ CODIGO: IS O IT CODIGO: MD, MV, MA O MT CODIGO

Más detalles

H2SO4 (aq)+ NaOH (aq) Na2SO4 (aq)+ H2O (líq)

H2SO4 (aq)+ NaOH (aq) Na2SO4 (aq)+ H2O (líq) 1. Calcular la pureza (en %) de una muestra de carburo de calcio (CaC 2) sabiendo que al tratar 2,056 g de éste con agua se obtiene hidróxido de calcio y 656 ml de acetileno (C2H2) medidos a 22º C y 730

Más detalles

RENDIMIENTO DE UNA CALDERA DE COMBUSTIBLE LÍQUIDO O GASEOSO.

RENDIMIENTO DE UNA CALDERA DE COMBUSTIBLE LÍQUIDO O GASEOSO. RENDIMIENTO DE UNA CALDERA DE COMBUSTIBLE LÍQUIDO O GASEOSO. Una caldera es un equipo que calienta agua, por medio de un combustible o de energía eléctrica, siendo luego distribuida por medio de unos emisores

Más detalles

Tema 3: Ecuaciones químicas y concentraciones

Tema 3: Ecuaciones químicas y concentraciones Tema 3: Ecuaciones químicas y concentraciones Definición de disolución. Clases de disoluciones. Formas de expresar la concentración de una disolución. Proceso de dilución. Solubilidad. Diagramas de fases

Más detalles

, que no está formado por moléculas, sino por una red cristalina en la que hay una proporción de dos átomos de flúor por cada átomo de calcio.

, que no está formado por moléculas, sino por una red cristalina en la que hay una proporción de dos átomos de flúor por cada átomo de calcio. 7 El mol y las reacciones químicas Contenidos Índice 1 2 3 4 Masa molecular y composición centesimal El mol y el número de Avogadro Las reacciones químicas Tipos de reacciones químicas 5 Estequiometría

Más detalles

Las ecuaciones químicas

Las ecuaciones químicas Las reacciones químicas se representan escribiendo las fórmulas de los reactivos en el primer miembro de una ecuación y las de los productos en el segundo. El signo igual se sustituye por una flecha (

Más detalles

Butano(g) -124,7 Dióxido de carbono(g) -393 Agua(l) -286

Butano(g) -124,7 Dióxido de carbono(g) -393 Agua(l) -286 1.- Dada la reacción de combustión del butano: Butano(g) + oxígeno (g) ======== dióxido de carbono(gas) + agua (gas) Sabiendo que es una reacción exotérmica, indica si a la misma temperatura, el calor

Más detalles

EJERCICIOS DE TERMODINÁMICA

EJERCICIOS DE TERMODINÁMICA EJERCICIOS DE TERMODINÁMICA. La descomposición del tetraóxido de nitrógeno ( N O 4 NO4( NO( ocurre espontáneamente a temperaturas altas. Los datos termodinámicos a 98ºK se incluyen en la tabla adjunta.

Más detalles

El Pellet como combustible para calderas y estufas

El Pellet como combustible para calderas y estufas El Pellet como combustible para calderas y estufas El pellet es un tipo de combustible que se presenta en forma de pequeños cilindros de serrín comprimido a alta temperatura, proveniente de astillas de

Más detalles

La Tabla Periódica. Elemento Configuración Grupo Propiedades

La Tabla Periódica. Elemento Configuración Grupo Propiedades La Tabla Periódica El trabajo de dos científicos Meyer y Medeleiev, condujo a la organización de los elementos químicos en grupos y periodos determinados, según sus propiedades físicas y químicas. Esta

Más detalles

NORMA EURO 5. Generalidades

NORMA EURO 5. Generalidades NORMA EURO 5 Generalidades Una norma europea sobre emisiones es un conjunto de requisitos que regulan los límites aceptables para las emisiones de gases de combustión de los vehículos nuevos vendidos en

Más detalles

1.- Se disuelven 180 gramos de NaOH en 400 gramos de agua, resultando un volumen de 432,836 ml. Determinar:

1.- Se disuelven 180 gramos de NaOH en 400 gramos de agua, resultando un volumen de 432,836 ml. Determinar: 1.- Se disuelven 180 gramos de NaOH en 400 gramos de agua, resultando un volumen de 432,836 ml. Determinar: a. La densidad de la disolución b. La concentración de NaOH en gramos por litro c. La concentración

Más detalles

Ley de conservación de la masa (Ley de Lavoisier) La suma de las masas de los reactivos es igual a la suma de las masas de los productos de la

Ley de conservación de la masa (Ley de Lavoisier) La suma de las masas de los reactivos es igual a la suma de las masas de los productos de la Prof.- Juan Sanmartín 4º E.S.O ESO 1 3 Ley de conservación de la masa (Ley de Lavoisier) La suma de las masas de los reactivos es igual a la suma de las masas de los productos de la reacción, es decir,

Más detalles

Fundamentos de Química 1er Curso de los Grados en Ingeniería de los Recursos Energéticos y de los Recursos Mineros 1

Fundamentos de Química 1er Curso de los Grados en Ingeniería de los Recursos Energéticos y de los Recursos Mineros 1 Departamento de Ingeniería Química y Química Inorgánica Universidad de Cantabria (SPAIN) Fundamentos de Química 1er Curso de los Grados en Ingeniería de los Recursos Energéticos y de los Recursos Mineros

Más detalles

TIPOS DE REACCIONES QUIMICAS

TIPOS DE REACCIONES QUIMICAS Liceo Polivalente Juan Antonio Ríos Quinta Normal Unidad temática: Disoluciones Químicas. GUÍA DE APRENDIZAJE Nº 6 2º MEDIO SOLUCIONES 2ª parte Objetivo General:Conocer conceptos de las disoluciones en

Más detalles

6. Refino y obtención de productos 1/6

6. Refino y obtención de productos 1/6 6. Refino y obtención de productos 1/6 El petróleo, tal como se extrae del yacimiento, no tiene aplicación práctica alguna. Por ello, se hace necesario separarlo en diferentes fracciones que sí son de

Más detalles

Reacción de Combustión. Gerard Soler, Sergi Fayos, Alvar Acosta, Gisela Pereda, Claudia Comas

Reacción de Combustión. Gerard Soler, Sergi Fayos, Alvar Acosta, Gisela Pereda, Claudia Comas Reacción de Combustión Gerard Soler, Sergi Fayos, Alvar Acosta, Gisela Pereda, Claudia Comas Reactivos El combustible es el material que se oxida a partir de la reacción. Los combustibles son todas las

Más detalles

Sistemas anticontaminantes en vehículos turismos

Sistemas anticontaminantes en vehículos turismos Sistemas anticontaminantes en vehículos turismos Manuel Quiles Gómez 1 Evolución de los límites de emisiones 2 1 Emisiones globales de CO 2 3 Fuentes de contaminación en el vehículo Gases de evaporación

Más detalles

Emisión de Gases Efecto Invernadero

Emisión de Gases Efecto Invernadero Objetivo La contaminación atmosférica es un problema tanto local como global provocado por la emisión de determinadas sustancias que, bien por sí solas, bien por las resultantes de sus reacciones químicas,

Más detalles

De qué se Compone la Materia?

De qué se Compone la Materia? 8vo Básico> Ciencias Naturales Composición de la materia De qué se Compone la Materia? Observa la siguiente situación y responde las preguntas propuestas: La profesora comienza su clase y pregunta: Profesora:

Más detalles

QUÍMICA DEL CARBONO Principales Tipos de Reacciones Orgánicas

QUÍMICA DEL CARBONO Principales Tipos de Reacciones Orgánicas 1/5 DEL ARBN Para realizar un estudio completo de los compuestos de carbono, es necesario también conocer las propiedades químicas de los mismos, es decir, su reactividad. Una parte muy importante de la

Más detalles

IT-ATM-08.3. Métodos de medida no normalizados Medida de gases de combustión mediante células electroquímicas

IT-ATM-08.3. Métodos de medida no normalizados Medida de gases de combustión mediante células electroquímicas IT-ATM-08.3 Métodos de medida no normalizados Medida de gases de combustión mediante células electroquímicas ÍNDICE 1. OBJETO. 2. ALCANCE Y ÁMBITO DE APLICACIÓN. 3. DEFINICIONES. 4. EQUIPOS. 4.1. EQUIPOS

Más detalles

Es toda la materia orgánica procedente del reino animal o vegetal obtenida de manera natural o procedente de las transformaciones vegetales.

Es toda la materia orgánica procedente del reino animal o vegetal obtenida de manera natural o procedente de las transformaciones vegetales. BIOMASA Definición:... 2 Tipos de biomasa:... 2 Biomasa natural:... 2 Biomasa residual:... 2 Biomasa producida:... 2 Transformación de la biomasa en energía:... 2 Procesos termoquímicos (biomasa seca)....

Más detalles

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1]

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1] TEMA 4: BALANCES DE ENERGÍA IngQui-4 [1] OBJETIVOS! Aplicar la ecuación de conservación al análisis de la energía involucrada en un sistema.! Recordar las componentes de la energía (cinética, potencial

Más detalles

ANEXO 8.- FACTORES DE EMISIÓN DE CO 2 Y PCI DE LOS COMBUSTIBLES

ANEXO 8.- FACTORES DE EMISIÓN DE CO 2 Y PCI DE LOS COMBUSTIBLES España, Informe Inventarios GEI 1990-2006 (2008). A8.1 ANEXO 8.- FACTORES DE EMISIÓN DE CO 2 Y DE LOS COMBUSTIBLES En este anexo se presenta la información, por defecto, que sobre factores de emisión de

Más detalles

de una reacción n en la cual, tanto reactivos como productos están n en condiciones estándar (p = 1 atm; ; T = 298 K = 25 ºC;

de una reacción n en la cual, tanto reactivos como productos están n en condiciones estándar (p = 1 atm; ; T = 298 K = 25 ºC; Entalpía a estándar de la reacción Es el incremento entálpico de una reacción n en la cual, tanto reactivos como productos están n en condiciones estándar (p = 1 atm; ; T = 298 K = 25 ºC; conc.. = 1 M).

Más detalles

TENEMOS EL PLACER DE PRESENTAR NUESTRO SISTEMA DE CONTROL DE RELACION AIRE/COMBUSTIBLE ControLinks HONEYWELL

TENEMOS EL PLACER DE PRESENTAR NUESTRO SISTEMA DE CONTROL DE RELACION AIRE/COMBUSTIBLE ControLinks HONEYWELL TENEMOS EL PLACER DE PRESENTAR NUESTRO SISTEMA DE CONTROL DE RELACION AIRE/COMBUSTIBLE ControLinks HONEYWELL Tradicionalmente los quemadores usados en calderas industriales y comerciales, y calentadores

Más detalles

TEMA 5: RECURSOS NATURALES

TEMA 5: RECURSOS NATURALES TEMA 5: RECURSOS NATURALES ÍNDICE 1. DEFINICIÓN RECURSO NATURAL Qué es un recurso natural? De dónde se obtienen los recursos naturales? Qué consecuencias tiene su explotación? IMPACTO AMBIENTAL 2. TIPOS

Más detalles

MONTERO JIMENEZ S.A.S

MONTERO JIMENEZ S.A.S MONTERO JIMENEZ S.A.S QUIENES SOMOS: Empresa fundada en el año de 1990, líder en desarrollar inversiones e innovaciones, dirigidas a satisfacer los requerimientos de clientes como ustedes, con el mejor

Más detalles

ENERGÍA DE LAS REACCIONES QUÍMICAS. TERMOQUÍMICA

ENERGÍA DE LAS REACCIONES QUÍMICAS. TERMOQUÍMICA ENERGÍA DE LAS REACCIONES QUÍMICAS. TERMOQUÍMICA Problemas 1. El calor de combustión del ácido acético(l) es 874 kj/mol. Sabiendo que las entalpías de formación estándar del CO 2 (g), H 2 O(l) son respectivamente:

Más detalles

TEMA 1 ELIMINACIÓN DE PARTÍCULAS (parte I)

TEMA 1 ELIMINACIÓN DE PARTÍCULAS (parte I) TEMA 1 ELIMINACIÓN DE PARTÍCULAS (parte I) TEMA 1. ELIMINACIÓN DE PARTÍCULAS 1. Contaminación por Partículas 1.1. Generación de PS Fuentes naturales Fuentes antropogénicas: Domésticas, comerciales Industriales

Más detalles

Programa Estatal de Monitoreo Municipal Estudio en Ciénega de Flores, Nuevo León

Programa Estatal de Monitoreo Municipal Estudio en Ciénega de Flores, Nuevo León . Programa Estatal de Monitoreo Municipal Estudio en Ciénega de Flores, Nuevo León El Sistema Integral de Monitoreo Ambiental (SIMA tiene como objetivo evaluar la calidad del aire, monitoreando las concentraciones

Más detalles

Identificación de los GEI producidos por el sector agroforestal

Identificación de los GEI producidos por el sector agroforestal Identificación de los GEI producidos por el sector agroforestal Envoltura gaseosa que rodea la Tierra. es la Atmósfera Los gases fundamentales que componen la atmósfera son: nitrógeno oxígeno argón CO

Más detalles

1.2 LA MATERIA Y LOS CAMBIOS

1.2 LA MATERIA Y LOS CAMBIOS 1.2 LA MATERIA Y LOS CAMBIOS Por equipo definir que es átomo, molécula y de que están formados Equipo Átomo Molécula 1 2 3 4 5 6 7 8 ÁTOMO 1. Un átomo es eléctricamente neutro. tiene el mismo número

Más detalles

ASIGNATURA: GENERACIÓN DE POTENCIA. PROFESOR: ING. GREGORIO BERMUDEZ. GUIA N 1 COMBUSTIÓN Y COMBUTIBLE

ASIGNATURA: GENERACIÓN DE POTENCIA. PROFESOR: ING. GREGORIO BERMUDEZ. GUIA N 1 COMBUSTIÓN Y COMBUTIBLE ASIGNATURA: GENERACIÓN DE POTENCIA. PROFESOR: ING. GREGORIO BERMUDEZ. GUIA N 1 COMBUSTIÓN Y COMBUTIBLE - DEFINICION DE COMBUSTIÓN. La combustión es un conjunto de reacciones de oxidación con desprendimiento

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Sistemas Físicos y Químicos

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Sistemas Físicos y Químicos 1(7) Ejercicio nº 1 Una muestra de sulfuro de hierro de 60,5 g contiene 28 g de azufre. Cuál es la fórmula empírica de dicho compuesto? Ejercicio nº 2 150 g de un compuesto contienen 45,65 g de nitrógeno

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Estequiometría

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Estequiometría 1(7) Ejercicio nº 1 El acetileno o etino (C 2 H 2 ) arde en el aire con llama muy luminosa. a) Qué volumen de acetileno, medido en c.n. será preciso utilizar si en esta reacción se han obtenido 100 litros

Más detalles

FUERZAS INTERMOLECULARES

FUERZAS INTERMOLECULARES DEPARTAMENTO DE CIENCIAS QUÍMICA - IB FUERZAS INTERMOLECULARES Existen fuerzas de atracción entre las moléculas (fuerzas intermoleculares). Ellas son las responsables de que los gases condensen (pasar

Más detalles

Análisis esquemático simplificado de una torre de enfriamiento.

Análisis esquemático simplificado de una torre de enfriamiento. Análisis esquemático simplificado de una torre de enfriamiento. En el diagrama el aire con una humedad Y 2 y temperatura t 2 entra por el fondo de la torre y la abandona por la parte superior con una humedad

Más detalles

PARTE I TERMODINÁMICA QUÍMICA

PARTE I TERMODINÁMICA QUÍMICA PARTE I TERMODINÁMICA QUÍMICA 01-Gonza lez.indd 1 5/6/06 19:26:43 01-Gonza lez.indd 2 5/6/06 19:26:49 Capítulo I Conceptos fundamentales Defi niciones 1,3,9 carácter macroscópico del sistema. Se determina

Más detalles

si con 24 g de magnesio reaccionan 6 g de oxígeno pues con 6 g reaccionarán x

si con 24 g de magnesio reaccionan 6 g de oxígeno pues con 6 g reaccionarán x Hoja número 1. 1) Si 24 g de magnesio se combinan exactamente con 16 g de oxígeno para formar óxido de magnesio, a) cuántos gramos de óxido se habrán formado?; b) a partir de 6 g de magnesio cuántos gramos

Más detalles

GUIA DE GUIA DE CALDERAS INDUSTRIALES EFICIENTES

GUIA DE GUIA DE CALDERAS INDUSTRIALES EFICIENTES GUIA DE GUIA DE CALDERAS INDUSTRIALES EFICIENTES CLASIFICACIÓN SEGÚN DISPOSICIÓN DE FLUIDOS CALDERAS ACUOTUBULARES Calderas acuotubulares: Son aquellas calderas en las que el fluido caloportador se desplaza

Más detalles

INGENIERO. JOSMERY SÁNCHEZ UNIDAD CURRICULAR: TERMODINÁMICA APLICADA TEMA VII COMBUSTIÓN

INGENIERO. JOSMERY SÁNCHEZ UNIDAD CURRICULAR: TERMODINÁMICA APLICADA TEMA VII COMBUSTIÓN UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" AREA DE TECNOLOGÍA PROGRAMA DE INGENIERÍA MECÁNICA INGENIERO. JOSMERY SÁNCHEZ UNIDAD CURRICULAR: TERMODINÁMICA APLICADA

Más detalles

CAPÍTULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. En este proyecto se empleará vapor sobrecalentado para el secado de partículas de

CAPÍTULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. En este proyecto se empleará vapor sobrecalentado para el secado de partículas de 78 CAPÍTULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO En este proyecto se empleará vapor sobrecalentado para el secado de partículas de arroz con cáscara. En este capítulo se analizará dicho fluido

Más detalles

misma naturaleza, de las entradas de aire parásito en la cámara de combustión, etc. Suele oscilar, en nuestro caso, entre un 15% y un 25%.

misma naturaleza, de las entradas de aire parásito en la cámara de combustión, etc. Suele oscilar, en nuestro caso, entre un 15% y un 25%. 51 4.- LA COMBUSTIÓN DE SUBSTANCIAS ORGÁNICAS 4.1.- CRITERIOS DE TIPO QUÍMICO Los combustibles generalmente utilizados en los hornos de elaboración de vidrios industriales, están formados por mezclas de

Más detalles

TERMODINÁMICA QUÍMICA

TERMODINÁMICA QUÍMICA TERMODINÁMICA QUÍMICA GBZA 1. INTRODUCCIÓN. CONCEPTOS ELEMENTALES. 2. PRIMER PRINCIPIO DE LA TERMODINÁMICA. 3. ECUACIONES TERMODINÁMICAS. 4. ENTALPÍA DE REACCIÓN. LEY DE HESS. 5. DIAGRAMAS DE ENTALPÍA.

Más detalles

La Co-Gasificación Biomasa y Carbón una Alternativa Limpia para Colombia.

La Co-Gasificación Biomasa y Carbón una Alternativa Limpia para Colombia. La Co-Gasificación Biomasa y Carbón una Alternativa Limpia para Colombia. Farid Chejne J., Fco, I.M., Ph.D, Profesor Universidad Nacional de Colombia CONTENIDO Introducción. Proceso de la Co Gasificación

Más detalles

TEÓRICO-PRÁCTICO N 2: ESTEQUIOMETRÍA DE LA MOLÉCULA

TEÓRICO-PRÁCTICO N 2: ESTEQUIOMETRÍA DE LA MOLÉCULA TEÓRICO-PRÁCTICO N 2: ESTEQUIOMETRÍA DE LA MOLÉCULA FUNDAMENTO TEÓRICO La estequiometría es el área de la química que estudia las cantidades de reactivos y productos que intervienen en una reacción química,

Más detalles

BIODIESEL. Tecnología de la producción de biodiesel. Extracción de grasas y aceites REQUERIMIENTOS DE LOS COMBUSTIBLES ALTERNATIVOS.

BIODIESEL. Tecnología de la producción de biodiesel. Extracción de grasas y aceites REQUERIMIENTOS DE LOS COMBUSTIBLES ALTERNATIVOS. Curso de Biodiesel. Maestría en Energía. Facultad de Ingeniería Tema 5 1 parte REQUERIMIENTOS DE LOS COMBUSTIBLES ALTERNATIVOS Tecnología de la producción de biodiesel Dr. Iván Jachmanián - Renovable y

Más detalles

MASA ATÓMICA MASA MOLECULAR. Física y Química 4º E.S.O. MASA ATÓMICA, MASA MOLECULAR Y MOLES Pág. 1

MASA ATÓMICA MASA MOLECULAR. Física y Química 4º E.S.O. MASA ATÓMICA, MASA MOLECULAR Y MOLES Pág. 1 Física y Química 4º E.S.O. MASA ATÓMICA, MASA MOLECULAR Y MOLES Pág. 1 MASA ATÓMICA Al igual que ocurre en la materia ordinaria (piensa en las distintas variedades de panes en tamaño, composición y peso,

Más detalles

Principios del corte Oxicorte

Principios del corte Oxicorte Aspectos Químicos del Corte por Oxígeno Principios del corte Oxicorte El corte por oxígeno se basa en la capacidad del oxígeno para combinarse con el hierro cuando éste se calienta hasta su temperatura

Más detalles

EPI S: PROTECTORES RESPIRATORIOS

EPI S: PROTECTORES RESPIRATORIOS CÓDIGO IdP/012 Fecha: Julio de 2003 Revisión: 00 Página: 1 de 5 TIPOS DE PROTECTORES RESPIRATORIOS A. DEPENDIENTES DEL MEDIO AMBIENTE (EQUIPOS AUTOFILTRANTES) En este caso, el aire inhalado pasa por un

Más detalles

Calentadores Solares Sunnergy

Calentadores Solares Sunnergy 2014 Calentadores Solares Sunnergy AcguaViz Company, S.A. de C.V. Abedules No. 43 Izcalli del Bosque Naucalpan de Juárez, Edomex C.P. 53278 e-mail: acguaviz@acguaviz.com y chally@acguaviz.com website:

Más detalles

Tema 0. Conceptos Básicos en Química. Química Átomo: números másicos y atómicos Mol Fórmulas Reacciones químicas Gases Disoluciones

Tema 0. Conceptos Básicos en Química. Química Átomo: números másicos y atómicos Mol Fórmulas Reacciones químicas Gases Disoluciones Tema 0. Conceptos Básicos en Química Química Átomo: números másicos y atómicos Mol Fórmulas Reacciones químicas Gases Disoluciones Qué es la Química? Ciencia que trata de la composición y propiedades de

Más detalles

Valorización energética de residuos y energía de la biomasa

Valorización energética de residuos y energía de la biomasa Universidad de Verano de Adeje 2003 Alternativas al modelo energético de Canarias: Microcentrales eléctricas y energías renovables Valorización energética de residuos y energía de la biomasa Dr. Francisco

Más detalles

UNIDAD 5: LOS ÁTOMOS Y LAS MOLÉCULAS

UNIDAD 5: LOS ÁTOMOS Y LAS MOLÉCULAS UNIDAD 5: LOS ÁTOMOS Y LAS MOLÉCULAS Lee atentamente: 1. LA MISMA SUSTANCIA EN LOS TRES ESTADOS Todos los cuerpos están formados por sustancias: las personas, los coches, los muebles, el aire, etc. Todas

Más detalles

Cuadernillo de recuperación de Ciencias de la Naturaleza de 2º de E.S.O.

Cuadernillo de recuperación de Ciencias de la Naturaleza de 2º de E.S.O. NOMBRE:... CURSO:... FECHA DE ENTREGA:... NOTA: TEMA 1: LA MATERIA I 1.- Qué es materia? Qué tipo de propiedades tiene la materia? Explica en qué consiste cada una de ellas. Pon ejemplos. 2.- A qué se

Más detalles

Radiactividad natural y radiactividad artificial. Concepto de energía nuclear

Radiactividad natural y radiactividad artificial. Concepto de energía nuclear Radiactividad Radiactividad natural y radiactividad artificial. Concepto de energía nuclear Los átomos de algunos elementos, tanto naturales como producidos artificialmente, son inestables, y tienden a

Más detalles

INVENTARIO DE EMISIONES DE ESPAÑA EMISIONES DE CONTAMINANTES ATMOSFÉRICOS SERIE 1990-2014 INFORME RESUMEN

INVENTARIO DE EMISIONES DE ESPAÑA EMISIONES DE CONTAMINANTES ATMOSFÉRICOS SERIE 1990-2014 INFORME RESUMEN MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE SECRETARÍA DE ESTADO DE MEDIO AMBIENTE D.G. DE CALIDAD Y EVALUACIÓN AMBIENTAL Y MEDIO NATURAL S.G. DE CALIDAD DEL AIRE Y MEDIO AMBIENTE INDUSTRIAL

Más detalles

EJERCICIOS DE EQUILIBRIO QUÍMICO.

EJERCICIOS DE EQUILIBRIO QUÍMICO. EJERCICIOS DE EQUILIBRIO QUÍMICO. 1º. A partir de 150 g de acético se desean obtener 166 g de acetato de etilo. Calcular los gramos de etanol que se necesitan sabiendo que la K c de la reacción de esterificación

Más detalles

Valor & Sustentabilidad

Valor & Sustentabilidad Nº11 Abril 2009 Uso de Filtros DPF para Reducir Emisiones de Grupos Electrógenos Por: Cristian Bustos Salas, Director Juan Pablo Payero, Ing. de Proyectos Trainee Better Technologies Hace varios años que

Más detalles

Biosólidos Pretratamientos Obtención de energía del biogás

Biosólidos Pretratamientos Obtención de energía del biogás Biosólidos lidos, digestión anaerobia, Pretratamientos Obtención de energía del biogás 100% energía generada en el digestor 4. Digestión anaerobia. Generación de biogás 4.1. Descripción del proceso 4.2.

Más detalles

QUÍMICA I. TEMA 1: Estado Físico de la materia

QUÍMICA I. TEMA 1: Estado Físico de la materia QUÍMICA I TEMA 1: Estado Físico de la materia Tecnólogo Minero - 2014 E s q u e m a d e l a C l a s e Tema 1: Estado físico de la materia La materia Clasificación de la materia Estado Sólido, liquido y

Más detalles

Refuerzo Modelos atómicos

Refuerzo Modelos atómicos Refuerzo Modelos atómicos 1 1. Completa la siguiente tabla: CARGA MASA UBICACIÓN EN EL ÁTOMO DESCUBRIDOR AÑO DE DESCUBRIMIENTO Electrón Protón Neutrón. Resume en la tabla siguiente los distintos modelos

Más detalles

CAPÍTULO 9: REDUCCIÓN DIRECTA DE MINERALES DE HIERRO COMO ALTERNATIVA AL PROCESO EN EL ALTO HORNO

CAPÍTULO 9: REDUCCIÓN DIRECTA DE MINERALES DE HIERRO COMO ALTERNATIVA AL PROCESO EN EL ALTO HORNO CAPÍTULO 9: REDUCCIÓN DIRECTA DE MINERALES DE HIERRO COMO ALTERNATIVA AL PROCESO EN EL ALTO HORNO 9.1. INTRODUCCIÓN Se suele llamar reducción directa a todo proceso de reducción de los óxidos de hierro

Más detalles

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS Se le llama fluido a toda aquella sustancia continua que puede fluir. Los fluidos pueden ser gaseosos y líquidos. Esta es la diferencia fundamental entre un sólido, cuya

Más detalles

Interacción aire - agua. Termómetro húmedo

Interacción aire - agua. Termómetro húmedo Interacción aire - agua. Termómetro húmedo Objetivos de la práctica! Obtener experimentalmente la denominada temperatura húmeda.! Estudiar las magnitudes psicrométricas de dos corrientes de aire húmedo,

Más detalles

Durango. Ingeniería Química. Alumna: Santillano Miranda Ednitha. Asesor externo: Ing. Fernando Gayosso de Lucio. Reforma C.P 42080, Pachuca, Hidalgo.

Durango. Ingeniería Química. Alumna: Santillano Miranda Ednitha. Asesor externo: Ing. Fernando Gayosso de Lucio. Reforma C.P 42080, Pachuca, Hidalgo. Instituto Tecnológico de Durango Ingeniería Química ANTEPROYECTO DE RESIDENCIA PROFESIONAL Caracterización de rendimiento energético del horno 4 Riedhammer, Planta Cerámica Ánfora. Alumna: Santillano Miranda

Más detalles

ESTEQUIOMETRÍA I. ÁTOMO Mínima porción de materia que posee aún las propiedades del elemento.

ESTEQUIOMETRÍA I. ÁTOMO Mínima porción de materia que posee aún las propiedades del elemento. ESTEQUIOMETRÍA I Preparado por: José del c. Mondragón C. El término estequiometría deriva del griego steicheion, que significa primer principio o elemento y de metron, que significa medida. La estequiometría

Más detalles