Estructura de la materia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estructura de la materia"

Transcripción

1 2.1.- Estructura atómica Aspectos Teóricos Composición de los átomos Los átomos están constituidos por tres tipos de partículas: protón, neutrón y electrón. Los protones y neutrones forman el núcleo, que es donde se acumula, fundamentalmente, la masa del átomo y los electrones se distribuyen por la corteza del mismo. Un átomo se caracteriza por el número de protones del núcleo que coincide con el de electrones de la corteza. Si el número de protones y electrones no es el mismo, entonces el átomo queda cargado y se denomina ion. Los iones pueden ser positivos, mayor número de protones que de electrones, que se denominan cationes y negativos, mayor número de electrones que de protones, que se denominan aniones Modelos atómicos Los distintos modelos atómicos surgen para tratar de explicar las propiedades de los átomos y, en particular, sus espectros de emisión. A medida que se dispuso de nuevas tecnologías y se conocieron más propiedades de los átomos, iones y partículas que los forman, se fueron ampliando las teorías atómicas con el fin de poder explicar los nuevos fenómenos y propiedades. En el nivel de este texto, el modelo atómico de Bohr, la ampliación de Sommerfeld y algunas aportaciones de la mecánica ondulatoria deberán ser suficientes para entender el átomo.

2 2.1.3 Teoría de Planck N. Bohr resolvió los problemas que tenía la Física clásica al aplicarla al modelo planetario de Rutherford, apoyándose en la teoría cuántica de Planck. Hay una serie de fenómenos, como la radiación del cuerpo negro, los espectros de emisión y el efecto fotoeléctrico que no podían ser explicados por la física clásica. Para explicarlos, Planck introdujo una teoría revolucionaria, en la que decía que la energía no podía ser absorbida ni emitida en forma continua, sino en cantidades discretas de valores específicos, que son múltiplos de una unidad fundamental, cuanto, que corresponde a la menor cantidad posible de energía que se puede absorber o emitir. El valor de esta energía viene dada por la ecuación: E = hț siendo h la constante de Planck, cuyo valor es J s Modelo atómico de Borh-Sommerfeld Rutherford había establecido un modelo atómico semejante al sistema planetario del sol, en el cual el sol sería el núcleo y los electrones los planetas. Este modelo tiene serios defectos, entre otros no explica por qué los electrones que giran alrededor del núcleo no se precipitan hacia el mismo. N. Bohr aplicó la teoría de Planck a este modelo atómico, proponiendo una serie de postulados que resolvían los problemas del modelo anterior. - El primer postulado dice que el electrón puede girar en un cierto número de órbitas circulares o estados estacionarios alrededor del núcleo sin emitir energía radiante. - El segundo postulado dice que sólo son posibles aquellas órbitas en las que el momento angular, L, de las mismas sea un múltiplo entero de h/2π. L = n h/2π siendo n = 1, 2, 3,... - El tercero dice que cuando un electrón salta de una órbita a otra, absorbe o emite energía en forma de radiación electromagnética, cuya ț viene dada por la ecuación de Planck, E = hț. Las órbitas del modelo atómico de Bohr están caracterizadas por el valor de n (llamado número cuántico principal) que cuantifica el valor del radio y de la energía de las órbitas permitidas.

3 Así, la primera órbita tiene n = 1, la segunda, n = 2, etc.; los valores del radio de las órbitas están cuantizados de forma que r = k n 2, por lo que si la primera órbita tiene de radio a 1, k = a 1 ya que a 1 = k 1 2, siendo a 1 = 0 53 Å. Para la segunda órbita (n = 2), a 2 = 4 a 1, para la tercera, a 3 = 9 a 1, y así sucesivamente. De igual modo, la energía del electrón en una órbita también está cuantizada por n, y toma el valor: E n = - R/n 2 siendo R = J El valor de E n se considera negativo ya que se toma como cero la energía del electrón a distancia infinita del núcleo, en ese momento el electrón no pertenece al átomo, y al acercarse al mismo y ser atraído por éste desprenderá energía, que será la del electrón en esa órbita. De la ecuación anterior se deduce que cuanto más cercanas estén las órbitas al núcleo, tendrán valores más negativos de energía, por lo que los electrones tenderán a ocupar las órbitas más cercanas al mismo. Cuando un electrón salta de una órbita a otra, variará su energía en un valor E, que vendrá dado por: E = E f E i = - R/n f 2 + R/n i 2 = R (1/n i 2 1/n f 2 ) = hț Si n i > n f el valor de E es negativo, lo que indica que se desprende energía en forma de radiación electromagnética, cuya frecuencia viene dada por E = hț. De esta forma explicó Bohr la causa de que los espectros de emisión de los átomos sean discontinuos, pues sólo se pueden emitir valores de E que sean iguales a la diferencia de energía que hay entre distintas órbitas, pudiéndose calcular el valor de la frecuencia, ț, por una ecuación semejante a la deducida empíricamente por los espectroscopistas para calcular la frecuencia de las radiaciones de los espectros de emisión de los elementos. Cuando se pudieron utilizar espectroscopios de mayor poder resolutivo, se observó un desdoblamiento de las rayas únicas de los primeros espectros y esto le hizo a Sommerfeld ampliar el modelo de Bohr, indicando que no sólo podría haber órbitas circulares, sino también elípticas, para cuya definición hace falta introducir un segundo número cuántico, l, o número cuántico secundario, cuyos valores pueden ir desde cero hasta (n-1). No obstante, al observar un nuevo desdoblamiento en las rayas espectrales producido por la presencia de campos magnéticos (efecto Zeeman) o eléctricos (Stark),

4 hubo que introducir la posibilidad de que sólo fueran posibles unas ciertas orientaciones en el espacio, por la que habría que introducir un tercer número cuántico, m l, que cuantifica estas orientaciones y puede tomar los valores de +l, +(l-1), (l-1), l. El desdoblamiento de las líneas en un campo magnético débil, se justificó suponiendo que dentro de cada órbita, el electrón podía tener un giro sobre sí mismo en dos posibles sentidos, por lo que se introdujo un nuevo número cuántico, s, o de espín con valores de +1/2 ó 1/2, para cuantificar su momento cinético. De esta forma, se puede definir al electrón mediante un conjunto de cuatro números cuánticos, n, l, m l y s. A pesar de todo, este modelo sólo es adecuado para interpretar las propiedades del átomo de hidrógeno y de los llamados hidrogenoides (núcleos rodeados de un solo electrón como el He + ). Estos fallos se corrigieron mediante la aplicación del modelo mecano cuántico del electrón. La teoría cuántica de Planck, la dualidad partícula-onda de De Broglie y el principio de incertidumbre de Heisemberg, constituyen la base de la mecánica cuántica Dualidad partícula-onda A partir de que Einstein indicara que la luz podía tener propiedades de partícula y la posibilidad de la transformación de masa en energía y viceversa, calculada mediante su ecuación E = mc 2, De Broglie pensó que las partículas también podrían mostrar propiedades de onda y aplicó su hipótesis de la dualidad de partícula y onda al electrón. Tras esta hipótesis, propuso calcular la longitud de onda asociada a un electrón mediante la aplicación de las fórmulas de Planck y Einstein: E = hν y E = mc 2 hν = mc 2 = h c/λ ; λ = h/mc Cuando con posterioridad se difractaron electrones en cristales, se confirmó la hipótesis de De Broglie, observándose el comportamiento ondulatorio del electrón Principio de incertidumbre De acuerdo con la mecánica clásica, cabe la posibilidad de determinar simultáneamente la posición y la cantidad de movimiento (momento) de un cuerpo. La aplicación del principio de Heisemberg al electrón considera que, debido a la naturaleza ondulatoria del electrón, no es posible determinar con precisión la posición del electrón y su momento, sino que debe haber una incertidumbre en sus medidas de forma

5 que el producto de la incertidumbre en la posición, x, por la incertidumbre en el momento, p, es x p > h/4π expresión que se conoce como principio de incertidumbre de Heisemberg. Como consecuencia de este principio, si se determina con precisión la energía de un electrón, no se puede localizarlo, sino que se habla de la probabilidad de encontrarlo en un lugar y tiempo determinado, de forma, que si la probabilidad de encontrarlo en un punto es alta, se dice que la densidad electrónica en ese punto también lo es Modelo ondulatorio del átomo Se han desarrollado dos modelos matemáticos, debidos a Heisemberg y Schrödinger, para explicar el átomo de hidrógeno. Cualquiera de los dos desarrollos matemáticos superan la extensión de este texto. No obstante, se puede indicar que debido a los principios de la mecánica ondulatoria, basada en la hipótesis de De Broglie y en el principio de Heisemberg, no se puede situar al electrón en las órbitas del modelo clásico, sino que se define la probabilidad de encontrar el electrón en un punto. Para explicar este concepto, supongamos que se pueden tomar fotografías de un electrón alrededor del núcleo. Al cabo de un tiempo y de tomar un número muy grande de fotografías en cada una de las cuales aparecerá el electrón como un punto, al superponer todas ellas se tendrá una imagen como la de la figura Figura Figura Esta nube es una representación de la densidad electrónica o probabilidad de encontrar al electrón en esta zona. A esta zona alrededor del núcleo dentro de la cual existe la máxima probabilidad de encontrar al electrón, se le define como el orbital donde se encuentra ese electrón. Como la densidad de la nube disminuye a medida que aumente la distancia al núcleo, es imposible abarcar el 100% de la probabilidad de encontrar al electrón, por lo que se definen los orbitales como el espacio delimitado por una superficie

6 dentro del cual se encuentra el 90% de la probabilidad de encontrar al electrón o, lo que es igual, de su densidad electrónica (figura 2.1.2). La resolución de la ecuación de Schrödinger para el átomo de hidrógeno implica la introducción de tres números cuánticos, n, l y m l. Estos números sólo pueden tomar una serie de valores determinados, de forma que para cada conjunto de tres valores existe una solución. El primer número cuántico, n, es el llamado número cuántico principal que sólo puede tener valores enteros y positivos n = 1, 2, 3, 4,... y determina el tamaño y energía del orbital. El segundo, l, número cuántico del momento angular y cuyos valores pueden ser l = 0, 1, 2,..., (n-1) y determina la forma del orbital (en los átomos multielectrónicos, también determina la energía del subnivel energético). El tercero es el número cuántico magnético, m l, que puede tomar los valores m l = -l, -(l-1), -(l-2) (l-2), (l-1), l y determina la orientación del orbital. Los valores de m l dependen de los de l y los de éste, a su vez, del valor de n. La mecánica ondulatoria sólo da lugar a tres números cuánticos para describir a los orbitales electrónicos. No obstante, se vio que el electrón se comporta como si girase sobre sí mismo, lo cual sugiere dos posibilidades de giro del electrón. Este giro está cuantificado por un cuarto número cuántico el de espín, m s, que puede tomar los valores de +1/2 y 1/2. Todos los orbitales con el mismo valor de n pertenecen a la misma capa o nivel, y los que tienen los mismos valores de l, a la misma subcapa o subnivel. A la capa con valor n = 1, se le llama capa K; a la de n = 2, capa L; a la de n=3, capa M, y así sucesivamente Orbitales atómicos Los orbitales se nombran en función del valor de l, así para l = 0, el orbital se nombra orbital s; para l = 1, orbital p; para l = 2, orbital d; para l = 3, orbital f; y para valores superiores se sigue el orden alfabético g, h,... Cada conjunto de valores de n, l y m l definen un orbital, si bien, para el átomo de hidrógeno todos los orbitales que tienen el mismo valor de n, tienen la misma energía. Esto

7 indica que dentro de la misma capa (valor determinado de n), todas las subcapas tienen la misma energía, al igual que todos los orbitales dentro de la misma subcapa. De acuerdo con lo dicho, el número de orbitales será: Nombre n = 1 l = 0 m l = 0 1s l = 0 m l = 0 2s n = 2 m l = 1 l = 1 m l = 0 2p m l = -1 l = 0 m l = 0 3s m l = 1 l = 1 m l = 0 3p n = 3 m l = -1 m l = 2 m l = 1 l = 2 m l = 0 3d m l = -1 m l = -2 dentro de cada orbital se pueden localizar dos electrones, uno con valor de m s = +1/2 y otro con m s = -1/2. Se observa que en la subcapa s (l = 0) sólo hay un orbital, en la subcapa p (l = 1) hay 3, en la subcapa d (l = 2), hay 5, etc... Al representar las soluciones de la ecuación de Schrödinger para cada conjunto de números cuánticos se obtiene la forma de los distintos orbitales, que es la que aparece en la figura

8 2.1.9 Átomos polielectrónicos Ya se ha indicado que en el átomo de hidrógeno el valor de la energía de un orbital sólo depende del valor de n. Así, todos los orbitales de la misma subcapa y todas las subcapas de la misma capa tienen la misma energía, es decir son degenerados. 1s Figura 2.1.3

9 En los átomos polielectrónicos (átomos con más de un electrón) no ocurre esto, pues aparecen nuevos factores a tener en cuenta, como son las repulsiones interelectrónicas que modifican la energía de los orbítales y que da como resultado una disminución de la energía de un determinado orbital a medida que aumenta el número atómico. No obstante, en los átomos multielectrónicos los orbitales son semejantes a los del hidrógeno y se definen mediante los mismos números cuánticos. La diferencia estriba en que ahora sólo aparecen como degenerados los orbitales de la misma subcapa, dependiendo la energía no sólo del valor de n, sino también del valor de l. En un átomo multielectrónico por ejemplo en el nivel n = 3 aparecen los subniveles 3s, 3p y 3d que tendrán diferente energía, aunque dentro de cada subnivel, por ejemplo todos los orbitales 3p, de un mismo átomo tendrán la misma energía. Para ver la configuración electrónica o distribución de los electrones en las distintas capas y subcapas, habrá que tener en cuenta que los electrones irán ocupando los orbitales de forma que la energía del átomo sea la menor posible. El orden de llenado de los orbitales se ha determinado experimentalmente y, tal como se ha indicado, esta energía va a disminuir a medida que aumenta la carga nuclear (Z), pero no en la misma forma, por lo que se pueden establecer alteraciones en el orden, pudiendo ocurrir que un orbital de una capa con un determinado valor de n tenga menos energía que otro de la capa anterior. El orden determinado, excepto para pocas excepciones es: 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p <6s < 4f cuyo orden se puede recordar de acuerdo con el siguiente esquema: Figura Además de este orden, hay que tener en cuenta los siguientes principios:

10 a) Principio de exclusión de Pauli El principio indica que dos electrones de un mismo átomo no pueden tener los cuatro números cuánticos iguales. Como se ha indicado, cada orbital viene definido por un conjunto de valores de los números cuánticos n, l y m l, por lo que en cada uno de ellos sólo podrá haber dos electrones uno con m s = +1/2 y otro con m s = -1/2. Es decir que cada orbital sólo puede estar ocupado por dos electrones y éstos han de tener sus espines opuestos, electrones apareados. b) Regla de Hund En orbitales que tienen iguales valores de n y l, los electrones tenderán a ocupar orbitales con distintos valores de ml, y sus espines serán paralelos, es decir que en orbitales degenerados los electrones tienden a estar lo más desapareados posible. Teniendo en cuenta estas reglas, para escribir la configuración electrónica de un elemento, se representan los subniveles identificados por su valor de n y l, y se le pone como superíndice el número de electrones del subnivel. Una vez asignados todos los electrones, se deben ordenar los subniveles dentro de su mismo nivel y por orden creciente de n, independientemente del orden de llenado. forma: Para escribir la configuración electrónica de iones se debe hacer de la siguiente - Para los aniones, se añade un número de electrones igual a la carga del mismo en el orbital que corresponda. - Para los cationes, se deben retirar un número de electrones, igual a la carga del mismo, del orbital más externo del átomo, una vez ordenados en función del valor de n. (No salen los últimos electrones que han entrado en caso de no coincidir con el orbital de mayor energía). Cuando la diferencia de energía entre dos orbitales sucesivos es muy pequeña, las repulsiones electrónicas hacen que se altere, en algunos casos, la configuración electrónica que debería aparecer. Así, para el Cromo su configuración electrónica debería ser: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2, sin embargo la configuración real es: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1. La del ion O 2- es: 1s 2 2s 2 2p 6 y la del Mn 2+ es: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5.

11 Tabla Periódica La Tabla Periódica, tal como la entendemos hoy, es un reflejo del orden de llenado de los orbitales al ir haciendo la configuración electrónica de los elementos. En ella están escritos los elementos en orden creciente de su número atómico, Z, y situados en el mismo grupo aquellos que tienen la misma configuración electrónica en su capa de valencia. En ella, se llaman períodos a las filas y grupos a las columnas. En los períodos, los elementos tienen el mismo valor de n en la capa de valencia y en los grupos la misma configuración electrónica con valores crecientes de n. Hay siete períodos, numerados del 1 al 7 y dieciocho grupos, nombrados del 1 al 18. 2,8,18,32,18,8-71,0 222,02 -[Xe]4f14,5-61, H Bloque s Bloque p He Li Be Bloque d B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Db Sg Bh Hs Mt Bloque f Lantanidos La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Actinidos Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Figura En la tabla periódica se pueden distinguir cuatro bloques, s, p, d y f, en los que se llenan esos mismos orbitales. - Bloque s. Está formado por los elementos que llenan los orbitales s, correspondientes al valor más alto de n. Está formado por los grupos 1 y 2, que tienen las configuraciones electrónicas ns 1 y ns 2, respectivamente.

12 - Bloque p. Se sitúan en él los elementos que llenan los orbitales np, siendo n el de valor más alto. Está formado por los grupos 13 al 18, con las configuraciones electrónicas ns 2 np 1 hasta ns 2 np 6. - Bloque d. Está formado por los elementos que llenan los orbitales d del nivel (n-1). Forman este bloque los grupos 3 al 12 y sus configuraciones electrónicas van desde (n-1)d 1 ns 2 hasta (n-1)d 10 ns 2. - Bloque f. Lo componen los elementos que llenan los orbitales (n-2)f y está formado por los Lantánidos y Actínidos. Su configuración electrónica varía desde (n-2)f 1 (n-1)s 2 p 6 d 1 ns 2 hasta (n-2)f 14 (n-1)s 2 p 6 d 1 ns 2. En el grupo 18, se completa la llamada configuración de gas noble que, salvo para el He que tiene 1s 2, para los demás es ns 2 np 6. Por ello, para los períodos siguientes, se pueden escribir las configuraciones electrónicas resumiendo la del gas noble anterior y añadiendo los electrones situados en nuevos orbitales. Como ejemplo, el Mn se puede escribir como 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 o bien como [Ar] 3d 5 4s Propiedades Periódicas Tal como se ha indicado, la Tabla Periódica refleja la periodicidad en la configuración electrónica de los elementos, por lo que cabe esperar una variación periódica de determinadas propiedades de los elementos que forman los grupos y los períodos. - En los períodos, al avanzar hacia la derecha, aumenta en una unidad la carga nuclear y se añade un electrón a la corteza, pero estos electrones no apantallan con efectividad de una unidad a los electrones de la misma capa, por lo que los electrones de la capa de valencia serán cada vez más atraídos por la carga positiva del núcleo. - En los grupos, al bajar en los mismos, los electrones entran cada vez en capas de mayor valor de n, por lo que irá aumentando su distancia al núcleo y por tanto, se sentirán menos atraídos. Como consecuencia de ello, veamos cómo variarán algunas propiedades de los elementos. - Radio atómico De acuerdo con lo indicado, el radio de los átomos disminuirá al desplazarse hacia la derecha en un período y aumentará al bajar en un grupo.

13 - Energías de ionización La energía de ionización, E. I., de un elemento es la energía necesaria para arrancar un mol de electrones a un mol de átomos de ese elemento cuando se encuentra en estado fundamental y gaseoso. Como ya se ha indicado, el electrón que sale primero es el más externo (una vez escrita la configuración electrónica con todos los orbitales ordenados en orden creciente de n y para el mismo valor de n en orden creciente de valores de l). Se puede arrancar más de un electrón y entonces se llamará segunda energía de ionización, tercera, etc. Lógicamente, al arrancar un electrón se forma un ion positivo, por lo que para arrancarle un segundo electrón (carga negativa) habrá que suministrar más energía que para el primero, por lo que los valores de E. I. aumentarán 1ª < 2ª < 3ª <... En un período, como aumenta la carga nuclear, Z, hacia la derecha, la E. I. lo hará en el mismo sentido. En un grupo, disminuirá al bajar en el mismo, pues el electrón a arrancar está cada vez más alejado del núcleo y por tanto menos atraído por el mismo. Al arrancarle electrones a un átomo, los cationes obtenidos siempre tendrán menor radio que el mismo átomo neutro. - Afinidad electrónica La afinidad electrónica, A. E., se define como la energía que se libera cuando un mol de átomos en estado fundamental y gaseoso capta un mol de electrones. Los electrones que entran estarán más atraídos cuanto mayor sea la carga nuclear que los atrae y menor la distancia a la que se sitúan. Por ello, aumentará el valor de la A. E. al desplazarse en un período hacia la derecha y disminuirá al bajar en un grupo. Es decir, la energía liberada aumenta de izquierda a derecha en valor absoluto, con signo negativo. Los iones negativos, aniones, obtenidos al captar un electrón tendrán un radio mayor que los átomos neutros de los que proceden. - Electronegatividad Se define la electronegatividad como la tendencia que tiene un átomo a atraer sobre sí a los electrones que comparte con otro átomo. Aún cuando los conceptos de E. I. y A. E. se refieren a la formación de iones, no debe extrañar que cuando se forma un enlace covalente entre átomos diferentes, el par de

14 electrones no será compartido por igual y aquellos elementos que aportan a ese enlace electrones más estables (más atraídos por el núcleo) sean los que tienen mayor tendencia a atraer sobre sí a los pares compartidos con otro. Por ello, la electronegatividad aumenta hacia la derecha en los períodos y disminuye hacia abajo en los grupos.

QUIMICA DE MATERIALES

QUIMICA DE MATERIALES QUIMICA DE MATERIALES UNIDAD 1: ESTRUCTURA ATOMICA Y ELECTRONICA 1.1 Componentes fundamentales de los Atomos Algunos modelos atómicos 188-181 Dalton 1898-194 Thomson 1911 Rutherford 192 Bohr 1 Modelo de

Más detalles

Modelos atómicos. El valor de la energía de estos niveles de energía está en función de un número n, denominado número cuántico principal 18 J.

Modelos atómicos. El valor de la energía de estos niveles de energía está en función de un número n, denominado número cuántico principal 18 J. MODELO ATÓMICO DE BOHR (1913) El modelo atómico de Rutherfod tuvo poca vigencia, ya que inmediatamente a su publicación, se le puso una objeción que no supo rebatir: según la teoría del electromagnetismo

Más detalles

Modelos atómicos: Dalton, Thomson, Rutherford, Bohr y Mecánica Cuántica. Clasificación de los elementos y propiedades periódicas

Modelos atómicos: Dalton, Thomson, Rutherford, Bohr y Mecánica Cuántica. Clasificación de los elementos y propiedades periódicas Modelos atómicos: Dalton, Thomson, Rutherford, Bohr y Mecánica Cuántica Clasificación de los elementos y propiedades periódicas Modelos atómicos: Átomo de Dalton NOMBRE EN QUÉ CONSISTE QUÉ EXPLICA QUÉ

Más detalles

CAPITULO 2 LA TABLA PERIODICA

CAPITULO 2 LA TABLA PERIODICA 1.0079 1 H HIDROGENO 6.941 3 Li LITIO 22.989 11 Na SODIO 30.098 19 K POTASIO CAPITULO 2 LA TABLA PERIODICA ORDENAMIENTO ACTUAL GRUPOS Y PERIODOS PROPIEDADES PERIODICAS TAMAÑO POTENCIAL DE IONIZACION AFINIDAD

Más detalles

J. ISASI Ilustraciones: J. Isasi y L. Alcaraz

J. ISASI Ilustraciones: J. Isasi y L. Alcaraz J. ISASI Ilustraciones: J. Isasi y L. Alcaraz La Tabla Periódica de los elementos. Propiedades periódicas. Electronegatividad. División de los elementos en metales y no metales. LA TABLA PERIÓDICA DE LOS

Más detalles

Masa y composición isotópica de los elementos

Masa y composición isotópica de los elementos Masa y composición isotópica de los elementos www.vaxasoftware.com Z Sím A isótopo Abndancia natral Vida Prodcto 1 H 1 1,00782503207(10) 99,9885(70) 1,00794(7) estable D 2 2,0141017780(4) 0,0115(70) estable

Más detalles

Tema 4. Tema 4: Clasificación Periódica de los elementos químicos. 4.1 Introducción

Tema 4. Tema 4: Clasificación Periódica de los elementos químicos. 4.1 Introducción Tema 4: Clasificación Periódica de los elementos químicos 4.1 Introducción 4. Descripción de la Tabla Periódica 4.3 Base electrónica de la clasificación periódica 4.4 Propiedades periódicas AJ1.13-1, PHH10,

Más detalles

elementos Tabla periódica

elementos Tabla periódica Periodicidad de los elementos Tabla periódica Aunque algunos elementos como el oro, plata, estaño, cobre, plomo y mercurio ya eran conocidos desde la antigüedad, el primer descubrimiento científico de

Más detalles

Ejercicios Estructura atómica y tabla periódica.

Ejercicios Estructura atómica y tabla periódica. Ejercicios Estructura atómica y tabla periódica. 1. Los números atómicos de los elementos P y Mn son 15 y 25, respectivamente. a) Escribe la configuración electrónica de cada uno de ellos. b) Indica los

Más detalles

Tema 4: Propiedades periódicas de los elementos - 1 -

Tema 4: Propiedades periódicas de los elementos - 1 - Tema 4: Propiedades periódicas de los - - BIBLIOGRAFÍA: * Estructura atómica y enlace químico J. Casabó i Gispert * Química. Curso Universitario B.M. Mahan y R.J. Myers * Química General R.H. Petrucci,

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA Tema : Estructura de la materia 1. Espectros atómicos de emisión 1.1. Espectro atómico de emisión del hidrógeno Si disponemos de un tubo de vidrio transparente que contiene hidrógeno

Más detalles

XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2012 NIVEL 3

XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2012 NIVEL 3 XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2012 NIVEL 3 Datos del estudiante. Nombre Cédula de identidad Ciudad de origen Ciudad donde toma la prueba Departamento Liceo al que pertenece Año que cursa Nomenclatura,

Más detalles

CENTRO DE ESTUDIOS MIRASIERRA

CENTRO DE ESTUDIOS MIRASIERRA LOS ELECTRONES Y LA TABLA PERIÓDICA CONFIGURACIONES ELECTRONICAS La configuración electrónica del átomo es la designación de los orbitales ocupados por todos los electrones en el átomo. La anotación utilizada

Más detalles

Tiene electrones en 15 orbitales y tiene 2 capas llenas de electrones: la 1ª y la 2ª

Tiene electrones en 15 orbitales y tiene 2 capas llenas de electrones: la 1ª y la 2ª EJERCICIOS RESUELTOS DEL LIBRO 12. Fe: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 a) la combinación de (3,2,-1), será debido a: n=3, indica que el nivel energético es el 3º l=2,indica que el tipo de orbital es

Más detalles

Propiedades Tabla Periódica

Propiedades Tabla Periódica Propiedades Tabla Periódica Profesor Gustavo L. Propiedades Tabla Periódica 1 Un poco de historia... 2 En 1869, el químico ruso Dimitri Mendeleev propuso por primera vez que los elementos químicos exhibían

Más detalles

NIVELES DE ENERGÍA, SUBNIVELES, ORBITALES Y ELECTRONES

NIVELES DE ENERGÍA, SUBNIVELES, ORBITALES Y ELECTRONES Universidad de San Carlos de Guatemala Escuela de Formación de Profesores de Enseñanza Media Programa Académico Preparatorio Curso: Química NIVELES DE ENERGÍA, SUBNIVELES, ORBITALES Y ELECTRONES PAP-QUÍMICA

Más detalles

ESTRUCTURA DE LA MATERIA.

ESTRUCTURA DE LA MATERIA. Repaso de los modelos atómicos. ESTRUCTURA DE LA MATERIA. 1.- Razona si son verdaderas o falsas las siguientes afirmaciones: a) cuando un electrón pasa de un estado fundamental a un excitado emite energía;

Más detalles

4.- Establezca las diferencias entre los siguientes términos: a) órbita y orbital; b) nivel y subnivel

4.- Establezca las diferencias entre los siguientes términos: a) órbita y orbital; b) nivel y subnivel TEMA 3 CONFIGURACIÓN ELECTRÓNICA Y TABLA PERIÓDICA. A. Números Cuánticos. Significado y Valores Permitidos 1.- Compare los modelos atómicos de Thomson, Rufherford y Bohr. 2.- Mencione el aporte fundamental

Más detalles

7-2.- Propiedades periódicas de los elementos. UdeC/FCQ/M E König Unidad 7 (7-2)

7-2.- Propiedades periódicas de los elementos. UdeC/FCQ/M E König Unidad 7 (7-2) 7-2.- Propiedades periódicas de los elementos. 1 7-2. Propiedades periódicas de los elementos Todo comportamiento físico y químico de los elementos se basa fundamentalmente en las configuraciones electrónicas

Más detalles

Solución: a) Falso, porque la carga que se apiña en lo que se denomina núcleo es toda la carga positiva.

Solución: a) Falso, porque la carga que se apiña en lo que se denomina núcleo es toda la carga positiva. ies menéndez tolosa 1 De las siguientes proposiciones, señala las que considere correctas: a) Todos los isótopos de un elemento tienen el mismo número de electrones. b) Dos isótopos de un elemento pueden

Más detalles

OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2011 NIVEL 3

OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2011 NIVEL 3 Nombre: Cédula de Identidad: Liceo: OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2011 NIVEL 3 NOMENCLATURA, FORMULACIÓN Y REACTIVIDAD INORGÁNICA (1) Complete el siguiente cuadro: En cuanto a la naturaleza química,

Más detalles

La tabla periódica. Julius Lothar Meyer. Dimitri Ivanovich Mendeleev

La tabla periódica. Julius Lothar Meyer. Dimitri Ivanovich Mendeleev La tabla periódica Julius Lothar Meyer Dimitri Ivanovich Mendeleev Silvia Ponce López ITESM, Julio 2007 Contenidos Organización de los elementos en la tabla periódica Propiedades periódicas: radio atómico,

Más detalles

Enseñanza - Aprendizaje

Enseñanza - Aprendizaje El modelo atómico de Bohr funcionaba muy bien para el átomo de hidrógeno, sin embargo, en los espectros realizados para átomos de otros elementos se observaba que electrones de un mismo nivel energético

Más detalles

ESTRUCTURA ATÓMICA TABLA PERIÓDICA UNIÓN QUÍMICA

ESTRUCTURA ATÓMICA TABLA PERIÓDICA UNIÓN QUÍMICA ESTRUCTURA ATÓMICA TABLA PERIÓDICA UNIÓN QUÍMICA Teoría Atómica de DALTON 1- Los elementos químicos están constituidos por partículas denominadas átomos 2- Átomos de un mismo elemento, tienen las mismas

Más detalles

Los números indican los niveles de energía. 2s 2p Las letras la forma del orbital. 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p

Los números indican los niveles de energía. 2s 2p Las letras la forma del orbital. 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p 1s Los números indican los niveles de energía. 2s 2p Las letras la forma del orbital. 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p Diagrama de orbitales: Consiste en dibujar los orbitales como cuadrados

Más detalles

LA TABLA PERIÓDICA. 2ºbachillerato QUÍMICA

LA TABLA PERIÓDICA. 2ºbachillerato QUÍMICA LA TABLA PERIÓDICA 2ºbachillerato QUÍMICA 1 A lo lo largo de la la historia, los químicos han intentado ordenar los elementos de forma agrupada, de tal manera que aquellos que posean propiedades similares

Más detalles

TEMA 2: DISTRIBUCIÓN ELECTRÓNICA Y TABLA PERIÓDICA.

TEMA 2: DISTRIBUCIÓN ELECTRÓNICA Y TABLA PERIÓDICA. TEMA 2: DISTRIBUCIÓN ELECTRÓNICA Y TABLA PERIÓDICA. 1.- Distribución electrónica. La distribución electrónica o configuración electrónica es el modo en que se sitúan los electrones en la corteza de los

Más detalles

OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2011 NIVEL 2

OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2011 NIVEL 2 Nombre: Cédula de Identidad: Liceo: OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2011 NIVEL 2 NOMENCLATURA, FORMULACIÓN Y REACTIVIDAD QUÍMICA (1) Complete el siguiente cuadro indicando nombre (utilizar nomenclatura

Más detalles

En la Tabla Periódica actual, los elementos están colocados por orden creciente de su número atómico (Z) Se denominan

En la Tabla Periódica actual, los elementos están colocados por orden creciente de su número atómico (Z) Se denominan A lo largo de la historia, los químicos han intentado ordenar los elementos de forma agrupada, de tal manera que aquellos que posean propiedades similares estén juntos. El resultado final el sistema periódico

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 1. En la antigua Grecia ( 450 años a.c.) Demócrito y Leucipo sostuvieron la existencia de átomos (partículas indivisibles) como constituyentes finales de la materia. 2. Sin embargo,

Más detalles

KHIPU DE LA TABLA PERIODICA DE LOS ELEMENTOS QUÍMICOS.

KHIPU DE LA TABLA PERIODICA DE LOS ELEMENTOS QUÍMICOS. KHIPU DE LA TABLA PERIODICA DE LOS ELEMENTOS QUÍMICOS. Autor: Ing. Julio Antonio Gutiérrez Samanez (*) Trabajo dedicado a la ASOCIACIÓN CIVIL KHIPU del Cusco, que me otorgó el título de KHIPUKAMAYOQ 2008.

Más detalles

3.4. FORMULACIÓN Y NOMENCLATURA I.

3.4. FORMULACIÓN Y NOMENCLATURA I. 3.4. FORMULACIÓN Y NOMENCLATURA I. 3.4.1. SÍMBOLOS QUÍMICOS. Cada elemento químico se identifica con un nombre, aprobado por la IUPAC, International Union of Pure and Applied Chemestry - Unión Internacional

Más detalles

MODELO ATÓMICO DE DALTON 1808

MODELO ATÓMICO DE DALTON 1808 ESTRUCTURA ATÓMICA MODELO ATÓMICO DE DALTON 1808 Sienta las bases para la estequiometría de composición y la estequiometría de reacción. 1. Un elemento se compone de partículas extremadamente pequeñas,

Más detalles

Acidez de los cationes metálicos

Acidez de los cationes metálicos Acidez de los cationes metálicos Pregunta a responder al final de la sesión: Cuáles son las propiedades de un ion metálico que influyen en su fuerza ácida y cómo varía ésta en función de dichas propiedades?

Más detalles

MODELOS ATÓMICOS Y PROPIEDADES PERIÓDICAS DE LOS ELEMENTOS. CUESTIONES.

MODELOS ATÓMICOS Y PROPIEDADES PERIÓDICAS DE LOS ELEMENTOS. CUESTIONES. MODELOS ATÓMICOS Y PROPIEDADES PERIÓDICAS DE LOS ELEMENTOS. CUESTIONES. E2A.S2013 Para los siguientes elementos Na, P, S y Cl, diga razonadamente cuál es: a.- El de menor energía de ionización. b.- El

Más detalles

Tema 4: Propiedades periódicas de los elementos - 1 -

Tema 4: Propiedades periódicas de los elementos - 1 - Tema 4: Propiedades periódicas de los elementos - - BIBLIOGRAFÍA: * Estructura atómica y enlace químico J. Casabó i Gispert * Química. Curso Universitario B.M. Mahan y R.J. Myers * Química General R.H.

Más detalles

OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2010 NIVEL 2

OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2010 NIVEL 2 Nombre: Cédula de Identidad: Liceo: OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2010 NIVEL 2 NOMENCLATURA, FORMULACIÓN Y REACTIVIDAD QUÍMICA (1) Complete el siguiente cuadro indicando nombre (utilizar nomenclatura

Más detalles

con metales y no metales como los anfígenos o los halógenos. Todos comparten la valencia 1 como única.

con metales y no metales como los anfígenos o los halógenos. Todos comparten la valencia 1 como única. http://www.educa.aragob.es/iesfgcza/depart/depfiqui.htm 30/04/009 Química ªBachiller.- Para cada uno de los siguientes apartados, indique el nombre, símbolo, número atómico y configuración electrónica

Más detalles

GUIA DE EJERCICIOS Nº5 RESPUESTAS Propiedades Periódicas Química. Iº medio Octubre 2015

GUIA DE EJERCICIOS Nº5 RESPUESTAS Propiedades Periódicas Química. Iº medio Octubre 2015 GUIA DE EJERCICIOS Nº5 RESPUESTAS Propiedades Periódicas Química Iº medio Octubre 2015 Desarrolla en tu cuaderno los siguientes ejercicios de preparación para la prueba. 1. Defina: a) Carga nuclear efectiva

Más detalles

EJERCICIOS DE SELECTIVIDAD 99/00

EJERCICIOS DE SELECTIVIDAD 99/00 EJERCICIOS DE SELECTIVIDAD 99/00 1. Tres elementos tienen de número atómico 25, 35 y 38, respectivamente. a) Escriba la configuración electrónica de los mismos. b) Indique, razonadamente, el grupo y periodo

Más detalles

XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2012 NIVEL 1

XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2012 NIVEL 1 XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2012 NIVEL 1 Datos del estudiante. Nombre Cédula de identidad Ciudad de origen Ciudad donde toma la prueba Departamento Liceo al que pertenece Año que cursa Naturaleza

Más detalles

OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2010 NIVEL 3

OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2010 NIVEL 3 Nombre: Cédula de Identidad: Liceo: OLIMPIADA DEPARTAMENTAL DE QUÍMICA 2010 NIVEL 3 NOMENCLATURA, FORMULACIÓN Y REACTIVIDAD QUÍMICA (1) Complete el siguiente cuadro indicando nombre (utilizar nomenclatura

Más detalles

REPARTIDO 1 ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS

REPARTIDO 1 ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS REPARTIDO 1 ESTRUCTURA ATÓMICA Y PROPIEDADES PERIÓDICAS 2007 Bibliografía: - Química, La Ciencia Central, T.L.Brown, H.E.LeMay, Jr., B. Bursten. Ed. Prentice-Hall, México, 1998,7 ma Ed. Capítulo 6, págs.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO Junio, Ejercicio 2, Opción A Reserva 1, Ejercicio 2, Opción A Reserva 2, Ejercicio 3, Opción B Reserva 3, Ejercicio

Más detalles

Propiedades Periódicas

Propiedades Periódicas Propiedades Periódicas Radio atómico Definición: La mitad de la distancia entre los centros de dos átomos vecinos. Estimar el tamaño de los átomos es un poco complicado debido a la naturaleza difusa de

Más detalles

1 Qué le sucede a un electrón si cae a un nivel de energía inferior? 2 Cómo puede un electrón cambiar a un nivel de energía superior?

1 Qué le sucede a un electrón si cae a un nivel de energía inferior? 2 Cómo puede un electrón cambiar a un nivel de energía superior? 1 Qué le sucede a un electrón si cae a un nivel de energía inferior? 2 Cómo puede un electrón cambiar a un nivel de energía superior? 3 Según el modelo atómico de Bohr, cómo se origina un espectro de absorción?

Más detalles

CLASE Nº 2 TEORÍA ATÓMICA DE LA MATERIA

CLASE Nº 2 TEORÍA ATÓMICA DE LA MATERIA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL CLASE Nº 2 TEORÍA ATÓMICA DE LA MATERIA 2012 1 Teorías

Más detalles

ESPECTROSCOPIA ATÓMICA Q.F. ALEX SILVA ARAUJO

ESPECTROSCOPIA ATÓMICA Q.F. ALEX SILVA ARAUJO Q.F. ALEX SILVA ARAUJO GENERALIDADES La Espectroscopia Atómica se basa en la absorción, emisión o fluorescencia por átomos o iones elementales. Hay tres regiones del espectro que dan información atómica:

Más detalles

TEMA 2: ÁTOMOS POLIELECTRÓNICOS

TEMA 2: ÁTOMOS POLIELECTRÓNICOS TEMA 2: ÁTOMOS POLIELECTRÓNICOS 2.1 Los átomos polielectrónicos. 2.2 Modelo de la aproximación orbital. 2.3 Penetración y apantallamiento. Constantes de apantallamiento. 2.4 Funciones de onda hidrogenoides

Más detalles

XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2013 NIVEL 2

XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2013 NIVEL 2 XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2013 NIVEL 2 Datos del estudiante. Nombre Cédula de identidad Ciudad de origen Ciudad donde toma la prueba Departamento Liceo al que pertenece Año que cursa Nomenclatura

Más detalles

EVOLUCIÓN DE LOS MODELOS ATÓMICOS

EVOLUCIÓN DE LOS MODELOS ATÓMICOS MODELO ATÓMICO DE DALTON Modelo EVOLUCIÓN DE LOS MODELOS ATÓMICOS La materia está constituida por átomos, que son partículas indivisibles. Todos los átomos de un mismo elemento químico son iguales en masa

Más detalles

FACULTAD DE INGENIERIA TEMA: TABLA PERIODICA FAVIEL MIRANDA: 2011111006 SANTA MARTA D.T.C.H.

FACULTAD DE INGENIERIA TEMA: TABLA PERIODICA FAVIEL MIRANDA: 2011111006 SANTA MARTA D.T.C.H. FACULTAD DE INGENIERIA TEMA: TABLA PERIODICA FAVIEL MIRANDA: 2011111006 SANTA MARTA D.T.C.H. 2010 INTRODUCCION La tabla o sistema periódico, es el esquema de todos los elementos químicos dispuestos por

Más detalles

Tendencias Periódicas- Problemas de Revisión

Tendencias Periódicas- Problemas de Revisión Tendencias Periódicas- Problemas de Revisión PSI Química Nombre Tamaño atómico 1. Ordena los siguientes elementos según su tamaño atómico creciente: P, Cs, Sn, F, Sr, Tl 2. Ordena los siguientes elementos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 QUÍMICA TEMA : LA ESTRUCTURA DEL ÁTOMO Junio, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva 3, Ejercicio 3, Opción

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 QUÍMICA TEMA : LA ESTRUCTURA DEL ÁTOMO Junio, Ejercicio, Opción A Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio, Opción A Reserva 3, Ejercicio, Opción

Más detalles

Tema 2: Estructura atómica. Sistema periódico. Propiedades periódicas. Relación de cuestiones y problemas propuestos en Selectividad

Tema 2: Estructura atómica. Sistema periódico. Propiedades periódicas. Relación de cuestiones y problemas propuestos en Selectividad Tema 2: Estructura atómica. Sistema periódico. Propiedades periódicas. Relación de cuestiones y problemas propuestos en Selectividad Cuestión 1 Dadas las siguientes configuraciones electrónicas: A: 1s

Más detalles

LOS ELECTRONES EN LOS ÁTOMOS:

LOS ELECTRONES EN LOS ÁTOMOS: LOS ELECTRONES EN LOS ÁTOMOS: En este artículo vamos a estudiar todos aquellos aspectos relacionados con la estructura interna de los átomos. -MODELOS ATÓMICOS: Son teorías que pretenden explicar cómo

Más detalles

IES Menéndez Tolosa Dpto. Física y Química 4º ESO - Modelos atómicos 1S

IES Menéndez Tolosa Dpto. Física y Química 4º ESO - Modelos atómicos 1S IES Menéndez Tolosa Dpto. Física y Química 4º ESO - Modelos atómicos 1S 1 Escribe tres isótopos de oxígeno que tengan, y 10 neutrones. Cuál de ellos tendrá mayor Z? 16 17 1 O, O, O Todos ellos tienen el

Más detalles

Profesora Genny Astudillo Castillo

Profesora Genny Astudillo Castillo LICEO Confederación Suiza ASIGNATURA: QUÍMICA Profesora Genny Astudillo Castillo GUÍA DE ESTUDIO: NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA 1º Medio Importancia de la configuración electrónica Es importante

Más detalles

Modelo atómico de la materia. Tabla periódica, configuración electrónica y propiedades periódicas

Modelo atómico de la materia. Tabla periódica, configuración electrónica y propiedades periódicas Eje temático: Modelo atómico de la materia Enlace químico Química orgánica Disoluciones químicas Contenido: Propiedades periódicas: configuración electrónica y tabla periódica Nivel: Segundo medio Modelo

Más detalles

Mundo Atómico. Profesor: Robinson Pino H.

Mundo Atómico. Profesor: Robinson Pino H. Mundo Atómico Profesor: Robinson Pino H. 1 ÁTOMO En el siglo V a.c., el filósofo griego Demócrito expresó la idea de que toda la materia estaba formada por partículas muy pequeñas e indivisibles a las

Más detalles

2 Estructura electrónica de los átomos.

2 Estructura electrónica de los átomos. 2 Estructura electrónica de los átomos. Sistema Periódico Actividades del interior de la unidad 1. Justifica cuál o cuáles de las siguientes combinaciones de valores de números cuánticos, listados en el

Más detalles

RESUMEN DE LOS APORTES DE LOS CIENTÍFICOS AL MODELO ACTUAL

RESUMEN DE LOS APORTES DE LOS CIENTÍFICOS AL MODELO ACTUAL Demócrito: El átomo es indivisible. DALTON Para Dalton los átomos eran esferas macizas. atómica: teoría se puede resumir en: Estableció la teoría 1.- Los elementos químicos están formados por partículas

Más detalles

Resoluciones de ejercicios del PRÁCTICO 8

Resoluciones de ejercicios del PRÁCTICO 8 Resoluciones de ejercicios del PRÁCTICO 8 1- a) Modelo de Bohr: Modelo que intenta explicar el átomo de hidrogeno (H). Basado en las ideas de Planck y de Einstein, sobre la cuantización de la energía y

Más detalles

En un grupo. En un período

En un grupo. En un período Propiedades Periódicas Radio atómico Potencial de ionización Electroafinidad Electronegatividad Radio atómico (r): es la distancia desde el núcleo al último electrón del átomo Sabemos que r n Al aumentar

Más detalles

Oxidación de los metales y propiedades periódicas

Oxidación de los metales y propiedades periódicas Oxidación de los metales y propiedades periódicas Pregunta a responder al final de la sesión: Cuál de las propiedades periódicas de los elementos varía igual que su tendencia a oxidarse? Introducción En

Más detalles

Oxidación de los metales y propiedades periódicas

Oxidación de los metales y propiedades periódicas Oxidación de los metales y propiedades periódicas Pregunta a responder al final de la sesión: Cuál de las propiedades periódicas de los elementos varía igual que su tendencia a oxidarse? Introducción En

Más detalles

ies menéndez tolosa 1 Cuántos orbitales tiene un átomo de hidrógeno en el quinto nivel de energía (E5)?

ies menéndez tolosa 1 Cuántos orbitales tiene un átomo de hidrógeno en el quinto nivel de energía (E5)? ies menéndez tolosa 1 Cuántos orbitales tiene un átomo de idrógeno en el quinto nivel de energía (E5)? Para el quinto nivel de energía, el número cuántico principal es 5. Luego ay: n 2 = 5 2 = 25 orbitales

Más detalles

Qué estudiamos en Química Orgánica? ÁTOMOS Y ELECTRONES! ENLACE QUÍMICO

Qué estudiamos en Química Orgánica? ÁTOMOS Y ELECTRONES! ENLACE QUÍMICO Química Orgánica I Qué estudiamos en Química Orgánica? Cómo los compuestos orgánicos reaccionan: Rompimiento y formación de enlaces. Enlaces que se forman cuando átomos comparten electrones, enlaces que

Más detalles

Modelos atómicos. Sistema periódico. Enlace químico

Modelos atómicos. Sistema periódico. Enlace químico Modelos atómicos. Sistema periódico. Enlace químico ESTRUCTURA DE LA MATERIA. DESARROLLO HISTÓRICO EXPERIMENTO DE RUTHERFORD 1911 Núcleo Atómico y Radiactividad Número atómico (Z) cantidad de protones

Más detalles

Tema 15. Tema 15. Clasificación periódica de los elementos

Tema 15. Tema 15. Clasificación periódica de los elementos Tema 15 Clasificación periódica de los elementos 15.1 Configuración electrónica 15.2 El sistema periódico 15.3 Propiedades atómicas 15.4 Energía de ionización 1 2 15.1 Configuración electrónica La ecuación

Más detalles

27/04/2011. Tabla Periódica Propiedades Periódicas Radio atómico Potencial de ionización Electroafinidad Electronegatividad.

27/04/2011. Tabla Periódica Propiedades Periódicas Radio atómico Potencial de ionización Electroafinidad Electronegatividad. Propiedades Periódicas Radio atómico Potencial de ionización Electroafinidad Electronegatividad Radio atómico (r): es la distancia desde el núcleo al último electrón del átomo En un período Sabemos que

Más detalles

Estructura de los átomos.

Estructura de los átomos. Estructura de los átomos. Teoría atomística de Demócrito: Átomo, del griego: que no se puede cortar. Demócrito, filósofo griego (s. IV a.c.): Si dividimos la materia de forma sucesiva llegará un momento

Más detalles

6.1. LAS CARACTERÍSTICAS DE LOS SERES VIVOS. Átomos y estructura atómica

6.1. LAS CARACTERÍSTICAS DE LOS SERES VIVOS. Átomos y estructura atómica 6.1. LAS CARACTERÍSTICAS DE LOS SERES VIVOS En este epígrafe se desarrollan las características que diferencian a los seres vivos. Una de ellas es la complejidad molecular, que se debe a la inmensa variedad

Más detalles

Configuración Electrónica

Configuración Electrónica Los subniveles se ordenan según el valor de n + l Distribución de los electrones en el átomo Número Orbitales que ocupan relativa A menor valor de n + l, menor energía (más estable) Válido sólo si l 3

Más detalles

Acidez de los cationes metálicos

Acidez de los cationes metálicos Acidez de los cationes metálicos Pregunta a responder al final de la sesión: Cuáles son las propiedades de un ion metálico que influyen en su fuerza ácida y cómo varía ésta en función de dichas propiedades?

Más detalles

Propiedades Periódicas

Propiedades Periódicas Propiedades Periódicas Radio atómico Definición: La mitad de la distancia entre los centros de dos átomos vecinos. Estimar el tamaño de los átomos es un poco complicado debido a la naturaleza difusa de

Más detalles

MATERIALES Y DISPOSITIVOS ELECTRÓNICOS (Ing Computación) MATERIALES ELÉCTRICOS (Ing. Eléctrica, Electrónica y Biomédica)

MATERIALES Y DISPOSITIVOS ELECTRÓNICOS (Ing Computación) MATERIALES ELÉCTRICOS (Ing. Eléctrica, Electrónica y Biomédica) MATERIALES Y DISPOSITIVOS ELECTRÓNICOS (Ing Computación) MATERIALES ELÉCTRICOS (Ing. Eléctrica, Electrónica y Biomédica) GUIA DE ESTUDIO MODELOS ATÓMICOS Los átomos están compuesto por: Núcleo, de carga

Más detalles

TEMA 2 DISTRIBUCIÓN ELECTRÓNICA Y TABLA PERIÓDICA

TEMA 2 DISTRIBUCIÓN ELECTRÓNICA Y TABLA PERIÓDICA TEMA 2 DISTRIBUCIÓN ELECTRÓNICA Y TABLA PERIÓDICA 1. PRIMERAS CLASIFICACIONES 2. DISTRIBUCIÓN ELECTRÓNICA 2.1. PRINCIPIO DE EXCLUSIÓN DE PAULI 2.2. PRINCIPIO DE MÍNIMA ENERGÍA 2.3. PRINCIPIO DE MÁXIMA

Más detalles

ITEM I.- Encierra en un circulo la alternativa correcta, si te equivocas tarja la incorrecta ( / ) y vuelve a marcar la correcta.

ITEM I.- Encierra en un circulo la alternativa correcta, si te equivocas tarja la incorrecta ( / ) y vuelve a marcar la correcta. Firma Apoderado(a) GUÍA PRUEBA DE SINTESIS. Nombre: Curso: 9 th Grade Asignatura: QUIMICA Fecha: noviembre de 2010 Prof. Manue Vásquez. Objetivo: Reforzar contenidos y habilidades trabajadas en la asignatura

Más detalles

UNIDAD 4. ESTRUCTURA DE LA MATERIA.

UNIDAD 4. ESTRUCTURA DE LA MATERIA. UNIDAD 4. ESTRUCTURA DE LA MATERIA. 1.- Resume las características principales de los distintos modelos atómicos que has estudiado y ordénalos cronológicamente. (Pág. 74 a 78) 2.- Indica si las siguientes

Más detalles

A-1 - Indique cual de las siguientes afirmaciones es correcta:

A-1 - Indique cual de las siguientes afirmaciones es correcta: ESTRUCTURA ATÓMICA - PREGUNTAS DE TEST ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))Q Serie A: PARTICULAS SUBATOMICAS: Serie B- ESPECTROS: Serie

Más detalles

EL ÁTOMO. Se supuso que estas partículas deberían estar en todos los átomos. Thomson las llamó electrones.

EL ÁTOMO. Se supuso que estas partículas deberían estar en todos los átomos. Thomson las llamó electrones. ANTECEDENTES HISTÓRICOS. () EL ÁTOMO Leucipo y Demócrito. Proponen la Discontinuidad de la materia. Dalton. Formula la primera Teoría atómica. Volta, Davy, Faraday, Berzelius, descubren la Naturaleza eléctrica

Más detalles

EVOLUCIÓN HISTÓRICA DE LOS MODELOS ATÓMICOS.

EVOLUCIÓN HISTÓRICA DE LOS MODELOS ATÓMICOS. Mapa conceptual. EVOLUCIÓN HISTÓRICA DE LOS MODELOS ATÓMICOS. AUTOR DALTON (1808) THOMSON (1900) RUTHERFORD (1911) HECHOS EN LOS QUE SE BASÓ. Ley de conservación de la masa en las reacciones químicas (Lavoisier,

Más detalles

ESTRUCTURA ELECTRÓNICA DE LOS ÁTOMOS

ESTRUCTURA ELECTRÓNICA DE LOS ÁTOMOS ESTRUCTURA ELECTRÓNICA DE LOS ÁTOMOS Lic. Lidia Iñigo En el texto Temas de Química General encontrarás explicados los experimentos que llevaron a determinar la estructura atómica y los principales modelos

Más detalles

2. Sistema Periódico de los elementos

2. Sistema Periódico de los elementos 2. Sistema Periódico de los elementos ACTIVIDADES (pág. 35) La Tabla Periódica consta de 18 grupos porque corresponde a los electrones que caben en los subniveles s, p y d juntos: 2 + 6 + 10 = 18. El número

Más detalles

XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2013 NIVEL 1

XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2013 NIVEL 1 XVI OLIMPÍADA DEPARTAMENTAL DE QUÍMICA 2013 NIVEL 1 Datos del estudiante. Nombre Cédula de identidad Ciudad de origen Ciudad donde toma la prueba Departamento Liceo al que pertenece Año que cursa Naturaleza

Más detalles

ETIMOLOGÍA DEL ÁTOMO. A = Sin Tomo = División TEORÍAS Y MODELOS ATÓMICOS

ETIMOLOGÍA DEL ÁTOMO. A = Sin Tomo = División TEORÍAS Y MODELOS ATÓMICOS ETIMOLOGÍA DEL ÁTOMO A = Sin Tomo = División TEORÍAS Y MODELOS ATÓMICOS 1. TEORÍA GRIEGA: En Grecia los pensadores filósofos por año 460 a. C. fueron los primeros en hablar que todos los cuerpos estaban

Más detalles

EL MODELO ATOMICO DE BOHR

EL MODELO ATOMICO DE BOHR EL MODELO ATOMICO DE BOHR En 1913, Niels Bohr ideó un modelo atómico que explica perfectamente los espectros determinados experimentalmente para átomos hidrogenoides. Estos son sistemas formados solamente

Más detalles

Ley Periódica. Química General I 2012

Ley Periódica. Química General I 2012 Ley Periódica Química General I 2012 Ley Periódica Mendeleev estudió las configuraciones electrónicas y descubrió la periodicidad cuando estas eran similares. Configuración electrónica similar Propiedades

Más detalles

RESOLUCIÓN DE CUESTIONES

RESOLUCIÓN DE CUESTIONES RESOLUCIÓN DE CUESTIONES Cuestión 1 Dadas las siguientes configuraciones electrónicas: A: 1s 2 2s 2 2p 6 3s 2 3p 4 ; B: 1s 2 2s 2 ; C: 1s 2 2s 2 2p 6. Indique, razonadamente: a) El grupo y período en los

Más detalles

Elemento químico: es el conjunto formado por átomos del mismo número atómico (Z)

Elemento químico: es el conjunto formado por átomos del mismo número atómico (Z) Tabla Periodica En 1913, al realizar experiencias de bombardeo de varios elementos químicos con rayos X, Moseley percibió que el comportamiento de cada elemento químico estaba relacionado con la cantidad

Más detalles

QUÍMICA 3ºESO ACT TEMA 4. EL ÁTOMO. 1. UN ÁTOMO MUY ANTIGUO.

QUÍMICA 3ºESO ACT TEMA 4. EL ÁTOMO. 1. UN ÁTOMO MUY ANTIGUO. TEMA 4. EL ÁTOMO. 1. UN ÁTOMO MUY ANTIGUO. En el siglo V a.c., Leucipo ya decía que había un solo tipo de materia. Pensaba, además que si dividíamos la materia en partes cada vez más pequeñas encontraríamos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 2, Opción B Reserva 2, Ejercicio 2, Opción A Reserva 3, Ejercicio

Más detalles

Ejercicios y respuestas del apartado: Teoría atómica. Z, A, isótopos, n, p, e-. Iones

Ejercicios y respuestas del apartado: Teoría atómica. Z, A, isótopos, n, p, e-. Iones Ejercicios y respuestas del apartado: Teoría atómica. Z, A, isótopos, n, p, e-. Iones Teorías atómicas 1. Qué explica el modelo atómico de Dalton? a) La materia está constituida por átomos b) Los átomos

Más detalles

Unitat 10. La Taula Periòdica (Llibre de text Unitat 8, pàg )

Unitat 10. La Taula Periòdica (Llibre de text Unitat 8, pàg ) Unitat 10 La Taula Periòdica (Llibre de text Unitat 8, pàg. 267-284) Index D1 10.1. Taula Periòdica actual 10.2. Descripció de la Taula Periòdica actual 10.3. L estructura electrònica i la Taula Periòdica

Más detalles

NÚCLEO ATÓMICO Profesor: Juan T. Valverde

NÚCLEO ATÓMICO Profesor: Juan T. Valverde 6 1.- Deduce la masa atómica del litio a partir de sus isótopos Li con una abundancia del 7 7,5% y Li con una abundancia del 92,5%. http://www.youtube.com/watch?v=8vvo-xqynea&feature=youtu.be 2.- Calcula

Más detalles

Estructura atómica: tipos de enlaces

Estructura atómica: tipos de enlaces Estructura atómica: tipos de enlaces Estructura de los átomos Modelo atómico de Bohr Masa (g) Carga (C) Protón 1.673 x 10-24 1.602 x 10-19 Neutrón 1.675 x 10-24 0 Electrón 9.109 x 10-28 1.602 x 10-19 Los

Más detalles

2. PROPIEDADES PERIÓDICAS

2. PROPIEDADES PERIÓDICAS Las propiedades físicas y químicas de los elementos se pueden relacionar con su configuración electrónica, es decir, con su posición en la tabla periódica. Las propiedades que mejor muestran esta periodicidad

Más detalles

1. Cuál de los siguientes enunciados es uno de los postulados correspondientes al modelo atómico de Bohr?

1. Cuál de los siguientes enunciados es uno de los postulados correspondientes al modelo atómico de Bohr? Programa Estándar Anual Nº Guía práctica: Teoría atómica I: modelos atómicos, estructura atómica y tipos de átomos Ejercicios PSU 1. Cuál de los siguientes enunciados es uno de los postulados correspondientes

Más detalles