Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz"

Transcripción

1 Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9 Regla de la cadena razón de cambio.0 Aproimaciones. Análisis Marginal. Derivación Implícita

2 Cap. Funciones de Varias variables. DEFINICIÓN de Funciones de dos variables. Una función de dos variables es una relación, donde a estas variables se les asigna uno solamente un número real. Ejemplo. Suponga que para un determinado artículo la función utilidad está dada por U (, +, donde representa el precio del artículo representa la cantidad producida del artículo. Se observa, entonces que la utilidad depende de las variables, precio cantidad. Por ejemplo si entonces la utilidad sería U (,) +. Ejemplo. Función de Cobb-Dauglas Esta función tiene regla de correspondencia F (, A donde A, a, b son constantes. Por ejemplo. La estimación de la función de producción de una cierta pesquería de langostas está dada por F ( S; E),6S E donde S designa la reserva de langosta, E el trabajo invertido F( S; E) las capturas. a b Note, entonces que se podría definir funciones de tres más variables. PREGUNTA: Cómo sería la definición para una función de tres variables?. DOMINIO. El dominio de una función de dos variables es el conjunto para el cual estas variables definen la función; es decir, el conjunto para el cual tiene sentido la regla de correspondencia de la función. Ejemplo Hallar el Dominio Natural para F (, + SOLUCIÓN. Observe que la regla de correspondencia no tiene restricciones, por tanto se le puede dar cualquier valor real a las variables independientes, es decir Domf R. Ejemplo Hallar el Dominio Natural para F (, + Solución. Para que la regla de correspondencia tenga sentido se necesita que 0

3 Cap. Funciones de Varias variables Es decir Domf / 0 el plano cartesiano.. En esta ocasión puede ser mejor representarlos en 0 0 Ejemplo Hallar el Dominio Natural para F (, 9 ( + ) SOLUCIÓN., para que se pueda calcular la raíz cuadrada lo interior del radical debe ser un número positivo o cero. Despejando se tiene + 9, los pares de números que pertenecen a la circunferencia centrada en el origen de radio a su interior. Observe que la regla de correspondencia tiene sentido cuando 9 ( + ) 0 Es decir Domf / Ejercicios Propuestos.. Determine grafique el dominio de la función. Sea la función f (, e 4 + a) Determine el Dominio de la función f (,. ln( + f (,

4 Cap. Funciones de Varias variables. GRAFICA. b) Suponga que la función f (,, dada, representa la función de producción de una empresa, donde " " es el número de trabajadores calificados " " es el número de trabajadores no calificados. Si en la actualidad laboran 0 trabajadores calificados 40 no calificados, determine el nivel de producción. Sea z f (, una función de dos variables. Su gráfico se define como el conjuntos del puntos (,, z) del Espacio, tales que z f (,. El lugar geométrico es llamado Superficie. Elaborar gráficas de una función de dos variables no es tan sencillo, se requeriría de un computador. En cambio obtener trazas de las secciones transversales de la superficie es suficiente, en ocasiones para su análisis..4 CURVAS DE NIVEL. Sea z f (, una función de dos variables. Las CURVAS DE NIVEL de la gráfica de la superficie de la función se definen como las traectorias en el plano tales que f (, c. Es decir, serían las curvas que resultan de la intersección de la superficie con los planos z c, proectadas en el plano. Ejemplo. Grafique algunas curvas de nivel para f + (, SOLUCIÓN: Las curvas de nivel para esta superficie es la familia de traectorias tales que + c. (Circunferencias centradas en el origen) + C C C 4 C 9 C 6 4

5 Cap. Funciones de Varias variables Ejercicios Propuestos. Grafique las curvas de nivel indicadas para:. f (, ; C, C, C C 4. f (, ln( + ) ; C4 Cln4. DERIVADAS PARCIALES Ejercicios Propuestos.. La demanda A de un producto A está dada por:. Si p B 00 p p, en donde p A es el precio por unidad de A es el precio por unidad del producto A A relacionado B. Pruebe que p A + p B A p p (, e pruebe que f + f 0 f A B A A B.6 FUNCIONES HOMOGÉNEAS. Una función f de dos variables e definida en un dominio, D se llama homogénea de grado k si, para todo ( ) D k f ( t, t t f (, para todo t > 0 Ejemplo Demuestre que la función de Cobb-Douglas especifique su grado. SOLUCIÓN: f (, a b A Para que la función sea homogénea debe cumplirse que f ( t t t f (, Obteniendo f ( t, t resulta: a b f ( t, t A( t) ( t At At a+ b ( t, t t f (, f Por tanto, es una función homogénea de grado a a+ b a t a b a + b b b es homogénea, k, ).

6 Cap. Funciones de Varias variables Propiedades Sea z f (, una función homogénea de grado k, entonces: f f. + kf. Sus derivadas parciales f f son funciones homogéneas de grado k k k f f, f,,. ( ) ( ) ( ) 4. f + f + f k( k ) f Ejercicios propuestos.4 Determine si las funciones son homogéneas especifique el grado 4. f (, +. f (,. f (, + 4., f ( p, r) Ap r Verificar las propiedades para las funciones homogéneas determinadas.,08.7 FUNCIONES HOMOTÉTICAS. Una función f de dos variables e definida en un dominio D se llama homotética cuando(, ) D (, ) D, Si, f entonces f t, t f t t, t > 0 f ( ) (, ) ( ) ( ), Teorema Una función homogénea f de grado k es homotética. Demostración. Suponga que f es homogénea de grado k, entonces se cumple que f k k ( t, t ) t f ( ) f ( t, t ) t f ( ),., Suponga, ahora que ( ) ( ), f, k f ( t, t ) t f ( ), Por tanto, ( t, t ) f ( t, t ) f f, entonces 6

7 Cap. Funciones de Varias variables Ejemplo Demuestre que la función de Cobb-Douglas SOLUCIÓN: f (, a b A es homotética Para que la función sea homotética debe cumplirse que, siendo entonces ( t, t ) f ( t t ) f, t > 0, (, ) f (, f ) Obteniendo f ( t, t ) resulta: a+b f ( t, t ) t f (, ) Suponiendo que (, ) f (, ) a+ b f ( t, t ) t f (, ) a+ b a b f ( t, t ) t A a b f ( t, t ) A( t ) ( t ) f ( t, t ) f ( t, t ) f, al reemplazar tenemos: Lo cual demuestra que es homotética..8 DIFERENCIAL TOTAL Sea z f (, una función de dos variables. La diferencial total de la función, denotada como dz o df, se define de la siguiente forma: dz d + d Ejemplo. Encuentre la diferencial total para f (, + SOLUCIÓN: Aplicando la definición dz d + d dz ( ) d + ( d.9 REGLA DE LA CADENA Y RAZÓN DE CAMBIO Suponga que f es una función de las variables e ; suponga además que tanto como son funciones de t, entonces: dz d d + 7

8 Cap. Funciones de Varias variables Ejemplo ( ) Sea f, + donde t SOLUCIÓN: dz d ( )( t) + ( ( ) + Poniendo todo en función de t dz t + dz ( t )( t) + ( t) d ( )( ) ( )( ) dz t, hallar ( )( ) 4t + 8t Note, que idéntico resultado se obtendría habiendo primero realizado la sustitución luego la derivación. Ejercicios propuestos. sent. Sea f (, 4 ln( donde encuentre ( t ). La demanda de cierto producto es Q(, unidades por mes, donde es el precio del producto e el precio de un producto competidor. Se estima que dentro de t meses el precio del producto será 0 + 0, t dólares por unidad mientras que el precio del producto competidor será,8 + 0,t dólares por unidad. a) A qué razón cambiará la demanda del producto con respecto al tiempo dentro de 4 meses? b) A qué razón porcentual cambiará la demanda del producto con respecto al tiempo dentro de 4 meses?. Suponga que cuando las manzanas se venden a CENTAVOS POR LIBRA los panaderos ganan DÓLARES POR HORA, el precio de los pasteles de manzana en el supermercado local es (, + df p DÓLARES POR PASTEL. Suponga además que dentro de t MESES, el precio de las manzanas será + 8t CENTAVOS POR LIBRA que los sueldos de los panaderos serán,96 + 0, 0t 600 DÓLARES POR HORA. Si el supermercado puede vender Q( p) PASTELES p POR SEMANA cuando el precio es p DÓLARES POR PASTEL, a qué razón CAMBIARÁ la demanda semanal Q con respecto al tiempo dentro de dos meses? 8

9 Cap. Funciones de Varias variables.0 APROXIMACIONES. La diferencial total también puede ser utilizada para obtener aproimaciones de una función de dos variables. una función de dos variables, suponga que tiene una variación que tiene una variación, entonces la variación de la función sería: Sea z f (, ( +, + f ( z f, Para variaciones pequeñas de las variables, se puede decir que la variación de la función es aproimadamente igual a su diferencial total; es decir: z dz z d + d Además; si las variaciones son mu pequeñas entonces d. Entonces, finalmente: d z + Ejemplo La función de producción de una empresa está dada por P ( K, L) 40L K donde P representa la producción cuando se emplean L unidades de mano de obra K unidades de capital. Si en la actualidad se emplean 4 unidades de mano de obra unidades de capital. a) Aproime el efecto en la producción de incrementar la mano de obra a 48 unidades disminuir el capital a unidades. Tenemos que: L 4, K L K Utilizando la formula de aproimación L + K L K 40 L K + 40 L L () ( ) 8 ( 7) ( ) K K 9

10 Cap. Funciones de Varias variables La producción disminue aproimadamente en 7. unidades. b) Calcule el cambio porcentual de la producción. El cambio porcentual está dado por Cambio Porcentual 00 P En este caso P( 4,) 40 ( 4) ( ) 40( 7)( 4) Por tanto: 7. Cambio % P % La producción disminue en un 0.0% Ejercicios propuestos.6. Para una compañía concreta, la función de producción de Cobb-Douglas es 0,6 0,4 f (, 00. Estimar el cambio en la producción, si el número de unidades de trabajo varía de 00 a 0 el de unidades de capital de 00 a. Estime también el cambio porcentual.. En cierta fábrica la producción diaria es Q ( K, L) 0L K unidades, donde K representa la inversión de capital L el tamaño de la fuerza laboral. Aplique el cálculo para estimar el porcentaje en el cual cambiará la producción diaria, si la inversión de capital se incrementa en un % la mano de obra en un %.. En cierta fábrica la producción diaria es Q ( K, L) 60L K unidades, donde K representa la inversión de capital L el tamaño de la fuerza laboral. Aplique el cálculo para estimar el porcentaje en el cual cambiará la producción diaria si la inversión de capital se aumenta en un % la mano de obra en un %. 4. Una empresa puede producir P unidades al utilizar L unidades de mano de obra K unidades de capital con ( ) 4 P L, K 00L K. Calcule la variación porcentual en la producción si se reduce la mano de obra en % se incrementa el capiltal en %.. ANÁLISIS MARGINAL Suponga que se tiene una función producción P f ( K, L) L la fuerza laboral. representa el capital donde K Suponga que el capital se incrementa en una unidad que la fuerza laboral se mantiene constante, entonces: 0

11 Cap. Funciones de Varias variables L + K L K ( 0) + () L K K A la derivada parcial de la producción con respecto al capital se la llama la PRODUCTIVIDAD MARGINAL DEL CAPITAL, mide el cambio en la producción cuando sólo el capital se incrementa en una unidad Suponga, ahora que la fuerza laboral se incrementa en una unidad que el capital se mantiene constate, entonces: L + K L K () + ( 0) L K L A la derivada parcial de la producción con respecto al trabajo se la llama la PRODUCTIVIDAD MARGINAL DEL TRABAJO, mide el cambio en la producción cuando solo el trabajo se incrementa en una unidad.. DERIVACIÓN IMPLÍCITA Las derivadas parciales pueden ser utilizadas para determinar derivadas de funciones cuas ecuaciones están dadas de manera implícita. Suponga que f (, C, tomando derivadas a ambos miembros de la ecuación tenemos: Despejando, resulta: Ejemplo. Sea + df f (, d + f 4, hallar dc d d Solución: Empleando la formula, tenemos d f d f d 0 f f d empleando derivadas parciales. d

12 Cap. Funciones de Varias variables Ejercicios propuestos:.7. Hallar para: a) b) ( + e ). Hallar la ecuación de la recta tangente a la curva definida por la ecuación , en el punto,0 ( )

Ejercicios Resueltos de Derivadas y sus aplicaciones:

Ejercicios Resueltos de Derivadas y sus aplicaciones: Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)

Más detalles

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON Cap. Continuidad de funciones.1 CONTINUIDAD EN UN PUNTO. CONTINUIDAD DE FUNCIONES CONOCIDAS.3 CONTINUIDAD EN OPERACIONES CON FUNCIONES.4 CONTINUIDAD EN UN INTERVALO.5 TEOREMA DEL VALOR INTERMEDIO OBJETIVOS:

Más detalles

DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función.

DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función. Funciones de dos o más Variables DERIVADAS PARCIALES Existen magnitudes que dependen de dos o más variables independientes por ejemplo el área del rectángulo depende de la longitud de cada uno de sus lados,

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es

en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es UAH Derivadas Tema 4 DERIVADAS Derivada de una función en un punto Una función f ( es derivable en el punto a si f ( a ) eiste el ite: Este ite se denota por f (a), y eiste cuando resulta un número real

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables F. Alvarez y H. Lugo Universidad Complutense de Madrid 23 Noviembre, 2011 Campo escalar Denominamos campo escalar a una función f : R n R, es decir, una función cuyo dominio

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

Es evidente la continuidad en En el punto, se tiene:

Es evidente la continuidad en En el punto, se tiene: Tema 3 Continuidad Ejercicios Resueltos Ejercicio 1 Estudia la continuidad de la función La función puede expresarse como Para representarla basta considerar dos arcos de parábola: Es evidente la continuidad

Más detalles

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f)

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f) 1. Aplique el método de inducción matemática para probar las siguientes proposiciones. a) b) c) d) e) f) es divisible por 6. g) 2. Halle la solución de las siguientes desigualdades de primer orden. g)

Más detalles

Parcial. lim. 4. Dada la función z = f (x, y) = x 2 y 2x 2 4y 2 determinar los puntos críticos y clasificarlos como máximos, mínimos o puntos silla

Parcial. lim. 4. Dada la función z = f (x, y) = x 2 y 2x 2 4y 2 determinar los puntos críticos y clasificarlos como máximos, mínimos o puntos silla 1. (a) Halle el límite, si existe, o muestre que no existe lim (x,y) (2,2) x 3 + x 2 y 2xy 2 3x 3 + xy 2 3x 2 y y 3 (b) Utilizar la regla de la cadena para calcular z s ó z t si z = xe y + ye x, x = e

Más detalles

Ecuación de la Recta

Ecuación de la Recta PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

Matemática I - Problemas de Máximos y Mínimos

Matemática I - Problemas de Máximos y Mínimos Conceptos previos de la materia a considerar: Concepto de Función. Dominio, codominio, imagen. Formas de expresar una función: mediante tablas, mediante gráficas y analíticamente. Funciones crecientes

Más detalles

CÆlculo intgral UdeM March 19, 2015

CÆlculo intgral UdeM March 19, 2015 1 1. (a) Dada la función z = 4 (x+y) 2, graficar en un plano cartesiano la curva de nivel para z = 2 (b) Sea z = y 2 e y x comprobar que xz x +yz y = 2z 2. (a) Hallar el límite de la función, si existe

Más detalles

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación 96 CAPÍTULO Derivación. La derivada el problema de la recta tangente Hallar la pendiente de la recta tangente a una curva en un punto. Usar la definición de ite para calcular la derivada de una función.

Más detalles

Derivadas Parciales y Derivadas Direccionales

Derivadas Parciales y Derivadas Direccionales Tema 3 Derivadas Parciales y Derivadas Direccionales En este tema y en el siguiente presentaremos los conceptos fundamentales del Cálculo Diferencial para funciones de varias variables. Comenzaremos con

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 55 REFLEXIONA Y RESUELVE Tangentes a una curva y f ( 5 5 Halla, mirando la gráfica y las rectas trazadas, f'(, f'( y f'(. f'( 0; f'( ; f'( Di otros tres puntos

Más detalles

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

Teorema de máximos y mínimos para funciones continuas:

Teorema de máximos y mínimos para funciones continuas: Matemática II 7 Modulo 4 Estudio de funciones. Valores etremos de funciones En muchos casos las funciones que se presentan no pueden graficarse hallando unos pocos puntos, a que no es fácil deducir el

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

Cálculo diferencial DERIVACIÓN

Cálculo diferencial DERIVACIÓN DERIVACIÓN Definición de límite Entorno Definición. Se le llama entorno o vecindad de un punto a en R, al intervalo abierto (a - δ, a + δ ) = {a a - δ < x < a + δ }, en donde δ es semiamplitud a radio

Más detalles

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164 EJERCICIO 16 LA COMPETENCIA PERFECTA El modelo de competencia perfecta es uno de los modelos de mercado más importantes en microeconomía. En este ejercicio analizamos dicho modelo. * Consideremos una situación

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

Parte I. 1. (V/F) Dos curvas de indiferencia de un consumidor solo pueden cortarse en un punto.

Parte I. 1. (V/F) Dos curvas de indiferencia de un consumidor solo pueden cortarse en un punto. Estimados estudiantes: esta es una guía que pretende ayudarlos a estudiar. Si la trabajan a conciencia, con cada pregunta o ejercicio podrán reforzar conceptos y les ayudará a comprender el tema. Los trabajos

Más detalles

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

5.1. Recta tangente, normal e intersección de curvas. Recta tangente 5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com.

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com. FUNCIONES 1- a) Dada la función:, Definida para 0, 0, encontrar el punto (x,y) que maximiza f sujeto a la restricción x+y=36. b) Calcular: Aragón 2014 Opción A Junio 2- Dada la función: Calcular: a) Dominio

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

Cálculo de Derivadas

Cálculo de Derivadas Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

Teoría de la producción Dante A. Urbina

Teoría de la producción Dante A. Urbina Teoría de la producción Dante A. Urbina La función de producción La función de producción representa la relación entre los factores de producción (inputs) y el producto que se puede obtener de ellos (output),

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

ECUACIÓN GENERAL DE SEGUNDO GRADO

ECUACIÓN GENERAL DE SEGUNDO GRADO ECUACIÓN GENERAL DE SEGUNDO GRADO CONTENIDO 1. Definición de cónica y cono de revolución. Determinación de las cónicas por medio de sus coeficientes.1 Determinación del tipo de curva considerando los coeficientes

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

RESUMEN TEÓRICO DE CLASES

RESUMEN TEÓRICO DE CLASES Página 1 RESUMEN TEÓRICO DE CLASES Página 2 Tema 1. Inecuaciones Las inecuaciones son desigualdades algebraicas en la que sus dos miembros se relacionan por uno de estos signos: >; ;

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. dy 2

CALCULO DIFERENCIAL E INTEGRAL II. dy 2 CALCULO DIFERENCIAL E INTEGRAL II TEMA Nº 10 (Última modificación 8-7-015) ECUACIONES DIFERENCIALES En muchos problemas físicos, geométricos o puramente matemáticos, se trata de hallar una función = F()

Más detalles

CAPÍTULO. Conceptos básicos

CAPÍTULO. Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.3 Soluciones de ecuaciones diferenciales 1.3.1 Soluciones de una ecuación Ejemplo 1.3.1 Resolver la ecuación: D 0. H Resolver esta ecuación significa encontrar todos los

Más detalles

3Soluciones a los ejercicios y problemas

3Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; ;, ) 9 7;,; ; ; π b) Alguno de ellos es entero? c) Ordénalos

Más detalles

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables. Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO

CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO Documento elaborado por Jaime Aguilar Moreno Docente área económica Universidad del Valle Sede Buga CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO OBJETIVO DEL CAPÍTULO Lograr que el estudiante

Más detalles

4. " $#%&' (#) para todo $#* (desigualdad triangular).

4.  $#%&' (#) para todo $#* (desigualdad triangular). 10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes

Más detalles

CAPÍTULO. 1 Conceptos básicos

CAPÍTULO. 1 Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.4.2 Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS ÁNGULO FUNCIÓN SENO Y FUNCIÓN COSENO FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS CONOCIDOS 5 IDENTIDADES TRIGONOMÉTRICAS. Eisten epresiones algebraicas que contienen funciones

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA.

UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA. UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA Históricamente, los exponentes fueron introducidos en matemáticas para dar un método corto que indicara el producto de varios factores semejantes,

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Derivadas TEORIA DE DERIVADAS. Incrementos. Pendiente

Derivadas TEORIA DE DERIVADAS. Incrementos. Pendiente TEORIA DE DERIVADAS Derivadas El conjunto de todas las funciones presenta una diversidad tal que es casi imposible descubrir propiedades generales interesantes que convengan a todas ellas. Puesto que las

Más detalles

ECONOMÍA I MICROECONOMÍA PRODUCCIÓN Y COSTES. El ingreso total es la cantidad que recibe una empresa por la venta de su producción.

ECONOMÍA I MICROECONOMÍA PRODUCCIÓN Y COSTES. El ingreso total es la cantidad que recibe una empresa por la venta de su producción. TEMA 4 PRODUCCIÓN Y COSTES En este tema vamos a estudiar la conducta de la empresa, lo que nos permitirá conocer mejor la curva de oferta de un mercado. También analizaremos una parte de la economía denominada

Más detalles

FUNCIONES. Definición de función. Ejemplos.

FUNCIONES. Definición de función. Ejemplos. FUNCIONES. Definición de función. Una función es una relación entre un conjunto de salida llamado dominio y un conjunto de llegada llamado codominio, tal relación debe cumplir que cada elemento del dominio

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. tema 08 La minimización de los costes Enunciados

Más detalles

Capítulo 3 La demanda de trabajo

Capítulo 3 La demanda de trabajo Capítulo 3 La demanda de trabajo 3.1.- El modelo básico a corto plazo 3.2.- Demanda de trabajo a corto plazo 3.3.- Demanda de trabajo a largo plazo 3.4.- La demanda de trabajo del mercado 1 1 Introducción

Más detalles

GEOMETRÍA ANALÍTICA: CÓNICAS

GEOMETRÍA ANALÍTICA: CÓNICAS GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Capítulo II Límites y Continuidad

Capítulo II Límites y Continuidad (Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 10 La maximización del beneficio Enunciados

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la

{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la 4 FUNCIONES 4 Conceptos básicos Sean A y B dos conjuntos dados, una unción de A en B es una regla de correspondencia que asigna a cada elemento de A uno y solamente uno de B En una unción: A es el dominio

Más detalles

INTRODUCCIÓN A LA ECONOMÍA. 6.1. La Demanda de Bienes. 6.1. La Demanda de Bienes TEMA 6. DEMANDA AGREGADA

INTRODUCCIÓN A LA ECONOMÍA. 6.1. La Demanda de Bienes. 6.1. La Demanda de Bienes TEMA 6. DEMANDA AGREGADA INTRODUCCIÓN A LA ECONOMÍA TEMA 6. DEMANDA AGREGADA Índice 6.1. Modelización agregada de los componentes de la Demanda Interior: Consumo, Inversión, Gasto Público. 6.2. Determinación del equilibrio; Multiplicadores.

Más detalles

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA Valor promedio Problemas de Aplicación 1. Suponga que el costo en dólares de un producto está dado por C(x)= 400+x+0.3x 2, donde

Más detalles

PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.

PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. Matemáticas º ESO Federico Arregui PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en es igual a su cuadrado?. Qué número multiplicado por 3 es 0

Más detalles

Superficies. Conceptos generales

Superficies. Conceptos generales Repaso Superficies. Conceptos generales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 REPASO: Superficies. Conceptos generales 1. Conceptos generales Definición

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

3. Funciones y gráficas

3. Funciones y gráficas Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que

Más detalles

Funciones Exponenciales y Logarítmicas

Funciones Exponenciales y Logarítmicas Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

El punto de equilibrio. Apalancamiento operativo Apalancamiento financiero

El punto de equilibrio. Apalancamiento operativo Apalancamiento financiero El punto de equilibrio Apalancamiento operativo Apalancamiento financiero PUNTO DE EQUILIBRIO Es el volumen de ventas al cual los costos operativos totales son iguales a los ingresos totales, y el ingreso

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

Funciones: raíz cuadrada, potencia, exponencial y logaritmo

Funciones: raíz cuadrada, potencia, exponencial y logaritmo Funciones: raíz cuadrada, potencia, exponencial y logaritmo Función raíz cuadrada La función raíz cuadrada de un número, es el número mayor o igual que cero, que elevado al cuadrado se obtiene el primer

Más detalles

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á NÚMEROS REALES Página 7 REFLEXIONA Y RESUELVE El paso de Z a Q Di cuáles de las siguientes ecuaciones se pueden resolver en Z y para cuáles es necesario el conjunto de los números racionales, Q. a) x 0

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

UMBRAL DE RENTABILIDAD

UMBRAL DE RENTABILIDAD Enunciado UMBRAL DE RENTABILIDAD Problema 3 La empresa Mochilay, S.A. se dedica a la fabricación de mochilas escolares. Sus costes fijos son de 100.000, los costes variables unitarios ascienden a 10, y

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal Análisis y programación lineal Problema 1: La gráfica de la función derivada de una función f es la parábola de vértice (0, 2) que corta al eje de abscisas en los puntos ( 3, 0) y (3, 0). A partir de dicha

Más detalles

Funciones algebraicas

Funciones algebraicas Funciones algebraicas Las funciones polinomiales tienen una gran aplicación en la elaboración de modelos que describen fenómenos reales. Algunos de ellos son: la concentración de una sustancia en un compuesto,

Más detalles

MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN

MAT-207 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN MAT-07 ECUACIONES DIFERENCIALES Ing. Magalí Cascales CONTENIDO UNIDAD #1 ECUACIONES DIFERENCIALES 1. Definición. Solución de una Ecuación Diferencial. Clasificación UNIDAD # ECUACIONES DIFERENCIALES DE

Más detalles

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1.

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1. FUNCIONES DE n EN m Nota: se entenderá log log0 = y ln = log e - Determinar y representar gráficamente el dominio de las siguientes funciones: a) f () = 6 b) f () = c) f () = d) f () = e) f () = + + +

Más detalles

Circunferencia. Circunferencia centrada en el origen C(0,0)

Circunferencia. Circunferencia centrada en el origen C(0,0) Circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. El radio de la circunferencia es la distancia de un punto cualquiera de

Más detalles

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H. Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un

Más detalles

CURSOS CENEVAL TOLUCA

CURSOS CENEVAL TOLUCA Precálculo Propiedades de los números reales Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

TEMA 6 LA EMPRESA: PRODUCCIÓN, COSTES Y BENEFICIOS

TEMA 6 LA EMPRESA: PRODUCCIÓN, COSTES Y BENEFICIOS TEMA 6 LA EMPRESA: PRODUCCIÓN, COSTES Y BENEFICIOS 1 Contenido 1. Introducción 2. Conceptos básicos 3. La función de producción y la productividad 3.1. Concepto de función de producción 3.2. Productividad

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

Ayudantía 6. Costo mediototal

Ayudantía 6. Costo mediototal Ayudantía 6 1. Comentes a) La oferta de una firma es el costo marginal R: VERDADERO En el corto plazo la curva de oferta de una empresa competitiva es su curva marginal situada por encima de su costo medio

Más detalles