EL MODELO DE PORTAFOLIO DE TOBIN DE LA DEMANDA DE DINERO. Richard Roca 1.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL MODELO DE PORTAFOLIO DE TOBIN DE LA DEMANDA DE DINERO. Richard Roca 1. rhroca@yahoo.com"

Transcripción

1 EL MODELO DE PORTAFOLIO DE TOBIN DE LA DEMANDA DE DINERO Richrd Roc El trbjo clásico que dio lugr este enfoque es el que escribier el Premio Nobel Jmes Tobin (958) en el que plicó l teorí de portfolio desrrolld por otro Premio Nobel Hrry Mrkowitz. (95). El trbjo de Tobin se concentr en el motivo especultivo de l demnd de dinero. Consider un crter de ctivos finncieros en l que el dinero es un reserv de vlor segur pero que no otorg rendimientos mientrs que los otros ctivos, como los bonos de lrgo plzo, ls cciones si brindn rendimientos pero pr ello se debe rriesgr pues l rentbilidd puede tomr diferentes vlores. Tobin formul un mrco optimizdor en el cul l demnd de dinero sle de ls decisiones de mximizr un función de utilidd en l que los individuos están fectdos no solo por l rentbilidd esperd sino tmbién por el riesgo de l crter modificndo l teorí de demnd especultiv de dinero de Keynes. En Keynes, por el motivo especultivo, slvo que l ts de interés se igul su nivel crítico cd individuo no diversificrí, su riquez lo tiene en form de dinero o de bonos. Si l rentbilidd esperd de los bonos es myor que l rentbilidd esperd de dinero solo se tendrá bonos, por el motivo especultivo. Tobin desrrollo un modelo de demnd especultiv de dinero que evit l no diversificción de l crter nivel individul. Consideremos distintos ctivos finncieros con diferentes niveles de riesgo y rendimiento. El gente debe elegir l mejor combinción de ctivos ddos su riquez, preferencis y l ts de interés de mercdo. A los gentes les interes no solo los rendimientos de cd ctivo sino tmbién el riesgo de l rentbilidd de cd ctivo. Se supone que: Los gentes son dversos l riesgo y demás dich dversidd l riesgo es creciente. El rendimiento esperdo de un ctivo = Vlor esperdo de los rendimientos: E(R). Profesor de Economí de ls Universiddes Ctólic del Perú y Universidd Ncionl Myor de Sn Mrcos. Correo: Págin Web:

2 El grdo de riesgo es l dispersión de estos rendimientos medido por l vrinz ( ) y l desvición estándr ( ). No hy inflción Pr simplificr se considern dos ctivos finncieros: dinero y bonos El Dinero: (M) Rendimiento esperdo: cero riesgo nulo: (seguro) Los Bonos: (B) Rendimiento puede ser myor cero en promedio Riesgoso. Tobin uso el nálisis de medi-vrinz diseñd por Mrkowitz (95) El problem es elegir un portfolio que de l mejor combinción de riesgo y rendimiento. mx U ( µ, ) + - µ: L Rentbilidd esperd del portfolio : el Riesgo de l Crter Supongmos el cso de un person que puede tener dos ctivos: dinero: M bonos: B Supongmos que el dinero no rinde intereses su rentbilidd (Rm): Rm = 0 L rentbilidd esperdo del dinero: E ( Rm) = 0 El riesgo del dinero: m = E[ Rm E( Rm)] m = 0

3 L rentbilidd de tener bonos perpetuos (Rb), depende del rendimiento corriente, (i), y de l gnnci de cpitl, (g), (umento del precio del bono en el mercdo): Rb = Q Pb Pb + Pb llmndo g l gnnci de cpitl: Rb = i + g Donde: Q: cupón del bono por periodo i: es l ts de interés corriente o de cupón. Pb: Precio ctul del bono Pb : precio futuro esperdo del bono. L rentbilidd esperd de tener bonos: E ( Rb) = E( i) + E( g) Como se conoce el vlor del cupón (Q) y suponiendo que l medi de g es cero E ( Rb) = E( i) E ( Rb) = i L vrinz de l perdid de cpitl será constnte: g = E[ g E( g)] = E g [ g ] L rentbilidd efectiv del portfolio (R) dependerá de l frcción del portfolio que este en form de bonos () y de l frcción que este en dinero (-): R = Rb + ( ) Rm R = ( i + g) + ( )(0) R = ( i + g) L rentbilidd esperd del portfolio (µ ): 3

4 E( R) = E( Rb) + ( ) E( Rm) µ = () µ = i E( i + g) + ( )(0) µ = [ i + E( g)] L cul es l ecución de l líne OD del tercer cudrnte que muestr un relción direct entre rentbilidd esperd del portfolio (µ ) y l frcción del portfolio que est en form de bonos () dd un ts de interés (i). L vrinz de los retornos del portfolio ( ) = E[ R E( R)] = E[ ( i + g) i] = E[g] = E[ g ] = g de donde l desvición estándr de l rentbilidd del portfolio ( ) depende de l frcción de l crter mntenid en form de bonos () y de l desvición estándr de l pérdid de cpitl ( g ) en form direct: () = g L cul se grfic medinte l líne OB en el curto cudrnte. Combinndo ls ecuciones () y () se tendrí: i (3) µ = g L cul se represent en el primer cudrnte medinte l líne rect OA y muestr ls combinciones posibles de rentbilidd y riesgo pr el individuo. Eligiendo un vlor de "" en el tercer cudrnte se tendrá un determind combinción de riesgo y rentbilidd en el primer cudrnte, por ejemplo el punto H en el tercer cudrnte implic que el 40% del portfolio estrá compuesto de bonos ( = 0.4) o se, 4

5 que el 60% restnte de l riquez será mntenido en form de riquez, el punto H del primer cudrnte implic un combinción de riesgo y rentbilidd señldo por el punto H del primer cudrnte. Si el gente dese mntener el 60% de su riquez en form de bonos ( = 0.6), o se que el 40% de su riquez será mntenido en form de dinero, en el tercer cudrnte se tiene el punto F lo que implic que se tendrá l combinción de riesgo y riquez señldo por el punto F en el primer cudrnte. Si tod l riquez se mntuvier en form de bonos se tendrá el punto A en el tercer cudrnte ( = ) lo que implic l combinción de riesgo y rentbilidd indicdo por el punto A del primer cudrnte. Hciendo lo mismo pr diferentes vlores de "" en el tercer cudrnte se construye l líne de oportuniddes OA del primer cudrnte. Gráfico : L líne de oportuniddes de inversión µ OD OA OB 5

6 Ls preferencis del inversionist Se supone que el inversionist se siente mejor si tiene un myor rentbilidd esperd pero le desgrd que l rentbilidd de l crter se más volátil o que l dispersión de l rentbilidd se myor. mx U ( µ, ) Cuy gráfic se muestr medinte un mp de curvs de indiferenci, con pendiente positiv en el primer cudrnte, porque se consider que l rentbilidd esperd es un bien mientrs que el riesgo es un ml. Además, se supone que l versión es creciente lo que hce que ls curvs de indiferenci, en plno,µ, sen convexs hci bjo como se muestr en el gráfico. Ls curvs de indiferenci que dn myor utilidd son ls que se ubicn ms hci l izquierd y hci rrib. + - Gráfico : Curvs de indiferenci con versión creciente l riesgo µ U 3 U U 6

7 El gráfico 3 muestr que l mejor combinción de riesgo y rendimiento de l crter es l que señl el punto H pues es l combinción de riesgo y rendimiento fctible que d el myor bienestr l gente. Esto indic que, en este cso, l gente le conviene un vlor de "" de 0.4 lo que indic que l demnd de dinero óptim será equivlente l 60% de l riquez. Gráfico 3: Elección de crter óptim OD µ U OA µ* H * * M d /Ω OB 7

8 ESTÁTICA COMPARATIVA Si ument l ts de interés l rentbilidd de tener bonos es myor pr cd nivel de riesgo lo que desplz l curv OD hci l line OD como se muestr en el gráfico 4 lo que provoc un rotción en sentido nti-horrio en de l rect OA hci OA del primer cudrnte siendo J l nuev combinción óptim de riesgo y rentbilidd, elevándose l prticipción óptim de los bonos () lo que implic que l inversionist le convendrá reducir su tenenci de dinero. Gráfico 4: Efectos de un elevción de l ts de interés OD µ U U OA J OD H K OA OB Este resultdo supone que el efecto sustitución, que más bien deberí llmrse efecto compensción pues entre un bien y un ml no hy sustitución sino compensción, super l efecto riquez que contrrrestrí l efecto nterior, ello segur que un elevción de l ts de interés reduce l demnd óptim de dinero en este modelo. Este modelo explic porque los gentes tienen dinero y ctivos inciertos l mismo tiempo (crter) 8

9 CRITICAS Tobin no lleg explicr porque el dinero se mntiene como reserv de vlor. El dinero es tmbién un ctivo riesgoso: inflción inciert. Existen bonos indexdos corto plzo myor rentbilidd menor riesgo luego el dinero desprecerí según el modelo pero l gente no dej de demndr ni en lts inflciones. dinero Bibliogrfí: Tobin, J. (958) Liquidity preference s behvior towrd risk. R.E.S. Feb

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID EXAMEN MATEMATICAS FINANCIERAS CEU 27 JUNIO 2008 PRIMERA PREGUNTA Responder ls siguientes cuestiones: 1.1 Si plicmos un tipo nominl nul del % un préstmo, y se pg por trimestres, Cuál será el tipo trimestrl

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

(1) Representar gráficamente las siguientes funciones lineales o afínes (forma general ). Su gráfica es una línea recta. *( c )

(1) Representar gráficamente las siguientes funciones lineales o afínes (forma general ). Su gráfica es una línea recta. *( c ) Lcdo E. Monto & P.Perz Funciones Reles de Vrible Rel Repúblic Bolivrin de Venezuel Ministerio del Poder Populr pr l Educción Escuel Técnic Robinsonin P.S. S. S. Venezuel Brins Edo Brins Hoj de trbjo *III

Más detalles

Funciones cuadráticas

Funciones cuadráticas Funciones cudrátics A l función polinómic de segundo grdo f() + b + c siendo, b, c números reles y 0, se l denomin función cudrátic. Los términos de l función reciben los siguientes nombres: y + b + c

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

[FACTORIZACION DE POLINOMIOS]

[FACTORIZACION DE POLINOMIOS] 009 CETis 6 Ing. Gerrdo Srmiento Díz de León [FACTORIZACION DE POLINOMIOS] Documento que enseñ como fctorizr polinomios Pr fctorizr polinomios hy vrios métodos: FACTORIZACIÓN DE POLINOMIOS. Scr fctor común:

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS FUNCIONES EXPONENCIALES Y LOGARÍTMICAS LA FUNCIÓN EXPONENCIAL. Introducción Siempre que hy un proceso que evolucione de modo que el umento (o disminución) en un pequeño intervlo de tiempo, se proporcionl

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis

Más detalles

EXAMEN CONTABILIDAD FINANCIERA 13/06/2008. 1/ Clasificar los saldos siguientes con cálculo del capital social: CUENTAS IMPORTE SALDO DEUDOR

EXAMEN CONTABILIDAD FINANCIERA 13/06/2008. 1/ Clasificar los saldos siguientes con cálculo del capital social: CUENTAS IMPORTE SALDO DEUDOR 1 EXAMEN CONTABILIDAD FINANCIERA 13/06/2008 1/ Clsificr los sldos siguientes con cálculo del cpitl socil: CUENTAS IMPORTE SALDO DEUDOR SALDO. ACREEDOR Cpitl Socil Clientes operciones de fctoring Bncos

Más detalles

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC:

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC: CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci. Ls combinciones de negocios se reguln en dos norms

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

OPERACIONES CON FRACIONES

OPERACIONES CON FRACIONES LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números

Más detalles

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería.

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería. CONSULTA DE LA IGAE Nº 13/1995 FORMULADA POR VARIAS CORPORACIONES LOCALES, EN RELACIÓN CON EL TRATAMIENTO CONTABLE DE LA RENTABILIZACIÓN DE EXCEDENTES TEMPORALES DE TESORERÍA. CONSULTA En virtud de ls

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE Junio, Ejercicio 4, Opción B Junio, Ejercicio 6, Opción A Reserv 1, Ejercicio 4, Opción A Reserv 2, Ejercicio 4, Opción

Más detalles

Guía Práctica N 13: Función Exponencial

Guía Práctica N 13: Función Exponencial Fuente: Pre Universitrio Pedro de Vldivi Guí Práctic N : Función Eponencil POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE LAS POTENCIAS Sen, b lr {0} m, n. Entonces: PRODUCTO DE POTENCIAS

Más detalles

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

DESCRIPCIÓN DEL EXAMEN

DESCRIPCIÓN DEL EXAMEN EXAMEN FINAL Nº DESCRIPCIÓN DEL EXAMEN El exmen es tipo test, de contenido teórico-práctico; const de doce pregunts con cutro lterntivs de respuest, donde sólo un es l correct. Criterios de corrección:

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

Vectores en el espacio. Producto escalar

Vectores en el espacio. Producto escalar Geometrí del espcio: Vectores; producto esclr Vectores en el espcio Producto esclr Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril si en él se definen dos operciones,

Más detalles

CASO PRÁCTICO DE APLICACIÓN 1: ELABORACIÓN DEL ESTADO DE CAMBIOS EN EL PATRIMONIO NETO

CASO PRÁCTICO DE APLICACIÓN 1: ELABORACIÓN DEL ESTADO DE CAMBIOS EN EL PATRIMONIO NETO 11. CUENTAS ANUALES Tl y como indic el prtdo 2.1 l citd NECA 8ª, el resultdo l ejercicio 200X- 1 berá trspsrse l column resultdos ejercicios nteriores. Pr mostrr dich reclsificción se berá empler el epígrfe

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1

TEMA 3 DETERMINANTES Matemáticas II 2º Bachillerato 1 TEMA DETERMINANTES Mtemátics II 2º Bchillerto 1 TEMA DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz cudrd de orden dos es un número que se obtiene del siguiente modo:

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 3 1. NÚMEROS RACIONALES UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

TEMA 10 FINANCIACIÓN

TEMA 10 FINANCIACIÓN TEMA 10 FINANCIACIÓN 1.-Considerciones generles. 2.-Ptrimonio neto. 2.1.-Fondos propios. 2.2.-Subvenciones, donciones y legdos. 3.-Psivo. 3.1.-Provisiones contingentes. 3.2.-Deuds. 1.-CONSIDERACIONES GENERALES.

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

La máquina de corriente continua

La máquina de corriente continua Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción

Más detalles

Laboratorio N 7, Asíntotas de funciones.

Laboratorio N 7, Asíntotas de funciones. Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones

Más detalles

Tema 6. Trigonometría (II)

Tema 6. Trigonometría (II) Tem. Trigonometrí II. Teorem de dición..... Rzones trigonométrics de l sum de dos ángulos...... Rzones trigonométrics de l diferenci de dos ángulos..... Rzones trigonométrics del ángulo doble mitd....

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso 15- Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

Escribe en la pantalla de trabajo de wiris los polinomios y las operaciones indicadas teniendo en cuenta las siguientes indicaciones:

Escribe en la pantalla de trabajo de wiris los polinomios y las operaciones indicadas teniendo en cuenta las siguientes indicaciones: Cálculo con wiris. ºESO EJERCICIOS GUIADOS.- Siendo que: P ( ) Q ( ) 6 R ( ) reliz ls siguientes operciones: ) P ( ) Q( ) ) Q( ) R( ) c) P( ) R( ) d) Cociente resto de Q ( ) R( ) Escrie en l pntll de trjo

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

Funciones ortogonales y series de Fourier

Funciones ortogonales y series de Fourier Funciones ortogonles y series de Fourier Ls series e integrles de Fourier constituyen un tem clásico del Análisis Mtemático. Desde su prición en el siglo XVIII en el estudio de ls vibrciones de un cuerd,

Más detalles

CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO.

CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO. CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci L Norm de Registro y

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

Análisis de Portafolio para la Optimización del Presupuesto de Trade-Marketing

Análisis de Portafolio para la Optimización del Presupuesto de Trade-Marketing Análisis de Portfolio pr l Optimizción del Presupuesto de Trde-Mrketing Empres: Profesor: Advisor: Coch: Reckitt Benckiser Lic. Gstón Frncese Lic. Lendro Notrfrncesco Lic. Rmiro Crrles Equipo de Alumnos:

Más detalles

ECONOMÍA E. INDUSTRIAL - RECUPERACIÓN PARCIAL (capítulos 1 a 4, ambos incluidos) 12 enero Peso de la prueba: 40% Tiempo: 1 hora y 15 minutos

ECONOMÍA E. INDUSTRIAL - RECUPERACIÓN PARCIAL (capítulos 1 a 4, ambos incluidos) 12 enero Peso de la prueba: 40% Tiempo: 1 hora y 15 minutos ECONOMÍA E. INDUSTRIAL - RECUPERACIÓN PARCIAL (cpítulos 1, mbos incluidos) 12 enero 29. Peso de l prueb: % Tiempo: 1 hor y 15 minutos NOTAS: - El peso de cd prtdo puede ser distinto en función de l dificultd.

Más detalles

1. CONCEPTO DE FONDO DE REEMBOLSO O ACTUALIZACIÓN 2. DOTACIÓN DEL FONDO DE REEMBOLSO O ACTUALIZACIÓN CALIFICADO COMO FONDOS PROPIOS

1. CONCEPTO DE FONDO DE REEMBOLSO O ACTUALIZACIÓN 2. DOTACIÓN DEL FONDO DE REEMBOLSO O ACTUALIZACIÓN CALIFICADO COMO FONDOS PROPIOS 2. Dotción del fondo de reembolso o ctulizción clificdo como fondos propios 1. CONCEPTO DE FONDO DE REEMBOLSO O ACTUALIZACIÓN El FONDO DE REEMBOLSO O ACTUALIZACIÓN constituye un prtid generd por l coopertiv

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Capítulo III AGUA EN EL SUELO

Capítulo III AGUA EN EL SUELO Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del

Más detalles

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES ( )

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES (  ) MATEMÁTICAS III (Crrer de Economí) OPTIMIZACIÓN CON RESTRICCIONES ( http://www.geocities.com/jls ) El propósito centrl de l economí como cienci es el estudio de l signción óptim de los recursos escsos.

Más detalles

PROBLEMAS DE MOTORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía Fecha : Agosto-2003 Autor : Ricardo Leal Reyes

PROBLEMAS DE MOTORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía Fecha : Agosto-2003 Autor : Ricardo Leal Reyes ROMA D MOTOR NRÓNO Aigntur : onverión lectromecánic de l nergí ech : Agoto-200 Autor : Ricrdo el Reye 1. Un motor incrónico trifáico de polo cilíndrico, conectdo en etrell 172 volt entre líne, r 0, 10

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

SÍLABO. 1.1. Nombre del Curso TEORÍA MACROECONÓMICA II. 1.5. Pre-requisito Teoría Macroeconómica I

SÍLABO. 1.1. Nombre del Curso TEORÍA MACROECONÓMICA II. 1.5. Pre-requisito Teoría Macroeconómica I UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA PROFESIONAL DE ECONOMÍA I. INFORMACIÓN GENERAL SÍLABO 1.1. Nombre del Curso TEORÍA MACROECONÓMICA II 1.. Código y Grupo horrio EC

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina

MATRICES. En forma simplificada A = ( a ij ) nxm y se le denomina MTRICES Mtrices de números reles. Definimos mtriz rel de elementos pertenecientes R y de dimensión n fils por m columns, quel conjunto de números reles escritos de l form siguiente: n n mtriz nxm m m nm

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

GESTIÓN ACTIVA DE PORTAFOLIOS MEDIANTE LA APLICACIÓN DEL MODELO DE TREYNOR - BLACK ACTIVE PORTFOLIO MANAGEMENT BY APPLYING THE TREYNOR-BLACK MODEL

GESTIÓN ACTIVA DE PORTAFOLIOS MEDIANTE LA APLICACIÓN DEL MODELO DE TREYNOR - BLACK ACTIVE PORTFOLIO MANAGEMENT BY APPLYING THE TREYNOR-BLACK MODEL GESTIÓN ATIVA DE ORTAFOLIOS EDIANTE LA ALIAIÓN DEL ODELO DE TREYNOR - BLAK ATIVE ORTFOLIO ANAGEENT BY ALYING THE TREYNOR-BLAK ODEL RESUEN Alejndro Vrgs Snchez Universidd rivd Bolivin lejndrovrgs@lp.upb.edu

Más detalles

GUÍA DOCENTE DE MARKETING TURISTICO. Curso 2013-2014

GUÍA DOCENTE DE MARKETING TURISTICO. Curso 2013-2014 GUÍA DOCENTE DE MARKETING TURISTICO Curso 2013-2014 1 TITULACIÓN: GRADO TURISMO GUÍA DE DOCENTE DE LA ASIGNATURA: MARKETING TURISTICO Coordindor: Césr Tpis. I.- Identificción de l signtur: Tipo Mteri Periodo

Más detalles

GESTIÓN ACTIVA DE PORTAFOLIOS MEDIANTE LA APLICACIÓN DEL MODELO DE TREYNOR - BLACK ACTIVE PORTFOLIO MANAGEMENT BY APPLYING THE TREYNOR-BLACK MODEL

GESTIÓN ACTIVA DE PORTAFOLIOS MEDIANTE LA APLICACIÓN DEL MODELO DE TREYNOR - BLACK ACTIVE PORTFOLIO MANAGEMENT BY APPLYING THE TREYNOR-BLACK MODEL GESTIÓN ATIVA DE ORTAFOLIOS EDIANTE LA ALIAIÓN DEL ODELO DE TREYNOR - BLAK ATIVE ORTFOLIO ANAGEENT BY ALYING THE TREYNOR-BLAK ODEL RESUEN Alejndro Vrgs Snchez Universidd rivd Bolivin lejndrovrgs@lp.upb.edu

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

FRANCISCO JAVIER QUESADA SANCHEZ GASTOS E INGRESOS IMPUTADOS A PATRIMONIO NETO 2009 F. JAVIER QUESADA SANCHEZ 1

FRANCISCO JAVIER QUESADA SANCHEZ GASTOS E INGRESOS IMPUTADOS A PATRIMONIO NETO 2009 F. JAVIER QUESADA SANCHEZ 1 FRANCISCO JAVIER QUESADA SANCHEZ CATEDRATICO DE ECONOMIA FINANCIERA Y CONTABILIDAD. ACTUARIO DE SEGUROS. AUDITOR DE CUENTAS Y ARQUITECTO TÉCNICO 1 TEMA 15.- GASTOS E INGRESOS IMPUTADOS AL PATRIMONIO NETO

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Secciones cónicas. Circunferencia Elipse Parábola Hipérbola.

Secciones cónicas. Circunferencia Elipse Parábola Hipérbola. Prof. Enrique Mteus Nieves Doctorndo en Educción Mtemátic Secciones cónics Ls secciones cónics son curvs que pueden otenerse como l intersección de un cono circulr con un plno que no conteng l vértice

Más detalles

1 Sistemas de ecuaciones lineales Tema 2 SISTEMAS DE ECUACIONES LINEALES

1 Sistemas de ecuaciones lineales Tema 2 SISTEMAS DE ECUACIONES LINEALES Sistems de ecuciones lineles Tem 2 SISTEMAS DE ECUACIONES LINEALES Los sistems de ecuciones lineles tienen muchs plicciones en todos los cmpos y ciencis y y desde. C. se tenín métodos pr resolver los sistems.

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

GUÍA DE EJERCICIOS Nº 5: SIMPLIFICACIÓN DE EXPRESIONES BOOLEANAS Y CIRCUITOS COMBINACIONALES

GUÍA DE EJERCICIOS Nº 5: SIMPLIFICACIÓN DE EXPRESIONES BOOLEANAS Y CIRCUITOS COMBINACIONALES GUÍ DE EJERCICIOS Nº 5: SIMPLIICCIÓN DE EXPRESIONES OOLENS Y CIRCUITOS COMINCIONLES 1. Dd l siguiente función : f min( 0,5,7,14,15) + X( 1,6,9 ) =. ) Obteng Mp de Krnugh. b) Determine función mínim c)

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Contabilización del impuesto de sociedades

Contabilización del impuesto de sociedades Contbilizción del impuesto de socieddes Autor: Toshiro - foros.plngenerlcontble.com Fech de elborción: Julio 2012 Distribuido por plngenerlcontble.com Artículo extrído de foros.plngenerlcontble.com cuy

Más detalles

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de

Más detalles

IMPUESTO SOBRE SOCIEDADES (Cierre fiscal ejercicio 2013) (Ajustes y conceptos a considerar)

IMPUESTO SOBRE SOCIEDADES (Cierre fiscal ejercicio 2013) (Ajustes y conceptos a considerar) IMPUESTO SOBRE SOCIEAES (Cierre fiscl ejercicio 2013) (Ajustes y conceptos considerr) (13) LIMITACIÓN A LAS AMORTIZACIONES FISCALMENTE EUCIBLES EN EL IMPUESTO SOBRE SOCIEAES Novedd introducid por l Ley

Más detalles

Tipos de Catálisis. Hay dos tipos de catálisis:

Tipos de Catálisis. Hay dos tipos de catálisis: CATáLISIS Un ctlizdor es un sustnci que celer (ctlizdor positivo) o retrd (ctlizdor negtivo o inhibidor) l velocidd de un rección químic, permneciendo éste mismo inlterdo. Un ctlizdor bj l energí de ctivción

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles