DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD"

Transcripción

1 DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) = f (x o ) [3- (-1)] donde f (x) = 2x + 4 f (x o ) = 2x o + 4 Como f (3) = = 19 f(-1) = = - 5 Aplicando el teorema 19 (-5) = 4 (2 x o + 4) 24 = 4 (2 x o + 4) ; 6 = 2 x o + 4 ; 2 x o = 2 ; x o = 1 [-1,3] Aplicar el teorema del valor medio a la función f(x) en el intervalo indicado, calculando el valor e que predice el teorema. Interpretarlo geométricamente. a) f(x) = senx en [0, /2] b) f(x) = x 4-3x 2 en [0, 2] c) f(x) = cosx en [- /2, /2] d) f(x) = x en [0,4] a) f(x) = sin x es continua en [0, /2] por ser función sinusoidal de un polinomio f (x) = cos x es continua en (0, /2) f(x) es derivable en (0, /2) La tag en x o es paralela a la cuerda.

2 b) f(x) = x 4-3x 2 es continua en [0, 2] por ser función polinómica f (x) = 4x 3-6x es continua en (0,2) f(x) es derivable en (0,2) x = - 1 (0,2) 2x 2-2x - 1 = La m c = = 2 En x o = ; f (x o ) = 2 En x o = ; f (x o ) = 2 Las tangentes en cada x o son paralelas a la curva. c) f(x) = cos x es continua en [- /2, /2] por ser función sinusoidal de un polinomio f (x) = - sin x es continua en (- /2, /2) => f(x) es derivable en (- /2, /2) En x o = 0, la m t = 0 m c = 0 por ser la recta y = 0 la cuerda entre A y B La tangente es paralela a la recta

3 La m c = tg En x o = 1 m t = 1/2 = f (1) La tg en x = 1 es paralela a la cuerda AB Aplicar Rolle, hallando el x 0, a la f(x) = x ⅔ en [-1, 1] Calcula el valor de a, para la recta tangente a la gráfica de función y = f(x) = - ax 2 +5x - 4 en el punto de abscisa 3 corte al eje X en el punto x = 5. y- y o = m t (x - x o ) x o = 3 y o = - 9a = - 9a +11 m t = y (3) = - 6a + 5 y - (- 9a + 11) = (- 6a +5) (x - 3) Para y = 0 ; x = a 11 = (- 6a + 5) (5-3) 9a 11 = - 12 a + 10 ; 21 a = 21; a = 1 y o = 2, m t = - 1 Ecuación tangente: y 2 = - 1 (x - 3)

4 Calcula y expresa lo más simplificadamente posible la derivada de: Calcular la derivada en el punto x = 0 de la función f(x) = x arc tg(x 2 )

5 Calcular simplificando todo lo posible el resultado, la derivada de las funciones : a) f(x) = Ln ; b) g(x) = ( x + ) ( x + )

6

7

8

9

10

11

12

13

14 0

15

16

17

18

19

20

21 a), por ser una b)

22 en el intervalo [-2, b]. Calcular de grado 1, continuas x R 1 y 0, continuas x R => f(x) derivable en (-2, b) Ǝ x o (-2, 10) / f (x o ) = 0

23 a) f(x) es continua en [0,2] b) c)

24 Dada la parábola de ecuación y = x 2-2x + 5, se considera la recta r que une los puntos de esa parábola, de abscisas x 1 = 1 y x 2 = 3. Hallar la ecuación de la recta tangente a la parábola que es paralela a la recta r. Calculemos las ordenadas de los puntos P y Q de la recta r P(1, ) = (1, 4) Q(3, ) = (3, 8) Calculemos la ecuación de la recta r, donde su vector es PQ = (2, 4) su pendiente es = 2 Por otro lado, la pendiente de la recta tangente a la curva, se calcula hallando la derivada de la curva, particularizada para la abscisa del punto. y' = 2x - 2 ==> m = y'(x o ) = 2x o - 2 Igualando las dos pendientes 2x o - 2 = 2 ==> 2x o = 4 x o = 2 y la y o = 5 El punto de tangencia será T(2, 5) La ecuación de la recta tangente será: y - 5 = 2 (x - 2) ===> y = 2x + 1 Dadas las funciones f(x) = x² + π y g (x) = sen x + cos x, calcula la derivada en x = 0 de las funciones f [g(x)] y g[f(x)]. h (x) = f [g(x)] = ( sen x + cos x)² + π h (x) = 2 (sen x + cos x ) (cos x sen x) = 2 (cos² x - sen² x) h (0) = 2 (1 0) = 2 i (x) = g [f(x)] = sen ( x² + π) + cos (x² + π) i (x) = 2x cos (x² + π) 2x sen (x² + π) i (0) = 0 cos π 0 sen π = 0

25 Demostrar que, cualquiera que sea el número real a, la ecuación x x + a = 0, no tiene nunca dos soluciones reales. Supongamos que la ecuación si tiene dos soluciones reales distintas x 1, x 2 y que x 1 < x 2 La función f(x) = x x + a = 0 es continua y derivable en todo R, por ser una función polinomica. En consecuencia la f(x) es continua en el cerrado [x 1,x 2 ] y derivable en el abierto (x 1,x 2 ). Como además, la f(x 1 ) = f(x 2 ) = 0 por ser soluciones de la ecuación, si aplicamos el teorema de Rolle a mi f(x), debería existir un punto x o (x 1,x 2 ) que verifique: f '(x o ) = 0 y como la f '(x) = 5 x = 0 no tiene soluciones reales, no existirá ningún valor real x o que verifique Rolle. En consecuencia final, la f(x) no puede tener dos soluciones reales, ya que no existe ni máximo ni mínimo la función será siempre creciente o decreciente. Demostrar que la ecuación x 3 + 6x x - 23 = 0 no puede tener mas de una raíz real. Consideremos la función f(x) = x 3 + 6x x - 23 en la que el dominio de mi función es toda la recta R. Si calculamos f '(x) = 3x x + 15 podemos calcular que dicha derivada es siempre positiva, para ello podemos ver que la ecuación f '(x) = 0 no se verifica para ningún valor de x ya que la ecuación 3x x + 15 = 0 no tiene soluciones reales. Esto nos indica que f '(x) mantiene siempre el signo constante y además será siempre positiva ya que f '(0) = 15 > 0. Al ser f '(x) > 0 nos dice que la f(x) es siempre creciente para todo valor de R y al pasar de - a + la función se anulara en algún valor de x, pero solo en un punto, con lo que la ecuación inicial tendrá solo una raíz real.

26 Demostrar que la ecuación x 18-5x + 3 = 0 no puede tener mas de dos raíces reales. Si consideramos la función f(x) = x 18-5x + 3, las raíces de dicha ecuación serán los números x para los que se cumple que f(x) = 0. Si calculamos la derivada de f(x) f '(x) = 18x 17-5 ; Hagamos f '(x) = 0 ==> Al ser una raíz de índice impar, la derivada se anulara para un solo valor de x, con lo que según el Teorema de Rolle, existirá un solo máximo o un solo mínimo y por tanto la función f(x) solo podrá cortar al eje de abscisas en dos puntos, con lo que la ecuación no puede tener mas de dos raíces reales. Derivar las siguientes funciones

27 Determina las ecuaciones de la recta tangente y de la recta normal (recta perpendicular a la tangente) en el punto de abscisa 0, a la gráfica de la función dada por: f(x)=2 x = 2 (x - 0) => y (x - 0) => Determinar el valor de a para que la recta tangente a la gráfica de la función y = f(x) = x 4 + ax en el punto x =0 sea perpendicular a la recta y +x = 3. m t = y (0) La recta y = - x 3 tiene de pendiente m n = - 1 y = 3x 2 + a m t = (y (0)) = a Al ser perpendiculares m t m n = - 1 a (-1) = - 1 a = 1

28 Determinar un punto sobre la parábola y = x 2 comprendido entre los puntos A(1,1), B(3,9) en el que la tangente a la parábola sea paralela a la recta AB. Si aplicamos Lagrange a los extremos a = 1 y b = 3 en donde la f(b) = 9 y la f(a) = 1 Como f(b) - f(a) = (b - a) f '(x o ) 9-1 = (3-1) f '(x o ) Como la f '(x) = 2x 8 = 4 x o ==> x o = 2 y la y o = 4 El punto será (2, 4) Discutir si la ecuación cos x = 2 x posee alguna solución real positiva. Puedo asegura que hay una sola solución? Creamos una f(x) = cos x 2 + x para comprobar la hipótesis de Bolzano en [0, b]. f(x) es continua x R Signo f(0) = cos = 1-2 = Signo f( /2) = cos /2 2 + /2 0 Signo f( ) = cos 2 + = en 0, o mejor en /2, => Signo f ( /2) Signo f( ) Existe al menos un x 0 ( /2, ) f(x 0 ) = 0 Existe al menos una solución real positiva en ( /2, ) Como falla la 3ª hipótesis de Rolle f( /2) f( ) No puedo asegurar la existencia de máximo o mínimo f(x) es siempre creciente o decreciente y eso implica que en ( /2, ) hay un solo valor en el que f(x 0 ) = 0

29 En la ecuación de la recta y = mx + b, explicar como se determinarían los números m y b para que sea tangente a la gráfica de la función y - f(x) en el punto de esta de abscisa p. Por ser m la pendiente de la recta ==> m = f '(p) La ecuación de la recta que pasa por (p, f(p)) y tiene por pendiente f '(p) será: y - f(p) = f '(p) (x - p) y despejando la y queda: y = f '(p) x f '(p) p + f(p) Identificando con la ecuación de la recta podemos sacar que b = - f '(p).p + f(p) En el segmento de parábola comprendido entre los puntos A(1, 1) y B(3, 0), hallar un punto cuya tangente sea paralela a la cuerda. Aplicando la interpretación geométrica de Lagrange. Si f(x) = ax² + bx + c por pasar por A y B Además f (x 0 ) = m ; Si la recta AB es de la forma y - 0 = m (x - 3)

30 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0,2]? No es derivable por no ser f (x) continua en x = 1 Para que f(x) sea continua es necesario que los limites laterales coincidan y que f(x) este definida en [- al menos un punto del cerrado. Estudiar si se cumplen las hipótesis de Rolle para la función f (x)= x³ - 9x en [-3,3] y si es cierto, comprobar la existencia de al menos una raíz real de f (x) = 0 en el intervalo considerado. a) f (x) es continua por ser un polinomio de grado 3 b) f (x) = 3x² - 9. Por ser f (x) un polinomio de grado 2, f (x) escontinua f(x) es derivable en (-3,3) Verifica Rolle x o f (x o ) = 0 ; 3x o ² - 9 = 0 ;

31 Explicar en que consiste la regla de la cadena para derivar una función compuesta. Como aplicación, derivar la función f(x) = arc sen 2x (1 - x 2 ) 1/2 La regla de la cadena se utiliza para hallar la derivada de funciones compuestas. Si f(x) = g(h(x)) entonces f '(x) = g'( h(x) ) h'(x) En nuestro caso h(x) = 2x (1 - x 2 ) 1/2 con lo que Halla las ecuaciones de la recta tangente y de la recta normal a la gráfica de la función g(x) = en el punto de abscisa x = 2 =>

32 Halla las ecuaciones de la recta tangente y normal a las siguientes curvas en los puntos que se indican. en (x - 4) => en ; = 45º=

33 Hallar la derivadas de las funciones : a) y = x sin x y = x sin x ; Ln y = Ln x sin x = sin x Ln x ; y / y = cos x Ln x + sin x 1/x ; y = (cos x Lnx + sen x / x ) x senx b) y = (senx) x y =( senx) x ; Lny = Ln (senx) x = x Lnsenx ; y / y = Ln(senx) + x (cos x / sen x) ; y = [ Ln(senx) + x cotgx) ] (sen x ) x c) y = 2 senx y = 2 senx ; y = cos x 2 senx log 2 d) y = sen 3 x y = sen 3 x ; y = 3 sen 2 x (senx) = 3 sen 2 x cos x Hallar la función derivada de y = (1 - cos x ). cotg x Si llamo u(x) = 1 - cos x y v(x) = cotg x y' = u'(x) v(x) + u(x) v'(x)

34 Hallar la derivada primera, segunda, tercera, cuarta... Escribir la expresión simplificada de la derivada de orden 18 de esa función.

35 La ecuación e x = 1 + x tiene evidentemente la raíz x = 0. Probar que no tiene más raíces reales. El que tenga la raíz x = 0 se comprueba ya que e 0 = Ahora bien, si estudiamos la función y = e x - x - 1 podemos calcular sus máximos o mínimos. y' = e x - 1 ==> y' = 0 ==> e x - 1 = 0 ==> e x = 1 ==> Ln e x = Ln 1 ==> x = 0 es posible máximo o mínimo. y'' = e x ==> y''(0) = e 0 > 0 ==> Mínimo en (0,0) Al no existir ningún otro máximo ni mínimo en mi función, esto quiere significar que la función será siempre decreciente hasta llegar al x = 0, y que después del x = 0 será siempre creciente. Por ello puedo asegurar que mi función no volverá a anularse para ningún otro valor de x, o lo que es lo mismo, que la ecuación e x = 1 + x no se verificara para otro valor que no sea el cero ya observado. Al estar el radicando elevado al cuadrado, este sera siempre > 0 y f(x) f(x) sera continua en toda la R. verifica Rolle : No podemos asegurar que exista x 0 (0, 4) / f (x 0 ) = 0

36 f(x) es continua en x = 0 f(x) no es derivable en x = 0 b) No existe contradicción ya que al no ser derivable en x = 0 perteneciente (-1,1) no se verifica Rolle a pesar de que f (-1) = f(1) = ½ pero Rolle no niega que exista un x 0 (-1,1) / f (x 0 ) = 0 sino que no lo puede asegurar, aunque en este caso si que existe x 0 = 0 tal que f (0) = 0

37 Sea una función f (x) tal que f (x) y f (x) son continuas en todo R. Demostrar si f( y además la única raíz real de f (x) es, esto implica que la única raíz real de f(x) = 0 es Para demostrarlo supongamos que existe R / Si supongo que f( ) = 0 f ( ) = 0 esto nos indica que si existe un valor que hace su derivada 0. Esto nos implica que exista una raíz real para f (x), que sería en contra del enunciado que nos dice que la única raíz real de f es El teorema de Rolle dice que si f(x) es continua en [a,b] y derivable en (a,b), además de que f(a) = f(b) => x 0 / f (x) = 0. Aquí me dicen que la f(x) tiene como derivada f (x) = sen x²; si ésta f (x) es continua en R lo será en el Como la función sin x² es continua siempre que lo sea x² y ésta es una función polinómica continua en R luego f (x) = sin x² es continua en y por tanto es derivable en. Si f(x) es derivable, antes ha tenido que ser continua en. Rolle me dice que además f(0) = f y como f(0) = 0 f = 0 para que se verifique el teorema. Se considera la parábola y = 2x 2. Determinar un punto de la misma en el que la tangente a la parábola sea paralela a la recta que pasa por los puntos de la parábola A(1,2) y B(2,8) Se aplica la formula de Lagrange f(b) f (a) = (b a) f (x o ); f (x) = 4x

38 a) Determinar m y n para que se cumplan las hipótesis del teorema del valor medio en el intervalo [-4,2]. b) Hallar los puntos del intervalo cuya existencia garantiza el teorema. PAU Junio 1999 a) Para que se verifique Lagrange, la f(x) debe ser continua y derivable en [-4,2] Obliguemos a que sea continua en [-4,- 2), (- 2,2] y en x = - 2 En los intervalos será continua m,n por ser f. polinómicas.

39 . Calculemos la ecuación de la recta tangente a la curva en el punto de abscisa x=3, y para ello, calcularemos la pendiente de la recta. x + 9y - 6 = 0 Calculemos los puntos de corte de la tangente con los ejes

40 Si el termino independiente de un polinomio en x es igual a 3 y el valor que toma ese polinomio para x = 2 es 3, probar que su derivada se anula para algún valor de x; razonar que ese valor pertenece a un cierto intervalo que se especificara. Llamemos P(x) = a n x n + a n-1 x n a 1 x + 3 P(0) = a n 0 + a n a = 3 Además nos dicen que P(2) = 3, por tanto P(0) = P(2) = 3. Como P(x) es función continua y derivable en toda la recta real podremos aplicar el Teorema de Rolle, con lo que existe un valor x = a en el intervalo (0,2) tal que P'(a) = 0 Si f(x) = 2 + x 3 (x - 2) 2 probar que la ecuación f (x) = 0 posee al menos una raíz en (0, 2) sin calcular su derivada. Para que x o sea raiz es necesario que f (x 0 ) = 0 Se aplica Rolle, por ser f(x) continua en [0,2] y derivable en (0,2) y además f(0) = (0 2) 2 = 2 ; f(2) = (2 2) 2 = 2 f(0) = f(2) al verificarlo x 0 R / f (x 0 ) = 0 Por Lagrange f(2) - f(0) = f (x 0 ) [2 0] 2 2 = f (x 0 ) 2 ; 0 = f (x 0 ) 2; f (x 0 ) = 0 Si la derivada de una función f es positiva para todos los valores de la variable. Puede haber dos números distintos a, b, tales que f(a) = f(b)?. Razonarlo. Si fuera f(a) = f(b) para dos números distintos a y b, puesto que f es derivable, también es continua y podría aplicarse el teorema de Rolle. Habría entonces un numero c entre a y b, tal que f '(c) = 0, lo cual es imposible ya que f '(x) > 0 para todo numero x, según dice el enunciado. Luego no puede haber dos números distintos a, b, tales que f(a) = f(b).

41 Para buscar el punto de corte de la tangente con el eje OX resolveremos el sistema: luego la tangente corta al eje en Q (2x, 0) Para ver que los triángulos formados son isósceles solo será necesario demostrar que: d(op) = d(pq)

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD Considera la función f(x)= x 3 + px donde p es un número real. Escribir (en función de p) la ecuación de la recta tangente a la grafica f(x) en el punto de abscisa

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice la cadena Tabla de Dada una función f : D R R,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Tipos de funciones. Clasificación de funciones. Funciones algebraicas

Tipos de funciones. Clasificación de funciones. Funciones algebraicas Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES.

TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. Definición: Una función es una relación entre dos variables x e y de manera que a cada valor de la variable x le corresponde un único valor

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

Es evidente la continuidad en En el punto, se tiene:

Es evidente la continuidad en En el punto, se tiene: Tema 3 Continuidad Ejercicios Resueltos Ejercicio 1 Estudia la continuidad de la función La función puede expresarse como Para representarla basta considerar dos arcos de parábola: Es evidente la continuidad

Más detalles

Teoría Tema 3 Teoremas de derivabilidad

Teoría Tema 3 Teoremas de derivabilidad página 1/10 Teoría Tema 3 Teoremas de derivabilidad Índice de contenido Teorema de Rolle...2 Teorema del valor medio de Lagrange (o de los incrementos finitos)...4 Teorema de Cauchy...6 Regla de L'Hôpital...8

Más detalles

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por

Más detalles

Las superficies serán: Tapa y superficie lateral S 1 = ( x 2 +4xy ) cm 2 Superficie de la base: S 2 = x 2 cm 2

Las superficies serán: Tapa y superficie lateral S 1 = ( x 2 +4xy ) cm 2 Superficie de la base: S 2 = x 2 cm 2 MATEMÁTICAS II, º BACHILLERATO F.- Se desea construir una caja cerrada de base cuadrada con una capacidad de 8 cm. Para la tapa y la superficie lateral se usa un material que cuesta /cm y para la base

Más detalles

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,

Más detalles

TEMA 5.- DERIVADAS. Tasa de variación. Consideremos una función y = f(x) y consideremos dos puntos próximos

TEMA 5.- DERIVADAS. Tasa de variación. Consideremos una función y = f(x) y consideremos dos puntos próximos TEMA 5.- DERIVADAS Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 55 REFLEXIONA Y RESUELVE Tangentes a una curva y f ( 5 5 Halla, mirando la gráfica y las rectas trazadas, f'(, f'( y f'(. f'( 0; f'( ; f'( Di otros tres puntos

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS 0 APLICACIONES DE LAS DERIVADAS Página 8 REFLEXIONA Y RESUELVE Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas.

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas. ECUACIÓN DE LA RECTA. El punto (, 0) está situado: a) Sobre el eje de ordenadas. b) En el tercer cuadrante. c) Sobre el eje de abscisas. (Convocatoria junio 00. Examen tipo D) Dibujando los ejes de coordenadas

Más detalles

CÁLCULO DIFERENCIAL 9. UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS

CÁLCULO DIFERENCIAL 9. UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS CÁLCULO DIFERENCIAL 9 UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS SOLUCIONES DE LA COLECCIÓN DE PROBLEMAS - CAPÍTULO 3 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD

Más detalles

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre:

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre: EXAMEN DE MATEMATICAS II ª ENSAYO () Apellidos: Nombre: Curso: º Grupo: A Día: CURSO 05 Instrucciones: a) Duración: HORA y 0 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011 1. CÁLCULO DE DERIVADAS Ejercicio 1. (001) Calcule las funciones derivadas de las siguientes: Lx a) (1 punto) f ( x) = (Lx indica logaritmo neperiano de x) x 3 b) (1 punto) g( x) = (1 x ) cos x 3 1 c)

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas Tema 4 Aplicaciones de las Derivadas 4.1 Introducción Repasaremos en este Tema algunas de las aplicaciones fundamentales de las derivadas. Muchas de ellas son ya conocidas por tratarse de conceptos explicados

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN www.fisicanet.com www.fisicaweb.com DERIVADA DE UNA FUNCIÓN fisicanet@interlap.com.ar Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función.

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

RESUMEN TEÓRICO DE CLASES

RESUMEN TEÓRICO DE CLASES Página 1 RESUMEN TEÓRICO DE CLASES Página 2 Tema 1. Inecuaciones Las inecuaciones son desigualdades algebraicas en la que sus dos miembros se relacionan por uno de estos signos: >; ;

Más detalles

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos? CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?

Más detalles

26 Apuntes de Matemáticas II para preparar el examen de la PAU

26 Apuntes de Matemáticas II para preparar el examen de la PAU 6 Apuntes de Matemáticas II para preparar el examen de la PAU Unidad. Funciones.Continuidad TEMA FUNCIONES. CONTINUIDAD. 1. Definición de Continuidad. Tipos de discontinuidades 3. Continuidad de las funciones

Más detalles

Cálculo Diferencial - Parcial No. 2

Cálculo Diferencial - Parcial No. 2 Cálculo Diferencial - Parcial No. 2 Departamento de Matemáticas - Universidad de los Andes Marzo 18 de 2010 Juro solemnemente abstenerme de copiar o de incurrir en actos que puedan conducir a la trampa

Más detalles

TERCER TRABAJO EN GRUPO Grupo 10

TERCER TRABAJO EN GRUPO Grupo 10 TERCER TRABAJO EN GRUPO Grupo 10 Problema 1.- Se considera la ecuación x 3 + x + mx 6 = 0. Utilizando el Teorema de Bolzano demostrar que: (i) Si m > 3 la ecuación tiene al menos una raíz real menor que.

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0 Funciones continuas Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

TEMA 2: CONTINUIDAD DE FUNCIONES

TEMA 2: CONTINUIDAD DE FUNCIONES TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 05 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON Cap. Continuidad de funciones.1 CONTINUIDAD EN UN PUNTO. CONTINUIDAD DE FUNCIONES CONOCIDAS.3 CONTINUIDAD EN OPERACIONES CON FUNCIONES.4 CONTINUIDAD EN UN INTERVALO.5 TEOREMA DEL VALOR INTERMEDIO OBJETIVOS:

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal Análisis y programación lineal Problema 1: La gráfica de la función derivada de una función f es la parábola de vértice (0, 2) que corta al eje de abscisas en los puntos ( 3, 0) y (3, 0). A partir de dicha

Más detalles

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida. Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,

Más detalles

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)

En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2) UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades.

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

DERIVABILIDAD DE FUNCIONES

DERIVABILIDAD DE FUNCIONES CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1 1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada

Más detalles

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

5.1. Recta tangente, normal e intersección de curvas. Recta tangente 5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta

Más detalles

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto» TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos

Más detalles

Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0,

Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0, Capítulo 1 Función implícita Problema 1 (i Probar que el sistema y + z x + 0 yz + xz xy 1 0 dene dos funciones implícitas y y(x z z(x en un entorno del punto (x y z ( 1 1. (ii Sea α la curva parametrizada

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS 7 APLICACIONES DE LAS DERIVADAS Página 67 REFLEXIONA Y RESUELVE Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0

Más detalles

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA 1º) Estudia la continuidad de la siguiente función: x+3 si x < 2 fx = x +1 si x 2 La función está definida para todos los reales: D(f)=R Tanto a

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Ejercicios Resueltos de Derivadas y sus aplicaciones:

Ejercicios Resueltos de Derivadas y sus aplicaciones: Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 Sabemos que la función inversa 1 Si f a b, entonces f b a 1 f (o recíproca) de f cumple la siguiente condición: Por lo tanto: 1 f f 1

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles