EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe"

Transcripción

1 1 Álgebral EXPRESIONES ALGEBRAICAS El tripe de un número menos «cinco» en lenguaje algebraico se escribe 3x 5: 3x 5 es una expresión algebraica donde x es la incógnita. La letra x representa un número desconocido. Si asignamos a la letra x un valor numérico, la expresión algebraica pasará a tener también un valor numérico: Para x obtenemos Expresa en lenguaje algebraico: a) El cuadrado de un número Æ b) El cuádruple de un número Æ c) La suma de un número más su cuádruple Æ d) El cubo de un número menos su mitad Æ e) El triple de un número más 1 Æ f) El cubo de un número Æ Para qué valor de x las siguientes expresiones resultan ser ciertas? a) 3x 9 c) 6x 6 0 b) x 10 d) 4x 1 3 Calcula el valor numérico de las siguientes expresiones algebraicas de acuerdo a los distintos valores de x: x x 1 1 x 3x 3 x + 1 5(x ) x x/ 1 1 0

2 MONOMIOS Un monomio es una expresión algebraica formada por el producto de un número por una o varias incógnitas. El grado de la incógnita y es El grado de la incógnita x es 1 fi El grado del monomio es Los monomios son semejantes si tienen la misma parte literal. xy, 16xy son semejantes Parte literal 5xy Coeficiente 4 Completa la tabla: Coeficiente xy z 3 x y 6x 3 y 3 3x y 6 15x 4 y 3 7xz Parte literal Grado 5 Escribe un monomio que cumpla las condiciones dadas en cada caso: a) Tener grado 3 y tres incógnitas distintas Æ b) Tener coeficiente negativo, dos incógnitas y grado 5 Æ c) Tener coeficiente 5, una sola incógnita y grado 5 Æ d) Tener coeficiente fraccionario, una incógnita y grado 4 Æ 6 Qué monomios son semejantes entre sí? f(x) x y h(x) 3x y j(x) 5xy g(x) 6xy i(x) 4x yz k(x) x yz 7 Escribe un monomio semejante a cada uno de los dados: a) 50x y Æ c) 4xyz Æ b) 3xz 3 Æ d) 7x z Æ 3

3 OPERACIONES CON MONOMIOS Suma y resta Sólo se pueden sumar o restar monomios semejantes. Para ello operamos los coeficientes y mantenemos la parte literal. 3x 8x + 5xy (3 8)x + 5xy 5x + 5xy Multiplicación y división Para multiplicar o dividir monomios se multiplican o dividen los coeficientes por un lado y las partes literales por otro. 4xy 3x 3 y (4 3) (xy x 3 y) 1 (x (1 + 3) y ( + 1) ) 1x 4 y 3 0x y 3 : 5xy (0 : 5) : (x y 3 : xy ) 4 : (x ( 1) y (3 ) ) 4xy 8 Calcula: a) xyz + xyz 4xyz c) 40y z 8y z 1y z b) 3x + 7x y d) x 3 y + 9x 3 y 5xy 9 Completa los monomios que falten: a) xy z + xy z xy z c) x 3 y 5x 3 y + x 3 y b) xy z + xy z xy z d) 4xy + 4xy 0 10 Realiza los siguientes productos: a) 5y 5x y e) 8x yz 8x z b) ( y z 3 ) xyz 3 f) ( 10x) ( 5x yz) c) 1x 3 y x y 3 g) x 4 yz 3 3x 3 y 3 z d) 5x y z ( 8xyz) h) 9x 3 y 3xz 11 Realiza las siguientes divisiones: a) 0x z 5 : 10xz e) 150x y 3 z 5 : 3xz 4 b) x 3 z :x 3 f) 18x y z : 6x z c) 15x 5 z : ( 3x 3 z) g) 49x z : 7x z d) ( 36x 4 y z 3 ) : 1x 3 y h) ( 36x z ) : 6xz 4

4 DIVISIÓN DE MONOMIOS Para dividir monomios seguiremos los siguientes pasos: 1.º Calculamos el signo del cociente..º Dividimos los coeficientes. 3.º Dividimos las potencias de la misma base una a una. Llamamos fracción algebraica al cociente de dos polinomios. 1 Calcula las siguientes divisiones de monomios: 0x a) y 5 b) 1xy 4 c) 15a b 5a d) 1x 4 y z 7x y 4 e) x 3 y 4 3 : x y 9 8 f) 6xy : 5xz 13 Simplifica las fracciones algebraicas: a) 48x 4 y 3 z 1x yz 4 b) 1a 3 b 4 c 5 4a 5 b c 3 c) 45m n 3 q 5 9mn 4 q 6 14 Simplifica las siguientes fracciones algebraicas sacando, previamente, factor común: a) xy + y xy y b) 3x y + 6x 3 y 3x yz 3x y c) d) e) x 3 yza + x 3 ybz x 3 yza x 3 ybz (3x 6x) (9x + 3x ) (x + 3xy) (x + 3y) 5

5 POLINOMIOS Un polinomio es una expresión algebraica formada por sumas y restas de dos o más monomios. x y 6x 3 y + 5xyz 4xy El grado de un polinomio es el grado de su monomio de mayor grado. x y 6x 3 y + 5xyz 4xy Æ Grado 5 Si un polinomio tiene monomios de todos los grados, incluido el cero, se dice que es un polinomio completo. Si faltan monomios de algún grado, se dice que es un polinomio incompleto. 15 Reduce y después indica el grado de los siguientes polinomios: a) xy + 9xy + 3x y 9x y b) x y 10x y + 3x 4 y x 4 y + 5xy c) y z + y z 8y z y z d) u v w + 6u v w 7u v w + 5u v w 16 Opera e indica el grado del polinomio resultante: a) ( 10x zy + 8x zy) : xzy b) (4x 4 y 3 + x 4 y 3 ) : 6x y c) 8x y xz : 4x z x y d) 3xyz xz + 5x yz + xz + 6x yz : xy 17 Reduce las siguientes expresiones: a) (5x z 5 15x z ) : 5xz b) x (5x 7y + xy) + 3x y c) xy 4x + x z 3xyz 3x z 3xy d) 3xyz 9x z + 6x 4 y 3 : xy + 3x 3 y 7x 3 y + 1xz 3 5xyz 3 e) 3x4 yz 5 : 4x z + 3x z + x z 6 6

6 SUMA Y RESTA DE POLINOMIOS Para sumar o restar polinomios sumamos o restamos sus términos semejantes. Para sumar dos polinomios se agrupan los términos semejantes y se simplifican haciendo la suma: 3x 3 + 4x 4x + 6 x 3 x + 5x 5x 3 + 3x + x + 6 Para restar dos polinomios se agrupan los términos semejantes, se cambia de signo el polinomio que se resta y se agrupan los términos semejantes: 3x 3 + 4x 4x + 6 x 3 + x 5x x 3 +5x 9x Realiza las siguientes sumas de polinomios: a) (3x x + 4) + (x + 6x 3) b) (x 3 x 3x + ) + (x 3 x 3x 5) c) (7x 4x + 1) + (5x 4 + x 5x) 19 Realiza las siguientes restas de polinomios: a) (x 4 + x 3 5x) ( x 4 + x 3 + 8) b) (x 3x + 1) (3x 1 5x + ) 1 c) x 3 x + 3x 1) (x 3 5x 1 + x + ) 3 0 Efectúa las siguientes operaciones con polinomios: a) x 4 [3x (x x)] + 1 b) (x 3 + x 1) [(x x + 1) (x 3 x 1)] + (x 3 x + x) 7

7 MULTIPLICACIÓN DE POLINOMIOS Para multiplicar polinomios multiplicaremos cada término de uno de ellos por todos los términos del otro polinomio. Multiplicar los polinomios: 3x 3 + x 1 y 4x + 3x 3 + x 1 4x + 6x 3 + 4x 1x 4 + 8x 3 4x 1x x 3 + 4x 4x 1 Dado el polinomio P(x) 3x 3 x + x. Calcula los siguientes productos: a) P(x) 3x 3 b) P(x) (x 1) c) P(x) (x x + 3) Realiza las siguientes operaciones y reduce al máximo el resultado: a) (3x x + x ) + x (x ) b) (3x x + ) ( x) + (x 1) (x 1) c) (a x) (x 3b) + (a b) x 3 Efectúa los siguientes productos y simplifica el resultado: a) (x ) (x + 1) + (x 1) (x + ) b) (x + y) (3x y + 3xy 1) 4 8

8 DIVISIÓN DE POLINOMIOS Para dividir un polinomio P(x) entre otro Q(x) obtendremos un polinomio cociente C(x) y un resto R(x) tal que: P(x) Q(x) C(x) + R(x) Efectuar la siguiente división de polinomios: (x 3 + 4x 1) : (x ). Realizamos la división como si de una división numérica se tratase indicando todos los pasos hasta obtener un resto de grado menor que el divisor. x 3 + 4x + 0x 1 x x 3 + 4x x + 4 4x + 4x 1 4x + 8 4x + 7 C(x) x + 4 y R(x) 4x Nos dicen que al efectuar la división (x 3 + 5x + 3x + ) : (x + 3x + 1), se ha obtenido como cociente C(x) x 1 y como resto R(x) 4x + 3. Comprueba si son correctos los resultados. 5 Divide: (4x 6 4x 4 + 6x 5 ) : x 3 6 Realiza la siguiente división de polinomios: (x 4 4x 3 + 5x x + 3) : (x x + 1) 9

9 IDENTIDADES NOTABLES Cuadrado de una suma: (a + b) a + ab + b Cuadrado de una diferencia: (a b) a ab + b Suma por diferencia: (a + b) (a b) a b (x + ) x + x + x + 4x + 4 (x 1) 4x + x ( 1) + ( 1) 4x 4x + 1 (a + 3b) (a 3b) a (3b) a 9b 7 Desarrolla las siguientes identidades notables: a) (x + 3) b) (x + x) c) (x 3) d) (ab c) e) (a c) (a + c) f) (4x 3) g) (x + x) 8 Desarrolla las siguientes igualdades notables con números racionales: 1 a) ( x ) b) (x 1 + ) 3 x c) ( x 3 ) 3 9 Expresa como una igualdad notable: a) 4x 4x + 1 b) x + xy + y c) x 4x + 4 d) x 4 + 6x + 9 e) x + 6ax + 9a f) 4x 6 4x 4 + x g) 49 y h) X 6 81 i) 5 30x + 9x 10

10 FACTORIZACIÓN DE POLINOMIOS Para factorizar un polinomio debemos expresarlo como producto de factores irreducible. Se pueden utilizar varias estrategias: unas veces podremos hacerlo sacando factor común, y otras, aplicaremos las identidades notables. Para factorizar: x 4 + 8x 3 3x sacamos x factor común: x 4 + 8x 3 3x x x + 8 x x 3 x x (x + 8x 3). Para factoriza x 9 aplicaremos las identidades notables: x 9 (x + 3) (x 3) 30 Extrae factor común: a) 30x 4 + 5x 3 15 x 5x 6x + 5x x 5x 3 5x ( 6x + x 3) b) 6xyz+ 1xy 3xz 15 x c) 5xy+ 3xyz xyu 5 4 d) x y x y + 5x e) x y + 4x y xy + 5y f) 6uvw 1uvw + 4uvw 31 Simplifica las siguientes fracciones sacando factor común como en el ejemplo: a) xz+ xy x + x y x ( z + y ) z + y x ( 1+ y ) 1+ y b) x y 3x 3y c) 3 xy xy 5xy x y d) x + xz x + xz 3 Son correctas las siguientes simplificaciones? En caso de que no lo sean, escribe cuál sería la operación correcta. a) x + xz xz x c) x + yx xy 1 y + y b) 3ab 3b ab + a b+ a d) xy x y yx xy 11

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Suma, diferencia y producto de polinomios

Suma, diferencia y producto de polinomios I, Polinomios Suma, diferencia y producto de polinomios Un monomio es una expresión algebraica donde los números (coeficientes) y las letras (parte literal) están separados por el signo de la multiplicación.

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PROPUESTOS 5.1 Divide los siguientes monomios. a) 54x 5 9x 2 b) 63x 12 3x 5 c) 35xy 6 7y 3 d) 121x 2 y 6 11yx 4 a) 54x 5 9x 2 5 5 4x 2 5 4 x 5 9x 9 x 2 6x 3 c) 35xy 6 7y 3 3 6 5xy 3 3 5 x y

Más detalles

UNIDAD IV CONTENIDO TEMÁTICO

UNIDAD IV CONTENIDO TEMÁTICO UNIDAD IV CONTENIDO TEMÁTICO OPERACIONES CON FRACCIONES ALGEBRAICAS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD IV Conceptos Mínimo común múltiplo OPERACIONES CON FRACCIONES

Más detalles

83 ESO. 6x 4. «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.»

83 ESO. 6x 4. «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.» 83 ESO «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.» 6 4 10 ÍNDICE: 1. DIVISIÓN DE POLINOMIOS POR MONOMIOS. DIVISIÓN ENTERA DE POLINOMIOS 3. REGLA DE RUFFINI

Más detalles

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores:

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores: IDENTIDADES NOTABLES TEMA : POLINOMIOS a b a b ab a b a b ab a ba b a b Ejercicios:. Desarrolla las siguientes identidades: a y 5 b 5 4y c 5 5. Epresa como producto de factores: 4 a 9 0 0 b 9 6 c 5 9y

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0 Pág. Página 8 PRACTICA Monomios Indica cuál es el grado de los siguientes monomios y di cuáles son semejantes: a) x b) x c) x d) x e) x f) x g) h) x i) a) Grado b) Grado c) Grado d)grado e) Grado f) Grado

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

Recordar las principales operaciones con expresiones algebraicas.

Recordar las principales operaciones con expresiones algebraicas. Capítulo 1 Álgebra Objetivos Recordar las principales operaciones con expresiones algebraicas. 1.1. Números Los números naturales se denotarán por N y están constituidos por 0, 1, 2, 3... Con estos números

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

5.- Calcula el cociente y el resto de las divisiones siguientes:

5.- Calcula el cociente y el resto de las divisiones siguientes: 1.- Opera y simplifica las siguientes expresiones: 2.- Efectúa las siguientes operaciones y simplifica el resultado: 3º.- Multiplica cada expresión por el mín.c.m. de los denominadores y simplifica: 4.-

Más detalles

Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra

Expresiones algebraicas y ecuaciones. Qué es una expresión algebraica? Valor numérico de una expresión algebraica. Algebra Expresiones algebraicas y ecuaciones Melilla Qué es una expresión algebraica? Los padres de Iván le han encargado que vaya al mercado a comprar 4 kg de naranjas y 5 kg de manzanas. Pero no saben lo que

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión.

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. FACTORIZACION Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. Al proceso de encontrar los factores o divisores a partir

Más detalles

SESIÓN 8 EXPONENTESY RADICALES

SESIÓN 8 EXPONENTESY RADICALES SESIÓN 8 EXPONENTESY RADICALES I. CONTENIDOS: 1. Leyes de los exponentes.. Exponente cero.. Exponente fraccionario. 4. Exponente negativo. 5. Radical. 6. Raíz enésima. 7. Raíces de números positivos y

Más detalles

POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.

POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x. POLINOMIOS Un POLINOMIO es una expresión algebraica de la forma: x 1 + a 0 P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 Siendo a n, a n - 1... a 1, a o números, llamados coeficientes.

Más detalles

Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos

Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos Término algebraico. (Informal) Es la multiplicación o división de factores literales y coeficiente numéricos 7ax³ y² 3x²y ; - ; 4a²b³c 5 Todo término algebraico se compone de un factor literal (letras)

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

1 of 18 10/25/2011 6:42 AM

1 of 18 10/25/2011 6:42 AM Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA CASOS DE FACTORIZACIÓN El futuro tiene muchos nombres. Para los débiles es lo inalcanzable. Para los temerosos, lo desconocido.

Más detalles

3. POLINOMIOS, ECUACIONES E INECUACIONES

3. POLINOMIOS, ECUACIONES E INECUACIONES 3. POLINOMIOS, ECUACIONES E INECUACIONES 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI Un polinomio con indeterminada x es una expresión de la forma: Los números

Más detalles

Tutorial MT-b6. Matemática 2006. Tutorial Nivel Básico. Álgebra

Tutorial MT-b6. Matemática 2006. Tutorial Nivel Básico. Álgebra 12345678901234567890 M ate m ática Tutorial MT-b6 Matemática 2006 Tutorial Nivel Básico Álgebra Matemática 2006 Tutorial Álgebra Marco teórico: 1. Término algebraico El término algebraico es la unidad

Más detalles

PARA EMPEZAR. Un cuadrado tiene de lado x centímetros. Escribe la expresión algebraica correspondiente a su área.

PARA EMPEZAR. Un cuadrado tiene de lado x centímetros. Escribe la expresión algebraica correspondiente a su área. 4 POLINOMIOS PARA EMPEZAR Un cuadrado tiene de lado x centímetros. Escribe la expresión algebraica correspondiente a su área. Expresión algebraica: A x Cuáles de las siguientes expresiones algebraicas

Más detalles

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son?

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son? POLINOMIOS Definición: Un polinomio en la variable x es una expresión algebraica formada solamente por la suma de términos de la forma ax n, donde a es cualquier número y n es un número entero no negativo.

Más detalles

1. Sumar monomios semejantes:

1. Sumar monomios semejantes: FICHA 1: Monomios 1. Sumar monomios semejantes: a) 3x + 4x 5x b) 6x 3 x 3 + 3x 3 c) x 5 + 4x 5 7x 5 d) x 4 + 6x 4 + 3x 4 5x 4 e) 7x + 9x 8x + x f) y + 5y 3y g) 3x y 6x y + 5x y h) 4xy xy 7xy i) a 6 3a

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

Ficha de Repaso: Lenguaje Algebraico

Ficha de Repaso: Lenguaje Algebraico Ficha de Repaso: Lenguaje Algebraico 1º) Traduce las siguientes afirmaciones al lenguaje algebraico: a) El doble de un número b) El cubo de un número c) El cuadrado de un número menos su doble d) Un número

Más detalles

Guía 4. FRACCIONARIOS: si al menos uno de sus términos contiene letras en su denominador

Guía 4. FRACCIONARIOS: si al menos uno de sus términos contiene letras en su denominador Guía 4 TIPOS DE POLINOMIOS NOTA: término independiente de un polinomio con relación a una letra es el término que no contiene dicha letra. ENTEROS: si cada término del polinomio es entero Ejemplo: mn +

Más detalles

Expresiones Algebraicas Racionales en los Números Reales

Expresiones Algebraicas Racionales en los Números Reales en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido

Más detalles

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades

Más detalles

1 x 5. Actividad nº1. Indique cuáles de estas expresiones son polinomios reales (con coeficientes reales) c) 5x 1 + x 4

1 x 5. Actividad nº1. Indique cuáles de estas expresiones son polinomios reales (con coeficientes reales) c) 5x 1 + x 4 POLINOMIOS Alguna vez en la escuela media, en clases de Física, hemos visto expresiones tales como s t = v t + s 0 que representa la relación posición (s) de un móvil, que se desplaza en movimiento rectilíneo

Más detalles

Definición 3 (Polinomio) Se llama polinomio a la suma algebraica de varios monomios de distinto grado:

Definición 3 (Polinomio) Se llama polinomio a la suma algebraica de varios monomios de distinto grado: Polinomios Definición 1 (Expresión algebraica) Una expresión algebraica es una expresión con números y letras (que representan números) en la que aparecen las operaciones usuales: suma, resta, multiplicación,

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES OPERACIONES ALGEBRAICAS FUNDAMENTALES Monomio Un monomio es la representación algebraica más elemental sus componentes son: signo, coeficiente, literal (o literales exponente ( o exponentes, cada literal

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

IES CINCO VILLAS TEMA 3 EL LENGUAJE ALGEBRAICO 3º ESO Página 1

IES CINCO VILLAS TEMA 3 EL LENGUAJE ALGEBRAICO 3º ESO Página 1 EJERCICIOS RESUELTOS MÍNIMOS TEMA EL LENGUAJE ALGEBRAICO º ESO Ejercicio nº.- Completa esta tabla: POLINOMIO GRADO N. DE TÉRMINOS VARIABLE/S 4 5, y 5 7 4 POLINOMIO GRADO N. DE TÉRMINOS VARIABLE/S 4 4 y

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales.

CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales. Capítulo 3.-EXPRESIONES ALGEBRAICAS OBJETIVOS INSTRUCTIVOS Que el alumno: Distinga la clasificación de las expresiones algebraicas. Aprenda las operaciones con monomios y polinomios y sus aplicaciones

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES

EXPRESIONES ALGEBRAICAS RACIONALES Epresiones Algebraicas Racionales EXPRESIONES ALGEBRAICAS RACIONALES Llamaremos epresiones algebraicas racionales a las de la forma A() donde A() y B() son B() polinomios de variable, y B() 0. Por ejemplo,

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles

Valor numérico de una expresión algebraica: Es el que se obtiene al sustituir las letras por números y calcular la operación resultante.

Valor numérico de una expresión algebraica: Es el que se obtiene al sustituir las letras por números y calcular la operación resultante. POLIINOMIIOS.. OPERACIIONES.. RUFFIINII Expresión algebraica: Expresión en la que se operan números conocidos y desconocidos, representados por letras, a, b, c, x, y, z,..., que se denominan indeterminadas.

Más detalles

4º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

4º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS POLINOMIOS 1.- POLINOMIOS Una epresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación, división y potenciación). 1 t Ejemplo:

Más detalles

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición Curso de Matemática Unidad 2 Profesora: Sofía Fuhrman Operaciones Elementales II: Potenciación Definición a n = a. a.a a multiplicado por sí mismo n veces. a) Regla de los signos Exponente Par Exponente

Más detalles

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario: Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

Más detalles

ÁLGEBRA. Puede que en un principio no quede del todo claro esto pero esperemos que con la siguiente tabla se explique un poco mejor:

ÁLGEBRA. Puede que en un principio no quede del todo claro esto pero esperemos que con la siguiente tabla se explique un poco mejor: ÁLGEBRA El algebra es la parte de las matemáticas que nos ayuda a efectuar operaciones con números aún sin saber específicamente de que número se trata. Mediante el proceso de traducción del leguaje cotidiano

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y

Más detalles

Ecuaciones. 2x + 3 = 5x 2. 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. 2x + 2 = 2 (x + 1) 2x + 2 = 2x + 2 2 = 2. x + 1 = 2 x = 1

Ecuaciones. 2x + 3 = 5x 2. 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. 2x + 2 = 2 (x + 1) 2x + 2 = 2x + 2 2 = 2. x + 1 = 2 x = 1 Ecuaciones Igualdad Una IGUALDAD se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2. Cierta 2x + 2 = 2 (x + 1)

Más detalles

EJERCICIOS PROPUESTOS. La única expresión que indica la suma de varios monomios no semejantes es la d: x 2 y 2.

EJERCICIOS PROPUESTOS. La única expresión que indica la suma de varios monomios no semejantes es la d: x 2 y 2. 3 POLINOMIOS EJERCICIOS PROPUESTOS 3.1 Cuáles de las siguientes expresiones algebraicas son polinomios? a) 1 3 x b) abc c) 1 x d) x y La única expresión que indica la suma de varios monomios no semejantes

Más detalles

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

5. Producto de dos binomios de la forma: ( ax + c)( bx d ) PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,

Más detalles

Lección 8: Potencias con exponentes enteros

Lección 8: Potencias con exponentes enteros GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan

Más detalles

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio. Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones

Más detalles

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro POLINOMIOS Matemática Intermedia Profesora Mónica Castro Objetivos Definir y repasar los conceptos básicos de polinomios. Discutir los distintos métodos de factorización de polinomios. Establecer distintas

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

DESCOMPOSICIÓN FACTORIAL

DESCOMPOSICIÓN FACTORIAL 6. 1 UNIDAD 6 DESCOMPOSICIÓN FACTORIAL Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques la factorización de polinomios cuyos términos tienen coeficientes

Más detalles

Multiplicación y división de polinomios

Multiplicación y división de polinomios Semana 4 4 Empecemos! En esta sesión daremos continuidad al estudio de las operaciones de polinomios, la multiplicación y división. Para avanzar satisfactoriamente en este tópico debes recordar la propiedad

Más detalles

CAPITULO 2. ELEMENTOS Y OPERACIONES DE LAS EXPRESIONES ALGEBRAICAS. Cuando nos encontramos con dos o más términos algebraicos en un

CAPITULO 2. ELEMENTOS Y OPERACIONES DE LAS EXPRESIONES ALGEBRAICAS. Cuando nos encontramos con dos o más términos algebraicos en un CAPITULO 2. ELEMENTOS Y OPERACIONES DE LAS EXPRESIONES ALGEBRAICAS. Cuando nos encontramos con dos o más términos algebraicos en un conjunto relacionado, los matemáticos dicen que tratamos con una expresión

Más detalles

Expresiones algebraicas (1º ESO)

Expresiones algebraicas (1º ESO) Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico

Más detalles

Notas teóricas. a) Suma y resta Se agrupan los monomios del mismo grado y se opera.

Notas teóricas. a) Suma y resta Se agrupan los monomios del mismo grado y se opera. MATEMÁTICAS EJERCICIOS RESUELTOS DE POLINOMIOS POLINOMIOS A. Introducción Teoría B. Ejercicios resueltos B.. Sumas y restas B.. Multiplicación B.3. División B.4. Sacar factor común B.5. Simplificar fracciones

Más detalles

La descomposición de una expresión algebraica en otra más sencilla se llama factorización.

La descomposición de una expresión algebraica en otra más sencilla se llama factorización. Investiga en el texto básico, la web u otras fuentes bibliográficas acerca de los casos de factorización y redacta un informe escrito donde expliques el procedimiento para factorizar cada caso y plantea

Más detalles

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles

MATERIALES DIDÁCTICOS

MATERIALES DIDÁCTICOS MATERIALES DIDÁCTICOS LUIS QUINTANAR MEDINA* Ejercitaremos el despeje en ecuaciones de primer grado y lo haremos a tres niveles: El primero en que solo se consideran expresiones directas, la habilidad

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios.

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Colegio San Patricio Matemática 3 año - 2015 Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Factorizar un polinomio es escribirlo como producto de factores irreducibles. El concepto

Más detalles

INTRODUCCIÓN. En ocasiones has visto expresiones como la siguiente: a + b = b + a

INTRODUCCIÓN. En ocasiones has visto expresiones como la siguiente: a + b = b + a INTRODUCCIÓN En ocasiones has visto expresiones como la siguiente: a + b b + a Con ella representamos la propiedad conmutativa de la suma. Esta propiedad es cierta para cualquier par de números y por ello

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

1 Números racionales

1 Números racionales Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que ofrecen las fracciones,

Más detalles

PRÁCTICO: : POLINOMIOS

PRÁCTICO: : POLINOMIOS Página: 1 APUNTE TEÓRICO-PRÁCTICO PRÁCTICO: : POLINOMIOS UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Razonamiento y Resolución de Problemas Carreras: Lic. en Economía, Lic. en Administración, Lic. en

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles