TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.)"

Transcripción

1 TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) Problema 1 (i) Probar que el sistema { ln(x 2 + y 2 + 1) + z 2 = π sen(z 2 ) (x 2 + y 2 ) xz = 0, dene dos funciones implícitas x = x(y), z = z(y) en un entorno del punto (0, 0, π). (ii) Sea α la curva parametrizada por α(y) = (x(y), y, z(y)), calcular la recta tangente y el plano normal a dicha curva en el punto (0, 0, π). (iii) Hallar la variación de la función F (x, y, z) = x 3 y + e xz y 2 en el punto (0, 0, π). según α. SOLUCIÓN (i) Vericaremos que se cumplen las 3 condiciones del Teorema de la Función Implícita. f 1 (x, y, z) = ln(x 2 + y 2 + 1) + z 2 π f 2 (x, y, z) = sen(z 2 ) (x 2 + y 2 ) xz f 1 (0, 0, π) = 0 + π π = 0 f 2 (0, 0, π) = = 0 Ahora calculamos las derivadas parciales de ambas funciones y las evaluamos en el punto (0, 0, π). 2x (x, y, z) = 2y (x, y, z) = x 2 + y x 2 + y (x, y, z) = 3x(x2 + y 2 ) z (x, y, z) = 3y(x2 + y 2 ) 1 2 (x, y, z) = 2z (x, y, z) = 2z cos(z2 ) + x (0, 0, π) = 0 (0, 0, π) = π (0, 0, π) = 0 (0, 0, π) = 0 (0, 0, π) = 2 π (0, 0, π) = 2 π El determinante siguiente tendrá que ser no nulo para que exista x = x(y) y z = z(y). (0, 0, π) (0, 0, π) (0, 0, π) (0, 0, = π) 0 2 π π 2 π = 2π 0

2 Por el Teorema de la Función Implícita el sistema dene dos funciones implícitas, x = x(y) y z = z(y), en el entorno del punto (0, 0, π). (ii) Observamos en primer lugar que α(0) = (0, 0, π). Por tanto el vector tangente a la curva en y = 0 es α (0) = (x (0), 1, z (0)) donde las derivadas se calculan por el Teorema de la Función Implícita 1 [ ] x (0) = (0, 0, π) z (0) (0, 0, π) [ = 0 2 π π 2 π ] 1 [ 0 0 (0, 0, π) (0, 0, π) ] [ ] 0 = 0 Por lo que α (0) = (0, 1, 0) y la ecuación de la recta tangente es (x, y, z) = (0, 0, π) + λ(0, 1, 0) (0, 0, π) (0, 0, π) y el plano normal a esta curva en el punto (0, 0, π) es 0(x 0) + 1(y 0) + 0(z π) = 0 y = 0 (iii) Para hallar la variación de la función F necesitamos calcular su gradiente F (x, y, z) = (3x 2 y + ze x, x 3 2y, xe z ) F (0, 0, π) = ( π, 0, 0) Calcularemos la derivada direccional de F en la dirección del vector tangente a α en el punto (0, 0, π). D v F (0, 0, π) = F (0, 0, π) α (0) = ( π, 0, 0) (0, 1, 0) = 0 ( y Problema 2 La ecuación g(x, y, z) = f x x), z = 0, donde f es una función diferenciable, dene una función z = z(x, y) de forma implícita. Teniendo en cuenta que según el Teorema de la función implícita (x, y, z) (x, y) = y (x, y, z) demostrar, aplicando la regla de la cadena, que se verica: x (x, y) + y (x, y) = z (x, y, z) (x, y) = (x, y, z)

3 SOLUCIÓN En primer lugar debemos calcular las derivadas parciales de la función g de la siguiente manera = u u + = y u x 2 = u u + = u x = u u + = x y Entonces (x, y) = u + z x x que es lo que queríamos demostrar. + z x 2 y (x, y) = (x, y) + y (x, y) = y u u y u + z = z

4 TRABAJO EN GRUPO 04/2009 Permutación 2 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) Problema 1 (i) Probar que el sistema { e x 1 + y 3 z x = 2 sin(y 1) + x 2 z 2y = 0, dene dos funciones implícitas x = x(y), z = z(y) en un entorno del punto. (ii) Sea α la curva parametrizada por α(x) = (x, y(x), z(x)), calcular la recta tangente y el plano normal a dicha curva en el punto. (iii) Hallar la variación de la función F (x, y, z) = x 2 y z + y 3 x en el punto según α. Problema 2 Demostrar que la función z determinada de forma implícita por la ecuación F (x az, y bz) = 0, donde F es una función diferenciable y a y b son constantes reales, satisface la ecuación: a + b = 1 SOLUCIÓN Problema 1 (i) Vericaremos que se cumplen las 3 condiciones del Teorema de la Función Implícita. f 1 (x, y, z) = e x 1 + y 3 z x 2 f 2 (x, y, z) = sen(y 1) + x 2 z 2y f 1 = = 0 f 2 = = 0 Ahora calculamos las derivadas parciales de ambas funciones y las evaluamos en el punto (x, y, z) = ex 1 1 (x, y, z) = 3y2 z (x, y, z) = 2xz (x, y, z) = cos(y 1) 2 (x, y, z) = y3 (x, y, z) = x2 = 0 = 4 = 6 = 1 = 1 = 1 El determinante siguiente tendrá que ser no nulo para que exista x = x(y) y z = z(y).

5 = = 4 0 Por el Teorema de la Función Implícita el sistema dene dos funciones implícitas, x = x(y) y z = z(y), en el entorno del punto. (ii) Para calcular la recta tangente a la curva parametrizada α(y) = (x(y), y, z(y)) procedemos de la siguiente manera: α (1) = (x (1), 1, z (1)) vector tangente en y = 1, donde las derivadas se calculan por el Teorema de la Función Implícita. Por lo que α (1) = [ ] x (1) = z (1) [ ] 1 [ ] = = ( ) 7, 1, 6 y la ecuación de la recta tangente es 4 ( ) 7 (x, y, z) = + λ, 1, 6 4 y el plano normal a esta curva en el punto es 7 4 (x 1) + 1(y 1) 6(z 2) = x + y 6z = 0 (iii) Para hallar la variación de la función F necesitamos calcular su gradiente F (x, y, z) = (2xy + y 3, x 2 + 3y 2, 1) F = (3, 4, 1) Calcularemos la derivada direccional de F en la dirección del vector tangente a α en el punto. ( ) 7 D v F = F α (1) = (3, 4, 1), 1, 6 =

6 Problema 2 Dadas las hipótesis anteriores, como z = z(x, y) sabemos cómo calcular sus derivadas parciales. z x = f x f z z y = f y f z f x = 1f u + 0f v = f u f y = 0f u + 1f v = f v f z = af u bf v Entonces az x + bz y = af u bf v af u bf v = 1 que es lo que queríamos demostrar.

7 TRABAJO EN GRUPO 04/2009 Permutación 3 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) Problema 1 (i) Probar que el sistema { x 2 y sin(xz) + 3xz 2 = 2 e xyz + y 2 x 3 = 5, dene dos funciones implícitas x = x(z), y = y(z) en un entorno del punto. (ii) Sea α la curva parametrizada por α(z) = (x(z), y(z), z)), calcular la recta tangente y el plano normal a dicha curva en el punto. (iii) Hallar la variación de la función F (x, y, z) = e x2 y 2 z + y 3 x en el punto según α. SOLUCIÓN (i) Vericaremos que se cumplen las 3 condiciones del Teorema de la Función Implícita. f 1 (x, y, z) = x 2 y sin(xz) + 3xz 2 2 f 2 (x, y, z) = e xyz + y 2 x 3 5 f 1 = = 0 f 2 = = 0 Ahora calculamos las derivadas parciales de ambas funciones y las evaluamos en el punto (x, y, z) = 2xy z cos(xz) + 3z2 (x, y, z) = yzexyz + 3x 2 y 2 (x, y, z) = x2 (x, y, z) = xzexyz + 2yx 3 (x, y, z) = x cos(xz) + 6xz (x, y, z) = xyexyz = 4 = 12 = 1 = 4 = 1 = 2 El determinante siguiente tendrá que ser no nulo para que exista x = x(z) y y = y(z). = = 4 0

8 Vemos que el sistema si que dene dos funciones implícitas, x = x(z) y y = y(z), en el entorno del punto. (ii) Para calcular la recta tangente a la curva parametrizada α(z) = (x(z), y(z), z) procedemos de la siguiente manera: α (0) = (x (0), y (0), 1) vector tangente en z = 0, y las derivadas parciales se calculan mediante el Teorema de la Función Implícita. Por lo que α (0) = [ ] x (0) = y (0) [ ] 1 [ ] = = ( ) 3 2, 5, 1 y la ecuación de la recta tangente es ( ) 3 (x, y, z) = + λ 2, 5, 1 y el plano normal a esta curva en el punto es 3 2 (x 1) 5(y 2) + 1(z 0) = x 5y + z = 0 (iii) Para hallar la variación de la función F necesitamos calcular su gradiente F (x, y, z) = (2xe x2 + y 3, 3y 2 x 2yz, y 2 ) F = (2e + 8, 12, 4) Calcularemos la derivada direccional de F en la dirección del vector tangente a α en el punto. ( ) 3 D v F = F α (0) = (2e + 8, 12, 4) 2, 5, 1 = 3e 52 ( y Problema 2 Demostrar que la función z = arctan satisface la ecuación de Laplace: x) 2 z z 2 = 0 SOLUCIÓN

9 El primer paso será calcular las primeras y segundas derivadas parciales de la función ( y z = arctan x) = = y x 2 ( y 1 + x 1 ( x y 2 = 1 + x) ) 2 = y x 2 + y 2 x x 2 + y 2 2 z 2 = 2 z 2 = 2xy (x 2 + y 2 ) 2 2xy (x 2 + y 2 ) 2 Entonces 2 z + 2 z 2xy 2xy = = (x 2 + y 2 que es lo que queríamos demostrar. ) 2

Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0,

Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0, Capítulo 1 Función implícita Problema 1 (i Probar que el sistema y + z x + 0 yz + xz xy 1 0 dene dos funciones implícitas y y(x z z(x en un entorno del punto (x y z ( 1 1. (ii Sea α la curva parametrizada

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

Funciones Implícitas.

Funciones Implícitas. CAPÍTULO 5 Funciones Implícitas. En este capítulo presentamos el concepto de función implícita. Esta idea nos ayuda a obtener derivadas de funciones que no podemos conocer explícitamente, pero su aplicación

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 4. (a) Determinar si f es localmente invertible en (0, 0, 0).

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 4. (a) Determinar si f es localmente invertible en (0, 0, 0). Soluciones a los ejercicios propuestos: Matemáticas III Curso 08 09 36 Tema 4 1 Sea f : IR 3 IR 3 definida por fx, y, z = e x+y, cosz, e z a Determinar si f es localmente invertible en 0, 0, 0 J fx, y,

Más detalles

Hoja 2: Derivadas direccionales y diferenciabilidad.

Hoja 2: Derivadas direccionales y diferenciabilidad. Sonia L. Rueda ETS Arquitectura. UPM Curso 2011-2012. 1 CÁLCULO Hoja 2: Derivadas direccionales y diferenciabilidad. 1. Sea f : R 2 R la función definida por x 4 (x 2 +y 2 ) 2, (x, y) (0, 0) 0, (x, y)

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos:

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos: A. Vectores ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos, Superficies en el espacio Para terminar el 3 de septiembre.. Sean v = (0,, ) y w = (,, 4)

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Regla de la Cadena. df(x + tv) t=0

Regla de la Cadena. df(x + tv) t=0 Regla de la Cadena Teorema: Si f : R R es diferenciable, entonces todas las derivadas direccionales existen. La derivada direccional en x en la dirección v está dada por [ ] [ ] [ ] Df v (x) = gradf(x)

Más detalles

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx =

Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables. (d) z = arctan(xy) (e) z = arcsin(x+y) (f) z = x y. x 2 +y 2 +z 2, ω xx = Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 2: Derivación de Funciones de Varias Variables 1. Hallar las derivadas parciales primera y segunda de las siguientes funciones: (a) z

Más detalles

Tarea 1 - Vectorial

Tarea 1 - Vectorial Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas

Más detalles

1.6 Ejercicios resueltos

1.6 Ejercicios resueltos Apuntes de Ampliación de Matemáticas 1.6 Ejercicios resueltos Ejercicio 1.1 En cada uno de los siguientes casos a A {(x,y R : 1 < x < 1, 1 < y < 1}. b A {(x,y R : 1 < x + y < 4}. c A {(x,y R : y > 0}.

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

Capítulo 3. Funciones con valores vectoriales

Capítulo 3. Funciones con valores vectoriales Capítulo 3. Funciones con valores vectoriales 3.1. Curvas: recta tangente y longitud de arco 3.2. Superficies parametrizadas 3.3. Campos vectoriales, campos conservativos Capítulo 3. Funciones con valores

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) y = ex cos y. e x cos y e x sin y. y 2. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES HOJA 4: Derivadas de orden superior 4-1. Sea u : R R definida por u(x, y e x sen y. Calcula las cuatro parciales segundas,

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A 5 de noviembre de 1 GRUPO A xy5 si y x x y 1.- Consideremos f(xy)=. Se pide: 1 si y=x a) Existe el límite: lím f(xy)? xy 1 b) Es continua la función en (1)? c) Es diferenciable la función en (1)? ( puntos).-

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3).

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3). CAMPOS SUPERFICIES Hallar un vector unitario normal a la superficie x 2 y + 2xz 4 en el punto (2, 2,3). Solución I.T.I. 98, I.T.T. 99, 02 En primer lugar deberíamos verificar que el punto (2, 2,3) pertenece

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 201/14 20 de diciembre de 201 Soluciones a los ejercicios del examen final 1) Se considera la función f : R R

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas Cálculo I Curso 2011/2012 2 de julio de 2012 (75 p) 1) Se considera la función f : R R definida por f(x) = ex 2 e x + 1 a) Determinar

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita Sea F : U R p+1 R U abierto F (x 1, x 2,..., x q, y) y un punto a (a 1, a 2,..., a q, b) en U tal que i)f (a 1, a 2,..., a q, b) 0 ii) 0 y continua, existe entonces una

Más detalles

Funciones Compuestas.

Funciones Compuestas. CAPÍTULO 4 Funciones Compuestas. En este capítulo trabajaremos con funciones compuestas. Aprendemos el equivalente multidimensional de la regla de la cadena que en varias variables adquiere una dimensión

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Funciones de varias variables: problemas resueltos

Funciones de varias variables: problemas resueltos Funciones de varias variables: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ

Más detalles

Funciones Compuestas.

Funciones Compuestas. CAPÍTULO 4 Funciones Compuestas. En este capítulo trabajaremos con funciones compuestas. Aprendemos el equivalente multidimensional de la regla de la cadena que en varias variables adquiere una dimensión

Más detalles

Funciones de varias variables

Funciones de varias variables Capítulo Funciones de varias variables Problema Sea f : IR 2 IR definida por: 2 y 2 f, y) = e +y 2 > y, y. i) Estudiar la continuidad de f en IR 2. ii) Definimos g : IR IR como g) = f, ). Analizar la derivabilidad

Más detalles

Problemas resueltos del Boletín 4

Problemas resueltos del Boletín 4 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín 4 Problema 1. Resolver el siguiente sistema de ecuaciones diferenciales: { y = 1 z, z = 1 } y Solución: Lo transformamos como sigue:

Más detalles

Soluciones de los ejercicios del primer examen parcial

Soluciones de los ejercicios del primer examen parcial Matemáticas III (GIC, curso 2015 2016) Soluciones de los ejercicios del primer examen parcial EJERCICIO 1. Determina en qué ecuación se transforma la ecuación en derivadas parciales z yy + 3z xy + 2z xx

Más detalles

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por Cálculo I Curso 2010/2011 Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 5 de julio de 2011 (275 p) 1) Se considera la función f : (0, ) (0, ) definida por f(x) = 1 + ex x e x a)

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita El círculo de radio 1 con centro en el origen, puede representarse implícitamente mediante la ecuación x 2 + y 2 1 ó explícitamente por las ecuaciones y 1 x 2 y y 1 x 2

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

Índice general. Referencias 50

Índice general. Referencias 50 Índice general 1. UNIDAD I: Derivadas parciales 2 1.1. Funciones de varias variables.............................. 2 1.1.1. Funciones de dos o más variables....................... 6 1.1.2. Derivadas parciales

Más detalles

Universidad San Carlos de Guatemala Escuela de Ciencias Departamento de Matemática Clave M de abril de 2015

Universidad San Carlos de Guatemala Escuela de Ciencias Departamento de Matemática Clave M de abril de 2015 Universidad San Carlos de Guatemala Escuela de Ciencias Departamento de Matemática Clave-2-2-M--00-205 26 de abril de 205 Curso: Matemática Intermedia 2. Semestre: Primer Semestre Código del Curso: 2.

Más detalles

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 MA-1003 Cálculo III (UCR) Derivadas implícitas

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

i j k xy yz xz = = Div Rot F = x y z

i j k xy yz xz = = Div Rot F = x y z Div Rot F, si F = ( xy, yz, xz) 1. Hallar: primero, debemos hallar rotor de la función vectorial. i j k Rot ( F ) = ( xy, yz, xz) =,, ( xy, yz, xz) = x y z xy yz xz ( xz) ( yz) ( xy) ( xz) ( yz) ( xy)

Más detalles

GUÍA DE EJERCICIOS (DIFERENCIABILIDAD) f(x, y) = x 2 y 2 ln(x 2 + y 2 ) y determine si satisface o no la ecuación en derivadas parciales:

GUÍA DE EJERCICIOS (DIFERENCIABILIDAD) f(x, y) = x 2 y 2 ln(x 2 + y 2 ) y determine si satisface o no la ecuación en derivadas parciales: GUÍA DE EJERCICIOS (DIFERENCIABILIDAD) CÁLCULO III (OTOÑO 207) - Calcule las derivadas parciales f x y f y i) ln(y + x 2 + y 2 ) xy ii) +x 2 +y 2 iii) arcsin(x/y) iv) (x 2 + y 2 )e xy v) x2 y 2 x 2 +y

Más detalles

Problemas de Cálculo Matemático E.U.A.T. CURSO Segundo cuatrimestre. Problemas del Tema 9. Funciones de dos variables.

Problemas de Cálculo Matemático E.U.A.T. CURSO Segundo cuatrimestre. Problemas del Tema 9. Funciones de dos variables. 1 Problemas de Cálculo Matemático E.U.A.T. CURSO 2003-2004 Segundo cuatrimestre Problemas del Tema 9. Funciones de dos variables. 1. Determinar el dominio de cada una de las siguientes funciones: f(x,

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Tema 3: Diferenciabilidad de funciones de varias variables

Tema 3: Diferenciabilidad de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 2009-2010. Tema 3: Diferenciabilidad de funciones de varias variables 1. Calcular las dos derivadas parciales de primer orden:

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016 rimer Examen arcial Tema A Cálculo Vectorial Marzo 5 de 016 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar

Más detalles

Se define la derivada de f en el punto c, según el vector u, al ĺımite, que denominamos f (c; u) ó D u f (c), si existe: f (c; u) = D u f (c) = lim

Se define la derivada de f en el punto c, según el vector u, al ĺımite, que denominamos f (c; u) ó D u f (c), si existe: f (c; u) = D u f (c) = lim Derivada direccional (1) Sea f : D Rn R m x = (x 1,, x i,, x n ) y = f (x) = (y 1,, y j,, y m ). Siendo y j = f j (x) = f j (x 1,, x i,, x n ), j = 1, 2,, m f (x) = (f 1 (x),, f j (x),, f m (x)) Sea c

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES . DIFERENCIABILIDAD EN VARIAS VARIABLES. Calcular las derivadas direccionales de las siguientes funciones en el punto ā y la dirección definida por v... f(x, y = x + 2xy 3y 2, ā = (, 2, v = ( 3 5, 4 5.

Más detalles

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN : ESPACIO VECTORIAL Propiedades de la adición de vectores y la multiplicación de un vector por un escalar Teorema.1: Si A, B y C son vectores cualesquiera

Más detalles

Campos Vectoriales y Operadores Diferenciales

Campos Vectoriales y Operadores Diferenciales Campos Vectoriales y Operadores Diferenciales 1 Campos Vectoriales y Operadores Diferenciales Opcional Un en R n es una función (continua) F : D R n R n. Una (línea de corriente o también curva integral)

Más detalles

5. El teorema de los multiplicadores de Lagrange.

5. El teorema de los multiplicadores de Lagrange. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 5. El teorema de los multiplicadores de Lagrange. gxy= es decir, { } Sea g una función de dos variables suficientemente regular y consideremos la curva C

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

1. Introducción a las funciones de varias variables 1. Diferenciación

1. Introducción a las funciones de varias variables 1. Diferenciación Problemas de DFVV, Curso 2017/18 1 1. Introducción a las funciones de varias variables 1. Diferenciación en R n 1.1. Espacios métricos, normados y euclídeos Problema 1.1 Prueba la desigualdad de Young:

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

Funciones reales de varias variables.

Funciones reales de varias variables. Tema 4 Funciones reales de varias variables. 4.1. El espacio euclídeo R n. Definición 4.1.1. Se define el producto escalar entre vectores de R n como la aplicación: ( ) : R n R n R : x y = (x 1, x 2,...,

Más detalles

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables. Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

CONJUNTO. (2,1,3) y v 3. (0,1, 1) y u 3. (2,0,3, 1), u 3

CONJUNTO. (2,1,3) y v 3. (0,1, 1) y u 3. (2,0,3, 1), u 3 CONJUNTO n.- Considerar los vectores u = (, -, 2) y v = (2, -, ) de a) Escribir, si es posible, los vectores (, 7, -4) y (2, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el vector

Más detalles

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 11: Derivadas parciales y direccionales. Gradiente Introducción al Cálculo Infinitesimal I.T.I. Gestión Recordar: - Cálculo de ĺımites - Reglas de derivación Derivadas parciales f : R 2 R función

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

3 Cálculo diferencial en varias variables

3 Cálculo diferencial en varias variables Introducción Derivadas parciales. Derivadas parciales de orden superior Función diferenciable. Diferencial total. Regla de la cadena. Derivadas de una función definida de manera implícita. (*) Derivación

Más detalles

Luego, en el punto crítico

Luego, en el punto crítico Matemáticas Grado en Química Ejercicios propuestos Tema 5 Problema 1. Obtenga y clasique los puntos críticos de las siguientes funciones: a fx, y = x +y, b fx, y = x y, c fx, y = x 3 + y. Solución del

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 1 Ejercicio 1 ( puntos) Dada la función exponencial f(x) = x 1, determinar el conjunto de negatividad y positividad. Ya que la función

Más detalles

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.

9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES. 9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio

Más detalles

TEMA 4 SEGUNDO TURNO (22/11/2017) Ejercicio 1 (2 puntos) Respuesta. Ejercicio 2 (3 puntos) Respuesta. Material de uso exclusivamente didáctico 1

TEMA 4 SEGUNDO TURNO (22/11/2017) Ejercicio 1 (2 puntos) Respuesta. Ejercicio 2 (3 puntos) Respuesta. Material de uso exclusivamente didáctico 1 SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 4 Ejercicio 1 ( puntos) Hallar las coordenadas del punto de la gráfica de la función h(x) = ln(x + x + 1) + 5x donde la pendiente

Más detalles

UNIVERSIDAD DE SEVILLA. DEPARTAMENTO DE ECONOMÍA APLICADA I. BOLETÍN DE PROBLEMAS DE MATEMÁTICAS I. GRADO EN ECONOMÍA.

UNIVERSIDAD DE SEVILLA. DEPARTAMENTO DE ECONOMÍA APLICADA I. BOLETÍN DE PROBLEMAS DE MATEMÁTICAS I. GRADO EN ECONOMÍA. UNIVERSIA E SEVILLA. EPARTAMENTO E ECONOMÍA APLICAA I. BOLETÍN E PROBLEMAS E MATEMÁTICAS I. GRAO EN ECONOMÍA. BLOQUE I: CÁLCULO IFERENCIAL. Tema 1: Funciones de una variable Problema 1 Estudiar la continuidad

Más detalles

1 Cálculo diferencial en varias variables.

1 Cálculo diferencial en varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 1 Cálculo diferencial en varias variables. 1.1 Funciones de varias variables. Límites y continuidad.

Más detalles

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5).

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5). 74 MÉTOOS NUMÉRICOS Informática de Sistemas - curso 9/1 Hojas de problemas Tema I - Cálculo diferencial e integral en varias variables I.1 Representación de funciones de dos variables 1. ibuja el plano

Más detalles

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES

Más detalles

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para:

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para: Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemática Listado 1 Cálculo III (2025) PLEV 2018 1. Hallar adherencia, interior, conjunto de puntos de acumulación

Más detalles

Unidad II Cálculo Diferencial de Funciones de Varias Variables

Unidad II Cálculo Diferencial de Funciones de Varias Variables UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE QUÍMICA P.E.L: INGENIERO QUÍMICO U.A: CÁLCULO AVANZADO Unidad II Cálculo Diferencial de Funciones de Varias Variables Material didáctico Modalidad:

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase ponga al día sus conocimientos en los siguientes contenidos: Cálculo de derivadas Propiedades de las funciones

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

2.11. Diferencial de funciones vectoriales.

2.11. Diferencial de funciones vectoriales. 2 Diferencial de funciones vectoriales Definición 2 Una función vectorial es una aplicación f : D R n R m tal que a cada vector x = (x, x 2,, x n D R n le hace corresponder un vector y = (y, y 2,, y m

Más detalles

AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables.

AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables. AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables. 1. Calcular para =[0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcularlasintegralesdoblessiguientesenlosrecintosqueseindican:

Más detalles

Ejercicios Resueltos Tema 5

Ejercicios Resueltos Tema 5 Ejercicios Resueltos Tema 5 Ejercicio 1 Estudiar si la forma bilineal f : R n R n R definida por k f ((x 1,..., x n ), (y 1,..., y n )) = x i y i, siendo 1 k < n, es un producto escalar de R n i=1 Solución.

Más detalles

APLICACIONES DEL DIFERENCIAL SECCIONES

APLICACIONES DEL DIFERENCIAL SECCIONES CAPÍTULO IV. APLICACIONES DEL CÁLCULO DIFERENCIAL SECCIONES 1. Teorema de la función implícita. 2. Teorema de la función inversa. 3. Cambio de variables. 4. Máximos y mínimos de funciones. 5. Extremos

Más detalles

Matemáticas II - Geometría

Matemáticas II - Geometría PAU Matemáticas II - Geometría 2008.SEPTIEMBRE.1.- Dados los dos planos π 1 : x + y + z = 3 y π 2 : x + y αz = 0, se pide que calculeis razonadamente: a) El valor de α para el cual los planos π 1 y π 2

Más detalles

Campos escalares: gráficas, límites y continuidad

Campos escalares: gráficas, límites y continuidad Campos escalares: gráficas, ites y continuidad de febrero de 0 Gráficas de un campo escalar Dominio de un campo escalar Un campo escalar definido sobre un subconjunto U de R n, es una función f con dominio

Más detalles

Aproximaciones de funciones y problemas de extremos

Aproximaciones de funciones y problemas de extremos Aproximaciones de funciones y problemas de extremos José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 5.- Aproximaciones de funciones y problemas de extremos 1 Teorema de

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2017-2018) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles