Escribe en la pantalla de trabajo de wiris los polinomios y las operaciones indicadas teniendo en cuenta las siguientes indicaciones:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Escribe en la pantalla de trabajo de wiris los polinomios y las operaciones indicadas teniendo en cuenta las siguientes indicaciones:"

Transcripción

1 Cálculo con wiris. ºESO EJERCICIOS GUIADOS.- Siendo que: P ( ) Q ( ) 6 R ( ) reliz ls siguientes operciones: ) P ( ) Q( ) ) Q( ) R( ) c) P( ) R( ) d) Cociente resto de Q ( ) R( ) Escrie en l pntll de trjo de wiris los polinomios ls operciones indicds teniendo en cuent ls siguientes indicciones: - Los signos de ls operciones se teclen en el tecldo numérico. - Los eponentes de l vrile se introducen con ud del otón Potenci de l pestñ Operciones. - Después de tecler un eponente h que pulsr l flech de desplzmiento hci l derech ( ) ntes de escriir el siguiente crácter. - Un vez escrit l operción h que tecler en el otón clculr pr otener el resultdo. ) ( ) ( 6 ) Resultdo: P() Q () 6 6 ) ( 6 ) ( ) Resultdo: Q( ) R( ) c) ( ) ( ) 6 Resultdo: P( ) R( ) 7 d) Pr efectur l división enter (cociente resto) usmos el otón División euclidin de l pestñ de Operciones. 6 (en el dividendo) (en el divisor) Resultdo: Cociente: 9 Resto: 0

2 Cálculo con wiris. ºESO.- Hll el vlor numérico del polinomio P ( ) pr pr ( P() P ) ) ( En primer lugr cremos l función P() escriiendo su fórmul. Pr ello teclemos el otón Definir de l pestñ de Símolos ( o ls tecls : del tecldo). A continución, ntes de pulsr en clculr, pulsmos intro pr psr de líne, escriimos P (), intro de nuevo en l siguiente líne P ). Por último, pulsmos pr clculr todo el loque. ( Pr tecler l frcción hcer uso del otón Frcción de l pestñ de Operciones) Tecle: P( ) : intro P() intro P (con ud del otón ) 8 Resultdo: P( ) 76 P ( ). 7.- Fctoriz los siguientes polinomios: 6 ) A ( ) ) B ( ) 0.6 Pr fctorizr un número o un polinomio se utiliz l función fctorizr de wiris. 6 fctorizr( ) 6 Resultdo: A ( ) ( ) ( ) ( ) ( ) Repite el proceso pr fctorizr B (). Resultdo: B ( ) (.8) (.998) (.7.609)

3 Cálculo con wiris. ºESO.- Hll el máimo común divisor el mínimo común múltiplo de los siguientes polinomios: P( ) Q ( ) El cálculo del máimo común divisor (mcd) del mínimo común múltiplo (mcm) de dos o más números o polinomios se hce con ls funciones mcd mcm respectivmente. mcd(, ) Resultdo: mcd(, ) mcm(, ) Resultdo: mcm(, ) Clcul el vlor de k pr que l división se ect. ( k ) : ( ) Lo resolveremos plicndo el teorem del resto: el resto de l división entre es igul l vlor numérico del polinomio dividendo pr. Si l división es ect el resto será igul cero por tnto, el vlor numérico pr será tmién cero. Con wiris dremos los siguientes psos:.- Definir l función P ( ) k..- Clculr el vlor numérico de P () pr..- Igul l epresión correspondiente cero resolver l ecución otenid. Los dos primeros psos se hn hecho en el ejercicio. Not: Entre el prámetro k l epresión dees escriir el signo de multiplicción. Por último, pr resolver l ecución se utiliz l función resolver de wiris. P() : k P( ) (verás que el vlor numérico es k 60) resolver(k600) Resultdo: k

4 Cálculo con wiris. ºESO 6.- Simplific l siguiente frcción lgeric: 7 Pr simplificr un frcción numéric o lgeric simplemente se escrie l frcción, con ud del otón Frcción de l pestñ de Operciones, se puls en clculr. Resultdo: Oper simplific: ) ) ( ) : c) Pr hllr el vlor de ls operciones plnteds sólo tienes que escriir sus epresiones recordndo que los signos de ls operciones son los del tecldo numérico que el corchete no h que escriirlo: dees escriir sólo préntesis. Si fuer el cso hrá préntesis dentro de otros préntesis. Resultdos: ) ) ( ) : c) 6

5 Cálculo con wiris. ºESO EJERCICIOS PROPUESTOS.- Efectú ls siguientes operciones con polinomios: ) 6 8 ) c) 6 : Cociente: Resto: 9.- Hll el vlor numérico del polinomio Q ( ) pr pr 7 Q () Q( ).- Fctoriz los siguientes polinomios: ) P ( ) ) Q ( ) Hll el máimo común divisor el mínimo común múltiplo de los siguientes polinomios: ) P ( ) 0 7, Q ( ) mcm(p(), Q()) MCD(P(), Q()) ) A ( ) 6 0, B ( ) mcm(a(), B()) MCD(A(), B()).- Determin el vlor m pr que l dividir 6 m entre 8 el resto se igul. m 6.- Determin cuál de ls siguientes pres de frcciones lgerics son equivlentes : ) sí no ) sí no

6 Cálculo con wiris. ºESO Efectú ls siguientes operciones : ) 0 0. ) 6 c) Oper simplific : ) 9 8 ) :

GUIA Nº: 7 PRODUCTOS NOTABLES

GUIA Nº: 7 PRODUCTOS NOTABLES CORPORACION UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR CUN DEPARTAMENTO DE INGENIERIAS Y CIENCIAS BÁSICAS FUNDAMENTOS DE MATEMATICAS PRODUCTOS NOTABLES Y FACTORIZACION GUIA Nº: 7 PRODUCTOS NOTABLES Productos

Más detalles

OPERACIONES CON FRACIONES

OPERACIONES CON FRACIONES LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

[FACTORIZACION DE POLINOMIOS]

[FACTORIZACION DE POLINOMIOS] 009 CETis 6 Ing. Gerrdo Srmiento Díz de León [FACTORIZACION DE POLINOMIOS] Documento que enseñ como fctorizr polinomios Pr fctorizr polinomios hy vrios métodos: FACTORIZACIÓN DE POLINOMIOS. Scr fctor común:

Más detalles

LOS CONJUNTOS NUMÉRICOS

LOS CONJUNTOS NUMÉRICOS Pontifici Universidd Ctólic de Chile Fcultd de Educción Nivelción de Estudios pr Adultos CREA Educción Mtemátic Nivel 2 Profesor Jun Núñez Fernández LOS CONJUNTOS NUMÉRICOS Como se mencionó en l clse nterior,

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

Tema 4: Polinomios. c) x 4 5x 3 + 5x 2 + 5x 6 = 0. d) 3x 3 10x 2 + 9x 2 = 0. e) x 5 16x = 0. f) x 3 3x 2 + 2x = 0. g) x 3 x 2 + 4x 4 = 0

Tema 4: Polinomios. c) x 4 5x 3 + 5x 2 + 5x 6 = 0. d) 3x 3 10x 2 + 9x 2 = 0. e) x 5 16x = 0. f) x 3 3x 2 + 2x = 0. g) x 3 x 2 + 4x 4 = 0 Tem 4 Polinomios. Ejercicio Demuestr que el resto l dividir P entre es precismente P Pist l demostrción es muy precid l de lgún teorem visto en clse. Ejercicio Si P = 5 y Q = + clcul P+Q,PQ y P Q Ejercicio

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS EXPRESIONES LGERIS: MONOMIOS Y POLINOMIOS EXPRESIÓN LGERI.- Un epresión lgeric es culquier cominción de números letrs unidos por ls operciones ritmétics (sum, rest, multiplicción, división, potenci, (o)

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

Cómo resolver ecuaciones de primer y segundo grado en el conjunto de los números reales? Prof. Jean-Pierre Marcaillou

Cómo resolver ecuaciones de primer y segundo grado en el conjunto de los números reales? Prof. Jean-Pierre Marcaillou 3 Cómo resolver ecuciones de primer y segundo grdo en el conjunto de los números reles? Prof. Jen-Pierre Mrcillou OBJETIVOS: L clculdor CASIO ClssPd 33 dispone del comndo [solve] de los sumenús desplegles

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 81

INSTITUTO VALLADOLID PREPARATORIA página 81 INSTITUTO VALLADOLID PREPARATORIA págin 81 págin 8 Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 1 1 4

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador.

Toda expresión que conste de una expresión algebraica en su denominador y en el numerador. TEMA : Epresiones Rcionles Contenio TEMA H: Epresiones Rcionles... Introucción epresiones rcionles... PRÁCTICA: Inic los vlores que no formn prte el conjunto solución... Simplificr Epresiones Rcionles...

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas Aplicadas a las Ciencias Sociales I. Ecuaciones. pág. 1 el de mte de id: Mtemátics Aplicds ls Ciencis Sociles I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

(a + b) 2 = a 2 + 2ab + b 2

(a + b) 2 = a 2 + 2ab + b 2 PRODUCTOS NOTABLES. BINOMIO CUADRADO. REPRESENTACIÓN GRÁFICA DEL CUADRADO DE LA SUMA DE DOS CANTIDADES El cudrdo de l sum de dos cntiddes puede representrse geométricmente cundo los vlores son positivos.

Más detalles

Una identidad es una igualdad algebraica que es cierta para valores cualesquiera de las letras que intervienen. una identidad?

Una identidad es una igualdad algebraica que es cierta para valores cualesquiera de las letras que intervienen. una identidad? 3 3.5. Identiddes notles Un identidd es un iguldd lgeric que es ciert pr vlores culesquier de ls letrs que intervienen. 37. Es l iguldd 3x 7x x 9x un identidd? 40. Determin si lgun de ls siguientes igulddes

Más detalles

IES LA ASUNCIÓN

IES LA ASUNCIÓN MATEMÁTICAS º ESO Tem : ÁLGEBRA: Polinomios frcciones lgerics. TEORÍA. EXPRESIONES ALGEBRAICAS Trjr en álger consiste en mnejr relciones numérics en ls que un o más cntiddes son desconocids. Ests cntiddes

Más detalles

MATEMÁTICAS 2º ESO. TEMA 1

MATEMÁTICAS 2º ESO. TEMA 1 MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si

Más detalles

Laboratorio N 7, Asíntotas de funciones.

Laboratorio N 7, Asíntotas de funciones. Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

4 FRACCIONES INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR

4 FRACCIONES INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR FRACCIONES..- INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES...- COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR..- OPERACIONES CON FRACCIONES (I)..- OPERACIONES CON FRACCIONES (II)..-

Más detalles

Ejercicios de números reales

Ejercicios de números reales Ejercicios de números reles Clsific los siguientes números como nturles, enteros, rcionles o reles:, Ejercicio nº.- Consider los siguientes números: 1,000000... 1,,1... Clsifíclos según sen nturles, enteros,

Más detalles

Factorizar un polinomio consiste en convertir un polinomio en un producto de expresiones algebraicas.

Factorizar un polinomio consiste en convertir un polinomio en un producto de expresiones algebraicas. Fctorizr un polinomio consiste en convertir un polinomio en un producto de epresiones lgebrics. Cso 1. Monomio como fctor común. Un polinomio tiene fctor común sí y sólo sí todos los términos del polinomio

Más detalles

Guía Práctica N 13: Función Exponencial

Guía Práctica N 13: Función Exponencial Fuente: Pre Universitrio Pedro de Vldivi Guí Práctic N : Función Eponencil POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE LAS POTENCIAS Sen, b lr {0} m, n. Entonces: PRODUCTO DE POTENCIAS

Más detalles

Resumen de los errores más frecuentes en Matemáticas de 1º ESO.

Resumen de los errores más frecuentes en Matemáticas de 1º ESO. Resuen de los errores ás frecuentes en Mteátics de 1º ESO. 1º. Propiedd distributiv. L propiedd distributiv respecto l producto-división y l su-diferenci nos dice: A) b c b c B) b c b c Observ: b c b c

Más detalles

11. Factorización de polinomios. --------------------------------------------------- 47

11. Factorización de polinomios. --------------------------------------------------- 47 Índice: Tem Págin. Unidd I. Operciones fundmentles del lger -----------------------------. Trducción del lenguje común l lenguje lgerico --------------------. Notción lgeric. --------------------------------------------------------------

Más detalles

Desigualdades y operaciones aritméticas

Desigualdades y operaciones aritméticas Desigulddes y operciones ritmétics Desigulddes y l operción dición Sumr un número mos ldos de un desiguldd. Si < y c R, entonces + c < + c. Ejemplo. Si < 3, entonces 7 < 4. Ejemplo. Si + 4 >, entonces

Más detalles

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores:

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores: IDENTIDADES NOTABLES TEMA : POLINOMIOS a b a b ab a b a b ab a ba b a b Ejercicios:. Desarrolla las siguientes identidades: a y 5 b 5 4y c 5 5. Epresa como producto de factores: 4 a 9 0 0 b 9 6 c 5 9y

Más detalles

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA Mtemátics º ESO Fernndo Brroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA. En cd cso escribe un polinomio que cumpl ls condiciones que se indicn. Con grdo coeficientes enteros. Trinomio de grdo sin

Más detalles

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto.

Polinomios 3º Año Cód P r of. M a r í a d el L u já n Matemática M a r t í n ez P r of. M ir t a R o s i t o Dpto. Polinomios Mtemátic º Año Cód. 0- P r o f. M r í d e l L u j á n M r t í n e z P r o f. M i r t R o s i t o Dpto. de Mtemátic POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile,

Más detalles

4 Operaciones. con polinomios. 1. Operaciones con polinomios. Desarrolla mentalmente: a) (x + 1) 2 b)(x 1) 2 c) (x + 1)(x 1)

4 Operaciones. con polinomios. 1. Operaciones con polinomios. Desarrolla mentalmente: a) (x + 1) 2 b)(x 1) 2 c) (x + 1)(x 1) 4 Operaciones con polinomios 1. Operaciones con polinomios Desarrolla mentalmente: a) ( + 1) 2 b)( 1) 2 c) ( + 1)( 1) P I E N S A Y C A L C U L A a) 2 + 2 + 1 b) 2 2 + 1 c) 2 1 1 Dados los siguientes polinomios:

Más detalles

OBJETIVO 1 DIFERENCIAR ENTRE LENGUAJE NUMÉRICO Y ALGEBRAICO NOMBRE: CURSO: FECHA: Cuadrado: P = a + a + a + a a

OBJETIVO 1 DIFERENCIAR ENTRE LENGUAJE NUMÉRICO Y ALGEBRAICO NOMBRE: CURSO: FECHA: Cuadrado: P = a + a + a + a a OBJETIVO 1 DIFERENCIAR ENTRE LENGUAJE NUMÉRICO Y ALGEBRAICO NOMBRE: CURSO: FECHA: Potenci es l form brevid de escribir un multiplicción de fctores igules. n = (n veces) = Perímetro de un polígono es l

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1

el blog de mate de aida: Matemáticas I. Ecuaciones. pág. 1 el log de mte de id: Mtemátics I. Ecuciones. pág. ECUACIONES Un ecución es un propuest de iguldd en l que interviene un letr llmd incógnit. L solución de l ecución es el vlor o vlores de l incógnit (o

Más detalles

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio. Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones

Más detalles

Tema 2. Divisibilidad. Múltiplos y submúltiplos.

Tema 2. Divisibilidad. Múltiplos y submúltiplos. Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando: Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre

Más detalles

POLINOMIOS. se denominan coeficientes.

POLINOMIOS. se denominan coeficientes. POLINOMIOS Polinomios. Generliddes Llmremos polinomios de grdo n en l vrile, tod epresión de l form: tl que: 0... n n 0 R; R; R;... ; n R n 0 siendo n N0 En tl epresión, l letr represent un número rel

Más detalles

Multiplicar y dividir radicales

Multiplicar y dividir radicales Multiplicr y dividir rdicles 1 Repso Simplificr: 000 4 0 18 1000 4 4 4 10 4 0 0 ( ( ) 0 8) 0 0 0 8 Multiplicción de rdicles Si y son números reles, n n n n n Podemos decir que cundo multiplicmos rdicles

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

Tema 4: Múltiplos y Divisores

Tema 4: Múltiplos y Divisores Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS CÓMO ESTAMOS EN EL TEMA? 1. Enunci verlmente ls siguientes epresiones lgerics: ) - : "L diferenci entre un número " ) c) + 8 d) t + 9 e) t f) - g) h) z i) 1 j) k) ( - ) l) ( + ).

Más detalles

5 Operaciones. con polinomios. 1. Polinomios. Suma y resta

5 Operaciones. con polinomios. 1. Polinomios. Suma y resta 5 Operaciones con polinomios 1. Polinomios. Suma y resta Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A() = 6 2 b) V() = 3 P I E N S A Y C A L C U L A 1 Dado el prisma

Más detalles

Cómo resolver inecuaciones de primer y segundo grado en el conjunto de los números reales?

Cómo resolver inecuaciones de primer y segundo grado en el conjunto de los números reales? 4 Cómo resolver inecuciones de primer y segundo grdo en el conjunto de los números reles? Prof. Jen-Pierre Mrcillou OBJETIVOS: L clculdor CASIO ClssPd 33 dispone del comndo solve] de los sumenús desplegles

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas.

GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas. www.colegiosntcruzrioueno.cl Deprtmento de Mtemátic GUIA DE MATEMATICA Unidd: Álger en R Contenidos: - Conceptos lgericos ásicos - Operciones con epresiones lgerics - Vlorción de epresiones lgerics - Notción

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Unidad 2. Fracciones y decimales

Unidad 2. Fracciones y decimales Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN

Más detalles

EJERCICIOS DE LA ASIGNATURA DE ALGEBRA

EJERCICIOS DE LA ASIGNATURA DE ALGEBRA EJERCICIOS DE LA ASIGNATURA DE ALGEBRA 1 INTRODUCCION Estimdo estudinte, el prendizje de est rm de l mtemátic, requiere que se dominen completmente los siguientes conocimientos y procedimientos prendidos

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas CAÍTULO Epresiones Algerics En Espñ, donde l influenci áre fue mu importnte, surgió el término álger, se utilizó pr referirse l rte de restituir su lugr los huesos dislocdos por ello, el término lgerist

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICA. NOTA EDISON MEJIA MONSALVE.

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICA. NOTA EDISON MEJIA MONSALVE. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICA. ASIGNATURA: MATEMATICA. NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION. PERIODO GRADO N FECHA DURACION

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 3 1. NÚMEROS RACIONALES UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS RACIONALES Los números rcionles son todos quellos números de l form b con y b números

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

Polinomios. 68 Ejercicios para practicar con soluciones. 1 Efectúa las siguientes divisiones usando la Regla de Ruffini. Cuál es exacta?

Polinomios. 68 Ejercicios para practicar con soluciones. 1 Efectúa las siguientes divisiones usando la Regla de Ruffini. Cuál es exacta? Polinomios Ejercicios pr prcticr con soluciones Efectú ls siguientes divisiones usndo l Regl de Ruffini Cuál es ect? ( ) : ( ) ( ) : ( ) ( ) : ( ) c() = c() = c() = r() = r() = r() = 0 ect Efectú ls siguientes

Más detalles

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2

Más detalles

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co

open green road Guía Matemática FRACCIONES ALGEBRAICAS profesor: Nicolás Melgarejo .co Guí Mtemátic FRACCIONES ALGEBRAICAS profesor: Nicolás Melgrejo.co . Introducción El mnejo lgebrico es un herrmient básic que nos permite comunicr ides en el mbiente científico sin importr l lengu que ellos

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO Pág. 1 ENUNCIADOS 1 a) Busca tres múltiplos de 15. b) Busca tres divisores de 15. c) Los tres múltiplos de 15 que encontraste en el apartado a), son múltiplos de los tres divisores de 15 que buscaste en

Más detalles

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f)

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f) 80 Ejercicios.- Siplificr: ) f).- Clculr: ) 0 .7 Práctico: Epresiones Algebrics Ejercicio : Epresr con un onoio el áre de l prte sobred. Ejercicio : ) Verificr que el áre del trpecio de l figur es A =.

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

Potencias y radicales

Potencias y radicales Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m

Más detalles

DESCOMPOSICIÓN FACTORIAL

DESCOMPOSICIÓN FACTORIAL 6. 1 UNIDAD 6 DESCOMPOSICIÓN FACTORIAL Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques la factorización de polinomios cuyos términos tienen coeficientes

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

INDICADORES DE DESEMPEÑO

INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8º A/B Julio de 0 módulos

Más detalles

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN DE TECNOLOGÍA AMBIENTAL

UNIVERSIDAD TECNOLÓGICA DE JALISCO DIVISIÓN DE TECNOLOGÍA AMBIENTAL NO. TITULO DE LA PRACTICA: Multiplicción división de onoios polinoios. ASIGNATURA: Mteátics I HOJA: 1 DE: 7 UNIDAD TEMATICA: FECHA DE REALIZACIÓN: Mo de 007 NUMERO DE PARTICIPANTES RECOMENDABLE: 1 ELABORO:

Más detalles

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO

LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO 6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

LOGARITMO 4º AÑO DEF. Y PROPIEDADES

LOGARITMO 4º AÑO DEF. Y PROPIEDADES LOGARITMO º AÑO DEF. Y PROPIEDADES En l epresión n c, puede clculrse un de ests tres cntiddes si se conocen dos de ells resultndo de este odo, tres operciones diferentes: º Potenci º Rdicción º Logrito

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3

TEMA 1 Matrices MATRICES A... es una matriz de dos filas y tres columnas. El elemento a 2,3 = -3 . DEFINICIÓN. http://mtemticsconsole.wikispces.com/ TE trices TRICES Un mtriz de m fils n columns es un serie ordend de m n números ij, i=,,...m; j=,,...n, dispuestos en fils columns, tl como se indic

Más detalles

Ejercicios. Números enteros, fraccionarios e irracionales.

Ejercicios. Números enteros, fraccionarios e irracionales. CEPA Enrique Tierno Glván. Ámbito Científico-Tecnológico. Nivel Ejercicios. Números enteros frccionrios e irrcionles. Números enteros. Represent en l rect rel los siguientes números enteros - 0 - -. Qué

Más detalles

Tema 2 Divisibilidad

Tema 2 Divisibilidad 1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos

Más detalles

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2014 Olalla (Universidad de Sevilla) El anillo de

Más detalles