PROGRESIONES ARITMETICAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROGRESIONES ARITMETICAS"

Transcripción

1 PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00 S00 00 ( + 00 ) 50 El término generl de los múltiplos de siete es: 7 : n 7 + ( n ) n 7 7n d 7 7 ; ( ) S 00. Hllr cuántos enteros consecutivos prtir de 0 se deben tomr pr que su sum se 05. d Progresión ritmétic, 0,, n 0 + ( n ) n + 9 L sum de n términos de un progresión ritmétic viene dd por l expresión: Sn 05 + n 0 + n + 9 Sn n : 0 : 05 n n n n 9n n + 9n n 74 (no válid) 9 ± n n 55 (válid) 9 4 ( 4070). Demostrr que l sum de n enteros impres consecutivos prtir del es igul n. Los números impres formn un progresión ritmétic de d y : n + ( n ) n L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo n términos impres: + n n S n n n n 4. Hllr tres números en p.. sbiendo que l sum del primero y el tercero es, y que el producto del primero por el segundo es 4. Tres números en progresión ritmétic son: ; + d; + d l sum del primero y el tercero es : + + d + d el producto del primero por el segundo es 4 : ( ) 4

2 Ls dos condiciones permiten plnter un sistem de ecuciones no lineles. + d 6 d 6 + ( 6 ) 4 + d 4 + d 4 Los números son: 4; 6; d Hllr tres números en p.. cuy sum es y cuyo producto es 80 Tres números en progresión ritmétic son: ; + d; + d Si sumn : + + d + + d + d + d 7 + d + d Si su producto es 80: ( ) ( ) 80 Ls dos condiciones permiten plnter un sistem de ecuciones no lineles. + d 7 + d 7 + d 7 : : ( + d) ( + d) 80 7 ( + d) 80 ( + d) 40 d 7 : ( + ( 7 ) ) 40 : ( 4 ) 40 ( + d) 40 Ordenndo se obtiene un ecución de º grdo : ( 4) ± ( 4) Si 4 d 7 4 4; 7; 0 0 d 7 0 0; 7; Si 4 6. Tres números están en l rzón : 5 : 7. Hllr dichos números sbiendo que si se rest 7 del segundo los números formn un p.. Si los números están en rzón propuest: n; 5n; 7n En progresión ritmétic están: n; 5n 7; 7n Si están en progresión ritmétic, l diferenci de términos consecutivos es constnte. 5n 7 n 7n ( 5n 7) n 7 n + 7 n 4 Los números son: 8; 70; Hllr l sum de todos los enteros comprendidos entre 00 y 800 que sen múltiplos de Los múltiplos de comprendidos entre 00 y 800 formn un progresión ritmétic de diferenci. El primer término será el primer múltiplo de tres myor que 00 (0), y el último será el myor múltiplo de menor que 800 (798). Pr hllr l sum necesitmos sber cuntos términos formn l progresión, y pr ello plicmos l definición de término generl l último término.

3 ( n ) d n ( n ) n n L sum de los primeros términos de l progresión ritmétic es: S Un cuerpo ce libremente, prtiendo del reposo, y recorre 6 metros durnte el primer segundo, 48 metros en el segundo, 80 metros en el tercero, etc. Hllr l distnci que recorre durnte el quincevo segundo y l distnci totl que recorre en 5 segundos, prtiendo del reposo. Los términos 6, 48 y 80 están en progresión ritmétic de diferenci cte El término generl es: 6 n + ( n ) d 6 + ( n ) n 6 d Cd término indic el espcio recorrido en cd segundo, por lo tnto el espcio recorrido en el quincevo segundo será el término m L distnci totl que recorre en quince segundos es l sum de los quince primeros términos S m 9. Clcul l sum de los múltiplos de 59 comprendidos entre 000 y 000. Lo primero de todo es clculr cul es el primer múltiplo de 59 superior 000 y cul es el myor múltiplo menor de ,94... ( 6 ) , n 59 El número de términos se clculn plicndo el término generl l último término. 00 n + ( n ) d : n 947 : ( n ) 59 d n Conocido el número de términos se clcul l sum. + 7 S

4 0. El producto de tres términos consecutivos de un p.. es 80 y l rzón es. Hllr dichos términos. Si los números están en progresión ritmétic de rzón serán: ; + d ; + d Teniendo en cuent que su producto es 80, se plnte un ecución con un incógnit ( ) ( ) Resolviendo por Ruffini se obtiene un únic solución rel. Por lo tnto los números son: ; 5; 8. Cuántos términos hy que sumr de l progresión ritmétic, 8, 4,... Pr obtener como resultdo 064? L sum de n términos de un progresión ritmétic es: + n Sn n Por ser un progresión ritmétic de diferenci 6 ( ): + ( n ) d + ( n ) 6 6n 4 n Sustituyendo en l expresión de l sum de n términos de un progresión ritmétic se obtiene un ecución en función de n. + ( 6n 4) 064 n 8 ( 6n ) n 6n n 8 0 n n n ( ) ± ( ) 4 ( 064) n 9 ± n 9 6 n 56 ( no válid). L sum de los términos de un p.. limitd es 69 y su término centrl vle. Averigu el número de términos de dich progresión? L expresión de l sum de n términos de un progresión ritmétic est bsd en que l sum de términos equidistnte es constnte cte + n n n Si l progresión tiene término centrl es por que est formd por un número impr de términos y por tnto l sum de términos equidistntes es igul l doble del término centrl. Si denominmos como m l término centrl: + n m Sustituyendo en l expresión de l sum de n términos se plnte un ecución con un solo incógnit, el número de términos de l progresión. + n m Sn n n n 69 n 4

5 . L sum de n números nturles consecutivos tomdos prtir de es 75. Cuántos términos hemos sumdo? L sum de n términos de un progresión ritmétic es: + n Sn n Teniendo en cuent que el primer término es y que l diferenci es (números nturles consecutivos), el término enésimo es n + (n ) d n + n n + ( ) 0 Sustituyendo en l expresión de l sum: + ( n + 0) S n n 75 n + n n + n 40 0 ± n ( ) 40 4 ( 40) ± 9 n 49 n 70 Teniendo en cuent que el número de términos de un progresión no puede ser negtivo, solo es válid l solución positiv, n Sbiendo que 5 8 y d, hll l sum de los nueve primeros términos de l sucesión. L cuestión se puede resolver de dos forms diferentes. ª. Teniendo en cuent que l sum de términos equidistntes de un progresión ritmétic limitd es constnte, y que en el cso de ser impr es igul l doble del término centrl, en l progresión que nos proponen es de nueve términos y el término centrl ( 5 ) es 8: S ª Conocido el quinto término de l progresión y l diferenci, se clcul el primer y el noveno ( ) ( 9 ) S 9 5. Se considern 6 términos consecutivos de un p... L diferenci de los extremos es 6, y l sum del curto y el decimotercero es 8. Clcul los extremos. L diferenci de los extremos es 6: 6 6 L sum del curto y el decimotercero es Teniendo en cuent que l sum de términos equidistntes es constnte: Sustituyendo 4 + por + 6, se puede plnter un sistem de dos ecuciones con 6 6 dos incógnits :

6 Sumndo ls ecuciones se obtiene Conocido 6, se clcul Un progresión ritmétic limitd de 0 términos es tl que l sum de los extremos es igul 0, y el producto del tercero y el octvo es 75. Formr los 0 primeros términos de l progresión. L sum de los extremos es igul 0: Por ser un progresión ritmétic limitd de 0 términos: Por otro ldo, el producto del tercero y el octvo es 75: 8 75 Los dtos nos permiten clculr un sistem de ecuciones no lineles: El sistem se resuelve por sustitución, y tiene dos posibles soluciones: 8 0 ( 0 ) 75 ; ( 0) ± ( 0) ± 0 5 : Conocidos dos términos culesquier de l progresión ritmétic, l diferenci es: n m n m (n m) d ; d n m Aplicdo l primer solución del sistem ( 5; 8 5): d d ( ) ( ) 9 Los 0 primero términos de l progresión son: 9; 7; 5; ; ; 9; 7; 5; ; Aplicdo l segund solución del sistem ( 5; 8 5): d d ( ) Los 0 primero términos de l progresión son: ; ; 5; 7; 9; : ; 5; 7; 9 6

7 7. L sum de tres números en progresión ritmétic es y su producto 87. Hll estos números. L sum de tres números en progresión ritmétic es : + + Considerndo los tres términos como un progresión limitd, y teniendo en cuent l constnci de l sum de términos equidistntes, y que es el término centrl: + Sustituyendo en l ecución nterior: + El producto de tres números en progresión ritmétic es 87: 87 Teniendo en cuent el vlor de, ls dos ecuciones se reducen : El sistem se resuelve por sustitución: 7 ( ) ± ( ) ( ) ± 4 : 9 9 Ls posibles soluciones son: 9; ; ; ; 9 8. Tres números en progresión ritmétic tienen por producto 6640; el más pequeño vle 0. Hll los otros dos. Tres números en progresión ritmétic tienen por producto 6640: 6640 El menor vle 0: 0; 0 + d; 0 + d Sustituyendo en l primer ecución: d 0 + d d + 0d 6 0 ( ) ( ) d 0 + d ( 0 + d) ( 0 + d) 8 ( ) ( ) 46 0 ± d 0 Si d 6 0; 6; Si d 6 0; 6; 5 4 ( 6) 0 ± 4 d 6 : d 6 7

8 9. Clcul tres números sbiendo que están en progresión ritmétic, que su sum es 8 y que l sum del primero y del segundo es igul l tercero disminuido en dos uniddes. Tres números en progresión ritmétic cuy sum es 8: L sum del primero y del segundo es igul l tercero disminuido en dos uniddes + Por estr en progresión ritmétic: n + (n ) d d d d + + d 8 + d + d + ; + d 8; + d ; d Ls dos condiciones propuests y l definición de término generl, permiten plnter un sistem de ecuciones. + d 6 Sumndo ls ecuciones: 4 ; d Conocido se clcul l diferenci. d Conocido el primer término y l diferenci se clculn los restntes término de l progresión. ; + 4 6; L sum de los primeros términos de un progresión ritmétic es 76 y l diferenci de los extremos es 0. Hll los primeros términos de l progresión. L sum de n términos de un progresión ritmétic es: + n Sn n Aplicd pr once términos: + S 76 Ordenndo: + L diferenci de los extremos es 0: 0 Ls condiciones del problem permiten plnter un sistem de ecuciones: + 0 Sumndo ls ecuciones se clcul : + 0 : 6 Aplicndo l definición de término generl l término once, se clcul l diferenci. + ( ) d ; + 0 d ; d ; ; ; 4 4; 5 5; 6 6; 7 7; 8 8; 9 9; 0 0; 8

9 . Hll cutro números en progresión ritmétic, conociendo su sum, que es, y l sum de sus cudrdos, 66. Cutro números en progresión ritmétic cuy sum es : L sum de sus cudrdos es Por estr en progresión ritmétic: n + (n ) d + d ; + d ; 4 + d Sustituyendo en ls condiciones: d + + d + + d ; 4 + 6d ; + d d + + d + + d + + d + d + + 4d + 4d + + 6d + 9d d + 4d 66 ; + 6d + 7d 8 + ( ) ( ) ( ) 66 Ls condiciones permiten plnter un sistem de ecuciones no linel. + d d Por sustitución: + 6d + 7d 8 + 6d + 7d 8 d d + 6 d + 7d 8 66d + 9d 66d + 9d + d 9d + 7d 8 ; + d 9d + 7d d + 9d + 66d 8d + 4d 66 ; 5d ; d ± ± 5 Si d ; 4 ; 7 ; 4 0 ( ) Si d 0 ; 7 ; 4 ;. L rzón de un progresión ritmétic es 4. El producto de los cutro primeros términos es 585. Hll los términos. Si l diferenci es 4 y los números están en progresión ritmétic: n + (n ) 4 ( + 4) ( + 8) ( + ) ( ) ; ( ) ( ) 585 ; 585 El polinomio de grdo cutro que prece se resuelve por Ruffini, obteniendo un únic solución rel., 5; 9; 4 9

10 . Hll los seis primeros términos de un progresión ritmétic sbiendo que los tres primeros sumn y los tres últimos 4. Los tres primeros sumn : + + Los tres últimos sumn 4: Lo ms sencillo es plicr el término generl cd término de l progresión, y de est form poder expresr cd ecución en función de y d, obteniendo un sistem de dos ecuciones con dos incógnits. d ; d ; d ; 4d ; 5d d + + d d + + 4d + + 5d ; + d ; + d ; + d 4 ; + 4d 8 + d Restndo ls ecuciones se despej d. d 9 ; d + 4d 8 d 4 Conocidos y l diferenci se clculn los términos de l progresión. 4; ; ; 4 5; 5 8; 6 4. En un progresión ritmétic, el undécimo término excede en uniddes l octvo, y el primero y el noveno sumn 6. Clcul l diferenci y los términos menciondos. El undécimo término excede en uniddes l octvo: 8 + El primero y el noveno sumn 6: Aplicndo l definición de término generl cd termino de ls ecuciones propuests, se consigue un sistem de dos ecuciones con dos incógnits (, d). 0d ; 7d d + 7d d d 6 8d + ; d + ; + 6 ; + 4d d d Por sustitución : + 4d + 0d d d En un progresión ritmétic, los términos segundo y tercero sumn 9, y los términos quinto y séptimo sumn 40. Hálllos. Los términos segundo y tercero sumn 9: + 9 Los términos quinto y séptimo sumn

11 Se plic l definición de término generl, pr obtener un sistem de dos ecuciones con dos incógnits. + d + 9 : : + d + + d 9 ; + d 9 + d 5 + 4d : : + 4d + + 6d 40 ; + 0d d + d 9 Restndo ls ecuciones: 7d ; d + 0d 40 9 d 9 + d d d d d Hll los ángulos de un triángulo sbiendo que están en progresión ritmétic. Los ángulos de un triángulo sumn 80º, si están en progresión ritmétic: º Por estr en progresión ritmétic, l sum de términos equidistntes es constnte, y si el número de términos es impr, l sum de términos equidistntes será igul l doble del término centrl. + Sustituyendo est ultim relción en l primer, se despej º : + 80º ; 80 ; 60º + Llegdo este punto, el problem tiene infinits soluciones, le hrí flt lgun condición más pr que l solución fuese únic Posibles soluciones: 0º; 60º, 90º 0º; 60º, 00º 7. Los seis ángulos de un hexágono están en progresión ritmétic. L diferenci entre el myor y el menor es 60. Clcul el vlor de cd ángulo. Si están en progresión ritmétic y el menor mide 60º: 60º; 60º + d; 60º + d; 4 60º + d; 5 60º + 4d; 6 60º + 5d Teniendo en cuent que los ángulos de un hexágono sumn 70º: 60 º + 60º + d + 60º + d + 60º + d + 60º + 4d + 60º + 5d º + 5d 70º ; d 4º 60º; 84º; 08º; 4 º; 5 56º; 6 80º

12 8. Hll los ldos de un triángulo rectángulo, sbiendo que sus medids son números pres consecutivos. Si son números pres consecutivos: n ; n + ; n + 4 L hipotenus siempre es el myor de los ldos del triángulo rectángulo, y como se debe cumplir el teorem de Pitágors: ( n) + ( n + ) ( n + 4 ) Desrrollndo y ordenndo se obtiene un ecución de º grdo. 4n + 4n + 8n + 4 4n + 6n + 6 ( ) ± ( ) 4 ( ) 4n 8n 0 ; n ± 4 n 0 ; n n ó n L solución negtiv no tiene sentido por trtrse de longitudes de ldos. 6 ; 8 ; 0 9. Los ldos de un triángulo están en progresión ritmétic, su perímetro mide 8 m y l sum de los cudrdos de los ldos es igul 6. Hll los ldos. Su perímetro mide 8 m: L sum de los cudrdos de los ldos es igul 6: Teniendo en cuent que están en progresión ritmétic: + d ; + d Sustituyendo en ls condiciones: + + d + + d 8 ; + d 8 ; + d 6 ( + d) + ( + d) 6 + ; + + d + d d + 4d 6 + 6d + 5d 6 Ls dos condiciones permiten plnter un sistem de ecuciones no linel. + d 6 6 d : Por sustitucón + 6d + 5d 6 + 6d + 5d 6 ( 6 d) + 6 ( 6 d) d + 5d 6 ; ( 6 d + d ) + 6d 6d + 5d d + d + 6d 6d + 5d 6 ; d 8 ; d ± 4 ± Si d 6 4; 6; 8 Si d 6 ( ) 8; 6; 4

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA Mtemátics º ESO Fernndo Brroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA. En cd cso escribe un polinomio que cumpl ls condiciones que se indicn. Con grdo coeficientes enteros. Trinomio de grdo sin

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0 Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2 Epresiones lgebrics Unidd frccionris EN ESTA UNIDAD APRENDERÁS A: Interpretr ls epresiones lgebrics frccionris como un generlizción de l opertori con frcciones numérics. Reconocer pr qué vlores un epresión

Más detalles

M A T E M Á T I C A S. Números Reales. Fraccionarios Positivos Negativos MIXTOS: 3 ¼ 1

M A T E M Á T I C A S. Números Reales. Fraccionarios Positivos Negativos MIXTOS: 3 ¼ 1 M A T E M Á T I C A S Números Reles Enteros Rcionles Positivos Negtivos Nturles (,,,4,5,6... α) Primos (,,5,7,,,7) Pres (... 4,-,0,,4,6,..., ) Impres ( -...,-,-,0,,,5,..., ) Dígitos ( 0,,,,4,5,6,7,8,9

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

CAPÍTULO 1. Rectas y ángulos

CAPÍTULO 1. Rectas y ángulos ÍTUO 1 Elementos ásicos de l Geometrí Rects y ángulos 1.1 En Geometrí hy ides ásics que todos entendemos pero que no definimos. Ésts son ls ides de unto, Rect, lno y Espcio. Señlmos un punto con un mrc

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

MATEMÁTICA. Unidad 4. Geometría analítica. Objetivos de la unidad:

MATEMÁTICA. Unidad 4. Geometría analítica. Objetivos de la unidad: MATEMÁTICA Unidd Geometrí nlític Objetivos de l unidd: Aplicrás correctmente l geometrí nlític: prábol, elipse e hipérbol l encontrr soluciones diverss problemátics del entorno. 55 Figurs cónics ests son

Más detalles

3 Sistemas de ecuaciones lineales

3 Sistemas de ecuaciones lineales Solucionrio Sistems de ecuciones lineles CTIVIDDES INICILES.I. Resuelve los siguientes sistems de ecuciones. ) c) 6 ), λ, λλ R, c) Sistem incomptible,.ii. En cd cso, escribe un sistem de ecuciones cu solución

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Taller de Álgebra. 0, 1, 2, 3, 4, 5, los llamamos enteros no negativos o números naturales 0.5, 0.333, 0.75, 0.875, 4.333

Taller de Álgebra. 0, 1, 2, 3, 4, 5, los llamamos enteros no negativos o números naturales 0.5, 0.333, 0.75, 0.875, 4.333 Tller de Álger. Dr. Blnc M. Prr UIA Tijun 0. Números reles rect numéric. Números reles son todos los números que representmos en l rect numéric. A cd punto de l rect corresponde un número rel pr cd número

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Métodos de Integración I n d i c e

Métodos de Integración I n d i c e Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO.

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ACTIVIDADES PARA EL VERANO MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Eectúe Sol -9/ - Eectúe 9 7 8 6 Sol - Eectúe 8

Más detalles

Determinización: Construcción de Safra

Determinización: Construcción de Safra Determinizción: Construcción de Sfr Ddo: Autómt de Büchi A = (Q,Σ,Q 0,δ,F) Supong que Q = {q 1,...,q n }. Vmos construir un utómt de Rin determinist B tl que L ω (A) = L ω (B), donde B está compuesto por:

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP)

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) Plntemiento del prolem de progrmción Linel Un prolem de progrmción linel es cundo l función ojetivo es un función linel y ls restricciones son ecuciones lineles; l

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes

Más detalles

ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío

ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío ELECTRCDAD Y MAGNETSMO. Electrostátic-Vcío 1) Suponiendo un nue de electrones confind en un región entre dos esfers de rdios 2 cm y 5 cm, tiene un densidd de crg en volumen expresd en coordends esférics:

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN Grdo 11 Tller # 5 Nivel I M. C. ESCHER Un de ls obrs más conocids del rtist gráfico holndés M. Escher es l litogrfí

Más detalles

LA INTEGRAL DEFINIDA Y SUS APLICACIONES

LA INTEGRAL DEFINIDA Y SUS APLICACIONES Integrl Definid y Aplicciones LA INTEGRAL DEFINIDA Y SUS APLICACIONES Autores: Pco Mrtínez (jmrtinezos@uoc.edu), Ptrici Molinàs (pmolins@uoc.edu), Ángel A. Jun (junp@uoc.edu). ESQUEMA DE CONTENIDOS Aplicciones

Más detalles

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9 1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

Matrices. números reales. Los jardines cifrados. Carlo Frabetti

Matrices. números reales. Los jardines cifrados. Carlo Frabetti Solucionrio Mtrices números reles LITERATURA Y MATEMÁTICAS Los jrdines cifrdos De l pred del fondo prtí un lrgo psillo débilmente ilumindo; lo recorrí y, l finl, me encontré nte un puert con pertur de

Más detalles

Apoyo compartido. Matemática Período 1 CUADERNO DE TRABAJO BÁSICO

Apoyo compartido. Matemática Período 1 CUADERNO DE TRABAJO BÁSICO Apoyo comprtido Mtemátic Período CUADERNO DE TRABAJO 3º BÁSICO DOB MIT Cuderno de trbjo Mtemátic 3º Básico, Período NIVEL DE EDUCACIÓN BÁSICA División de Educción Generl Ministerio de Educción Repúblic

Más detalles

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal.

APLICACIONES LINEALES: Núcleo e Imagen de una aplicación lineal. Universidd de Jén Deprtmento de Mtemátics (Áre de Álgebr) Curso 2014/15 PRÁCTICA Nº 12 APICACIONES INEAES: Núcleo e Imgen de un plicción linel. Con est práctic se pretende revisr l definición de plicción

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie CURSOSO CURSOSO MATEMÁTICASESPECIALESCAD MóduloIV: Continuiddyderivbilidd MTeresUleciGrcí RobertoCnogrMcKenzie DeprtmentodeMtemáticsFundmentles FcultddeCiencis Curso de Mtemátics Especiles Introducción

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

Aproximación e interpolación mediante polinomios

Aproximación e interpolación mediante polinomios LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

VECTORES. b procesador de texto lo más usual es escribirlo con negrita (a). Ambas notaciones se leen el vector a. De ahora en

VECTORES. b procesador de texto lo más usual es escribirlo con negrita (a). Ambas notaciones se leen el vector a. De ahora en /o Físic Generl. FCQN. UNM. Ciclo Lectio 008 VECTORES En físic eisten cntiddes que quedn representds por un número, ests cntiddes dimensionles pueden ser: el umento de un lente ( M 3); el coeficiente de

Más detalles

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39 Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio

Más detalles

Segunda Versión. Integración y Series. Tomo II

Segunda Versión. Integración y Series. Tomo II UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Deprtmento de Mtemátic y Cienci de l Computción CÁLCULO Segund Versión Integrción y Series Tomo II Gldys Bobdill A. y Rfel Lbrc B. Sntigo de Chile 4

Más detalles

PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS TERCER CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA.

PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS TERCER CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA. Colegio Colón Huelv PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS TERCER CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 0-0 NOMBRE GRUPO Doñ Rosrio Nieto Romero D. Mrcos

Más detalles

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos:

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos: Fcultd de Informátic Universidd Complutense de Mdrid Prolems ásicos: PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5 1. Especifique como máquin de Moore un sistem secuencil cuy slid z se comport, en función

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis

Más detalles

Cálculo Integral. Métodos de integración

Cálculo Integral. Métodos de integración Unidd Métodos de integrción álculo Integrl Métodos de integrción Universidd iert y Distnci de Méico Unidd Métodos de integrción Índice UNIDD MÉTODOS DE INTEGRIÓN Propósito de l unidd ompetenci especíic

Más detalles

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000 Solución Ejercicio 3: A. Registro de l vent. Vent de 6 frigoríficos 1.000 cd uno. Ls vents del ejercicio son ingresos. 5400 Bnco Clientes Vents de mercderís 0 (+) Bnco (-) (-) Resultdo Ejer (+) 0 (+) Clientes

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

Integración en el plano complejo

Integración en el plano complejo Integrción en el plno complejo 4.1. Funciones complejs de vrible rel Un función complej de vrible rel es un función w : [, b] C, donde b. L prte rel y l prte imginri de w son dos funciones reles de vrible

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5. Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles