1 Aplicaciones lineales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 Aplicaciones lineales"

Transcripción

1 UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal semejante a una matriz dada. Esto es una herramienta muy útil que nos permite por ejemplo calcular con pocas operaciones potencias de matrices de cualquier orden. También se puede usar para resolver ciertos sistemas de ecuaciones diferenciales, para estudiar la convergencia de ciertas sucesiones de varias variables además de un número grande de otras aplicaciones. Empecemos primero con unas nociones algebraicas que serán necesarias. Aplicaciones lineales Definición. Dados dos espacios vectoriales V y W sobre un mismo cuerpo K, diremos que una aplicación f : V W es una aplicación lineal u homomorfismo si para cualquier par de vectores u, v V y para cualquier λ K se cumple que f(u + v) = f(u) + f(v), f(λ u) = λ f(u). Si V = W diremos que f es un endomorfismo. Ejemplo 2. La aplicación nula o la aplicación identidad de un espacio vectorial en si mismo son aplicaciones lineales. Ejemplo 3. Sea C(R) el conjunto de todas las aplicaciones reales continuas y D(R) el conjunto de todas las aplicaciones reales derivables. Si consideramos la aplicación ϕ : D(R) C(R) que a cada f D(R) asocia su derivada, tendremos que ϕ es una aplicación lineal. Proposición 4. Sea f : V W una aplicación lineal. Tenemos las siguientes propiedades inmediatas: (i) f( λ i v i ) = λ i f(v i ) para todo v i V y λ i K. (ii) f(0) = 0. (iii) La composición de aplicaciones lineales es una aplicación lineal. (iv) Si {u, u 2,..., u n } es un conjunto linealmente dependiente, entonces {f(u ), f(u 2 ),..., f(u n )} es un conjunto linealmente dependiente. Definición 5. Dada una aplicación lineal f : V W, se define el núcleo de f que se denotará por ker f como ker f = {v V : f(v) = 0}. Definición 6. Dada una aplicación f : A B entre dos conjuntos, se define la imagen de f que se denotará por im f como im f = {b B : existe a A tal que f(a) = b}.

2 Proposición 7. Dada una aplicación lineal f : V W, los conjuntos ker f e im f son subespacios vectoriales de V y W respectivamente. La dimensión de im f se denota por rango de f. Teorema 8. Sea f : V W una aplicación lineal. Si V es de dimensión finita se tiene que dim V = dim ker f + dim im f. Recordemos que una aplicación f : A B es inyectiva si cada vez que se tiene que a b entonces f(a) f(b) y es suprayectiva (o sobreyectiva) cuando la imagen de f coincide con B. Cuando pasen ambas cosas se dice que f es biyectiva. Definición 9. Diremos que una aplicación lineal es un monomorfismo cuando sea inyectiva, que es un epimorfismo cuando sea suprayectiva y que es un isomorfismo cuando sea biyectiva. Si el espacio de partida y de llegada es el mismo, diremos que la aplicación es un endomorfismo. Proposición 0. Sea f : V W una aplicación lineal. (i) f es inyectiva si, y sólo si ker f = {0}. (ii) Si f es inyectiva y u, u 2,... u n V es un conjunto de vectores linealmente independientes, entonces f(u ), f(u 2 ),..., f(u n ) W también son linealmente independientes. 2 Matriz asociada a una aplicación lineal Proposición. Dados dos espacios vectoriales V y W sobre un cuerpo K, sea {e, e 2,..., e n } una base de V y sean w, w 2,... w n W. Entonces existe una única aplicación lineal f : V W tal que f(e i ) = w i para i =, 2,..., n. Teorema 2. Sea f : V W una aplicación lineal, sea B = {e, e 2,..., e n } una base de V y sea B = {w, w 2,..., w m } una base de W. Entonces existe una única matriz A = (a ij ) mxn tal que para todo v V, si (x, x 2,..., x n ) son las coordenadas de v en la base B se tiene que y a a 2 a n x y 2 a 2 a 22 a 2n x 2. = a m a m2 a mn y m donde (y, y 2,... y m ) son las coordenadas de f(v) en la base B. La matriz del teorema anterior se denotará como M(f) BB o M(f) B B y la llamaremos la matriz asociada a f respecto las bases B y B. Observemos que en el teorema anterior, si el vector v fuese un e i de la base entonces sus coordenadas serían todas 0 salvo la que estuviese en la posición i. Teniendo esto en cuenta, al multiplicar la matriz A por las coordenadas del vector e i obtendríamos la fila i-ésima de la matriz A. Por lo tanto se tiene el siguiente resultado: Proposición 3. La columna i-ésima de la matriz A de la proposición anterior está formada por las coordenadas en la base B de la imagen del i-ésimo elemento de la base B. 2 x n

3 Corolario 4. El rango de una aplicación lineal f coincide con el rango de cualquier matriz asociada a f. Proposición 5. Sean f : V W y g : V W aplicaciones lineales entre espacios vectoriales sobre un cuerpo K. Sea B una base de V y B una base de W y denotemos por A la matriz asociada a f respecto dichas bases y A 2 la matriz asociada a g. Si λ, µ K se tiene que la matriz asociada a λf + µg es λa + µa 2. Proposición 6. Sean f : U V y g : V W aplicaciones lineales entre espacios vectoriales sobre un cuerpo K. Sea B una base de U, una base de V y B 3 una base de W. Entonces M(g f) B 3 B = M(g) B 3 M(f) B2 B. Consideremos ahora una aplicación lineal f : V W, sean B, dos bases de V y sean B, B 2 bases de W. Parece natural preguntarse qué relación habrá entre las matrices asociadas a la aplicación lineal f respecto las distintas bases. Y lo que se tiene es lo siguiente: M(f) B 2 = M B 2 B M(f) B B M B. La igualdad anterior puede parecer complicada, pero en el fondo no lo es tanto. Para ver que es cierto, basta con coger las coordenadas de un vector v en la base, ponerlas como una matriz columna y multiplicarlas a la derecha de los miembros de la desigualdad anterior. Al multiplicarse por la matriz M B, obtendremos las coordenadas de v en la base B. Al multiplicar los que nos de por M(f) B B obtendremos las coordenadas de f(v) en la base B. Por último, al volver a multiplicar por M B 2 B, llegaremos a las coordenadas de f(v) en la base. Efectivamente ocurre entonces lo que tendría que ocurrir si multiplicásemos directamente por M(f) B 2 y de ahí que la igualdad sea cierta. Definición 7. Se dice que dos matrices A y B de igual tamaño son equivalentes si están asociadas a la misma aplicación lineal (respecto a bases adecuadas). Por lo que acabamos de ver, esto es equivalente a la existencia de matrices regulares cuadradas P y Q tales que B = QAP (P y Q serían matrices de cambio de base). 3 Diagonalización Como hemos visto en la sección anterior, a una misma aplicación lineal se le puede asociar varias matrices, dependiendo de las bases que consideremos. Es interesante escoger las bases de forma que la matriz asociada obtenida sea lo más sencilla posible para poder trabajar cómodamente con ella. El objetivo en esta sección es ese en el caso particular de que el espacio de partida y de llegada de la aplicación lineal sea el mismo y además cogiendo la misma base tanto de partida como de llegada. Definición 8. Se dice que dos matrices A y B de igual tamaño son semejantes si están asociadas al mismo endomorfismo tomando en cada caso la misma base de partida que de llegada, es decir, existe una matriz regular cuadradas P tal que B = P AP. Definición 9. Sea f : V V un endomorfismo. Se dice que un subespacio W de V es invariante si f(w ) W. 3

4 Definición 20. Sea f : V V un endomorfismo. Se dice que un vector no nulo v V es un vector propio o autovector si existe λ K tal que f(v) = λv. En tal caso a λ se le llama valor propio o autovalor. Imaginemos que tenemos una base B = {e, e 2,..., e n } de vectores propios de V y consideremos que A es la matriz asociada a f en esta base. Sabemos que la columna i-ésima de A consiste en coger la imagen de e i y ponerla en coordenadas respecto B, pero como f(e i ) = λ i e i para algún λ i tendremos que estas coordenadas serán todas 0 salvo en la posición i-ésima donde valdrá λ i. Tenemos por lo tanto el siguiente resultado: Proposición 2. Sea f : V V un endomorfismo y supongamos que tenemos una base de valores propios B = {e, e 2,..., e n } de V formada por valores propios. Sea λ i el valor propio asociado a e i. Tenemos entonces que λ λ M(f) 0 B = λ n Recíprocamente, si la matriz asociada a f respecto a una base es diagonal, entonces los vectores de la base son todos vectores propios. Definición 22. Se dice que una matriz A de tamaño nxn es diagonalizable si existe una matriz regular P de tamaño nxn tal que D = P AP es una matriz diagonal. El problema de diagonalizar una matriz consiste entonces en encontrar una base de vectores propios. Desgraciadamente esto no se podrá hacer siempre por lo que nos encontraremos con matrices que son diagonalizables y otras que no lo son. Primero veamos cómo podemos calcular los valores propios de una aplicación lineal f : V V. Está claro que si I : V V es la aplicación identidad, entonces λ será un valor propio si, y sólo si el núcleo de f λi contiene algún vector no nulo (que será un vector propio asociado a λ). Ahora bien, por el Teorema 8 tendremos entonces que el rango de f λi no es máximo y en particular tendremos que el determinante de la matriz asociada de f λi (respecto cualquier base) es 0. Por lo tanto tenemos que: Proposición 23. Sea f : V V un endomorfismo y sea A la matriz asociada respecto cierta base de V. Entonces λ es un valor propio de f si, y sólo si det(a λi) = 0. Definición 24. Dada una matriz cuadrada de tamaño nxn sobre un cuerpo K. Se define el polinomio característico de A como el polinomio (con variable λ) que se obtiene al calcular p(λ) = det(a λi). Así que para calcular los valores propios de un endomorfismo o matriz, basta con calcular su polinomio característico y calcular sus raíces, es decir, las soluciones que dan de la ecuación obtenida de igualar el polinomio a 0. Podemos hablar del polinomio característico de un endomorfismo ya que las matrices semejantes tienen el mismo polinomio característico. Definición 25. Sea f : V V un endomorfismo y λ un valor propio. Se llama subespacio propio correspondiente a λ al subconjunto E(λ) = ker(f λi). 4

5 Observemos que E(λ) es un espacio vectorial invariante formado por el vector 0 y por todos los vectores propios asociados al valor propio λ. Si A es una matriz asociada a f, la dimensión de E(λ) es dim ker(f λi) = dim V dim im(f λi) = dim V rg(a λi). Para calcular E(λ) tendremos que resolver el sistema de ecuaciones (A λi)x = 0 (donde X es un vector columna de n incógnitas). Proposición 26. Sea f : V V un endomorfismo y λ una raíz del polinomio característico de f de multiplicidad m. Entonces dim E(λ) m. Teorema 27. Una matriz de tamaño nxn es diagonalizable si, y sólo si la suma de las multiplicidades de las raíces del polinomio característico es n y para cara raíz λ se tiene que dim E(λ) es igual a la multiplicidad de dicha raíz. Resumiendo, para diagonalizar una matriz A lo primero que tenemos que hacer es calcular su polinomio característico y sacar sus raíces. Si la matriz es diagonalizable, su diagonal va a estar formada por las raíces del polinomio repetidas según su multiplicidad. Luego para cada valor propio λ se calcula E(λ) resolviendo el sistema (A λi)x = 0. Si la matriz es diagonalizable, podremos sacar una base de E(λ) de tantos vectores como multiplicidad tenga λ. Por último, si la matriz es diagonalizable, al unir las bases que hemos ido obteniendo obtendremos una base de n vectores propios. Si escribimos estos vectores en columna formando una matriz P esta será la de cambio de base y por lo tanto D = P AP donde D es la matriz diagonal formada por los valores propios contando multiplicidad. Importante: es importante mantener el orden, es decir, el valor propio colocado en la columna i de la matriz D debe de estar asociado al vector propio cuyas coordenadas están en la columna i-ésima de P. También es importante conservar el orden en el que se multiplican las matrices. 4 Aplicación Como hemos dicho al principio del tema, una aplicación es la de calcular potencias de matrices de una forma sencilla. Observemos que la potencia de una matriz diagonal es sencilla de calcular ya que es simplemente hacer la potencia de cada elemento de su diagonal, pero no podemos hacer lo mismo con una matriz cualquiera. Sin embargo, si tenemos una matriz A diagonalizable, tendremos que hay una expresión de la forma D = P AP donde D es una matriz diagonal. Esta expresión se puede escribir también como y por lo tanto Simplificando tendremos que A = P DP A n = P DP P DP... P DP (n veces). A n = P D n P que nos simplificará mucho los cálculos ya que bastará hacer la potencia de una matriz diagonal y 2 productos matriciales. Bueno, también tendremos que calcular D, P y P pero será menos costoso que calcular directamente A n por ejemplo en el caso n =

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

ENDOMORFISMOS Y DIAGONALIZACIÓN.

ENDOMORFISMOS Y DIAGONALIZACIÓN. ENDOMORFISMOS Y DIAGONALIZACIÓN. En lo que resta de este tema, nos centraremos en un tipo especial de aplicaciones lineales: los endomorfismos. Definición: Endomorfismo. Se llama endomorfismo a una aplicación

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema 5: Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema 5: Diagonalización de matrices La intención en este tema es dada una matriz cuadrada ver si existe otra matriz semejante a ella que sea diagonal Recordemos (ver Tema : Matrices determinantes y sistemas

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema

Más detalles

λ = es simple se tiene que ( )

λ = es simple se tiene que ( ) Sección 6 Diagonalización 1- (enero 1-LE) Sea 1 1 = 1 1 a) Es diagonalizable la matriz? En caso afirmativo, calcula las matrices P y D tales que 1 P P = D b) Existe algún valor de a para el que ( 3, 6,

Más detalles

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

Autovalores y autovectores. Diagonalización y formas canónicas

Autovalores y autovectores. Diagonalización y formas canónicas Capítulo 4 Autovalores y autovectores Diagonalización y formas canónicas Dado un homomorfismo, nos hemos planteado el problema de elegir bases cualesquiera de manera que la matriz del homomorfismo sea

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian 40 Matemáticas I Parte II Álgebra Lineal 41 Matemáticas I : Álgebra Lineal Tema 4 Espacios vectoriales reales 4.1 Espacios vectoriales Definición 88.- Un espacio vectorial real V es un conjunto de elementos

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Ejercicios resueltos del capítulo 1

Ejercicios resueltos del capítulo 1 Ejercicios resueltos del capítulo Ejercicios impares resueltos..b Resolver por el método de Gauss el sistema x +x x +x 4 +x = x x +x 4 = x +x +x = x +x x 4 = F, ( ) F 4, () F, ( ) F, () 8 6 8 6 8 7 4 Como

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO.

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. ESPACIO AFÍN 1.- CONCEPTO DE ESPACIO AFÍN. 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. 4.- PROBLEMAS DE INCIDENCIA. 5.- POSICIONES RELATIVAS

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

INDICE. Prefacio de la segunda edición francesa

INDICE. Prefacio de la segunda edición francesa INDICE Prefacio de la segunda edición francesa IX Parte I Conjuntos. Estructuras fundamentales Cap. 1.- Conjuntos, aplicaciones, relaciones binarias Conjuntos: 1. Noción de conjunto, Pág. 3.-2. Subconjuntos,

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

PROBLEMAS DE ÁLGEBRA II - 1ER CUATRIMESTRE HTTP://FISICAUNED.WORDPRESS.COM ÍNDICE

PROBLEMAS DE ÁLGEBRA II - 1ER CUATRIMESTRE HTTP://FISICAUNED.WORDPRESS.COM ÍNDICE PROBLEMAS DE ÁLGEBRA II - ER CUATRIMESTRE ÍNDICE Parte. Teoría básica Endomorfismos vectoriales con significado geométrico 3 Diagonalización de matrices 4 Matrices diagonalizables 5 Definiciones que aparecen

Más detalles

TEMA 4: Espacios y subespacios vectoriales

TEMA 4: Espacios y subespacios vectoriales TEMA 4: Espacios y subespacios vectoriales 1. Espacios vectoriales Sea K un cuerpo. Denominaremos a los elementos de K escalares. Definición 1. Un espacio vectorial sobre K es un conjunto V cuyos elementos

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Sistemas de Ecuaciones y Matrices

Sistemas de Ecuaciones y Matrices Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar

Más detalles

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES EJERCICIOS RESUELTOS DE SISTEMAS LINEALES 1. Dado el sistema de ecuaciones lineales: 2x + 3y 3 4x +5y 6 a) Escribir la expresión matricial del sistema. b) Discutir el sistema. c) Resolver el sistema por

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de innovación didáctica Departamento de Matemáticas Universidad de Extremadura Índice Puntos y vectores en En R 3, conviene distinguir

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Conjuntos relaciones y grupos

Conjuntos relaciones y grupos Matemáticas NS Conjuntos relaciones y grupos Tema opcional 2 Índice 1. Conjuntos y relaciones 5 1.1. Introducción.......................................... 5 1.2. Operaciones con conjuntos..................................

Más detalles

4. " $#%&' (#) para todo $#* (desigualdad triangular).

4.  $#%&' (#) para todo $#* (desigualdad triangular). 10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

Aplicaciones lineales y matrices.

Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 2.1. Introducción. Supondremos al alumno familiarizado con la idea de matriz o tabla de orden n, m con n, m números naturales que denotan el número de filas y columnas,

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

Tema II: Aplicaciones lineales

Tema II: Aplicaciones lineales Definiciones y ejemplos. Matriz asociada a una aplicación lineal. Núcleo e imagen. Cambios de base. Espacio vectorial cociente.teoremas de isomorfía. El espacio de las aplicaciones lineales. Ejemplos de

Más detalles

Espacio de Funciones Medibles

Espacio de Funciones Medibles Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES P ÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO 215-216 MATERIA: MATEMÁTICAS II MODELO INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes Matrices y determinantes Matrices Una matriz es un grupo de números organizados en filas y columnas, limitados por un paréntesis: 1 2 3 n columnas a11 a12 a13 a1 n a21 a22 a23

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA.

ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA. ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA. Índice de contenido 1. Espacio vectorial....2 Estructura de espacio vectorial...2 Subespacios

Más detalles

UNIVERSIDAD CARLOS III DE MADRID

UNIVERSIDAD CARLOS III DE MADRID UNIVERSIDAD CARLOS III DE MADRID Departamento de Economía Tema 1: Matrices y sistemas de ecuaciones lineales Empezaremos por recordar conceptos ya conocidos de álgebra lineal como las matrices, determinantes,

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

Subespacios Vectoriales

Subespacios Vectoriales Subespacios Vectoriales Prof. Apuntes del Postgrado en Ingeniería 31 Mayo 2008 Subespacio Definición de Subespacio y Ejemplos. Definición Sea H un subconjunto no vacio de un espacio vectorial V(K). Si

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

Tema 4.- Espacios vectoriales. Transformaciones lineales.

Tema 4.- Espacios vectoriales. Transformaciones lineales. Ingeniería Civil Matemáticas I -3 Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 4- Espacios vectoriales Transformaciones lineales 4- Espacios y subespacios

Más detalles

10. 1 Definición de espacio euclídeo.

10. 1 Definición de espacio euclídeo. ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar

Más detalles

Tema 3: Conjuntos y Funciones

Tema 3: Conjuntos y Funciones Tema 3: Conjuntos y Funciones Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2008 09 LC, 2008 09 Conjuntos y Funciones 3.1 Conjuntos Escribimos

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Problemas de exámenes de Aplicaciones Lineales y Matrices

Problemas de exámenes de Aplicaciones Lineales y Matrices 1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 6 Sistemas de ecuaciones lineales 61 Sistemas de ecuaciones lineales Se llama ecuación lineal en n incógnitas sobre R a una expresión de la forma a 1 x 1 + a 2 x 2 + + a n x n = b con los a i en R para

Más detalles

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 6 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Algebra Lineal XI: Funciones y Transformaciones Lineales

Algebra Lineal XI: Funciones y Transformaciones Lineales Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 05 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Topología de R n. Beatriz Porras

Topología de R n. Beatriz Porras Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE:

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA PROGRAMA: ALGEBRA LINEAL CÓDIGO ASIGNATURA: 1272-521 PRE-REQUISITO: 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: 90-II UNIDADES DE CRÉDITO:

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Lección 1. Algoritmos y conceptos básicos.

Lección 1. Algoritmos y conceptos básicos. Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya

Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya FUNDAMENTOS DEL ÁLGEBRA LINEAL. EJERCICIOS Y CUESTIONES. SOLUCIONES CON MATHEMATICA Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya ISBN: 978-84-606-6054-5 Depósito legal: BI-355-2015

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A)

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A) TEMA 3: Matrices y sistemas de ecuaciones lineales Álgebra y estructuras finitas/discretas Grupos A Curso 2007-2008 1 2 1 Anillos y cuerpos Definición 1 Un anillo viene dado por un conjunto R y por dos

Más detalles

Transformaciones lineales

Transformaciones lineales Capítulo 3 Transformaciones lineales Las transformaciones lineales son las funciones con las que trabajaremos en Álgebra Lineal. Se trata de funciones entre K-espacios vectoriales que son compatibles con

Más detalles