lineales con competencias

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "lineales con competencias http://udc.georgetown.org/development-manual/"

Transcripción

1 Aplicación de ecuaciones lineales con competencias

2 INSTRUCCIONES: Lee atentamente cada punto en el planteamiento del problema, porque hay información importante que debes de tomar en cuenta y que te ayudará a alcanzar la solución. Todas las respuestas están explicadas en el ícono de estrellitas de RESPUESTA. 2

3 INSTRUCCIONES Con honestidad, trata de encontrar la respuesta primero, antes de dar clic al ícono de la respuesta. En el ícono de la profesora puedes encontrar una explicación amplia del punto en análisis. 3

4 Ejercicio: la zapatera y la paquetería El dueño de una pequeña fábrica de zapatos don Eulalio acostumbra usar un servicio de paquetería (SP) para repartir los pedidos de sus clientes dentro de su ciudad y las poblaciones aledañas. En los últimos meses, la cantidad de pedidos de zapatos se ha incrementado de manera importante en forma lineal y don Gastón estima que se incrementarán más en el futuro con la misma tendencia. 4 Shoes-for-Spring---Summer/Square-Toe-Shoes.htm

5 Ejercicio: la zapatera y la paquetería Dado lo anterior, don Eulalio está considerando comprar una camionetita y contratar a un repartidor para la entrega de sus pedidos. Don Eulalio le encargó a su contador el Sr. Gastón hacer un análisis de qué le saldría más económico, dadas las condiciones actuales y futuras. 5

6 Consideraciones Para poder determinar si conviene más continuar contratando el servicio de paquetería externo o el utilizar un vehículo propio y contratar a un repartidor, se requiere considerar algunos parámetros importantes, tales como: La cantidad de envíos requeridos por mes, actual y futura. El costo actual de cada envío con el servicio de paquetería. El costo mensual de la camionetita y sus gastos. El salario mensual del repartidor. La capacidad de entrega mensual del repartidor. 6

7 Recomendaciones Se recomienda elaborar gráficas y una tabla comparativa a manera de reporte, que servirá como base para determinar cuál método de envío es el más adecuada, bajo diferentes escenarios y tomar las mejores decisiones. 7

8 Parámetros para analizar Cantidad de envíos por mes actuales: EM A = 50 Costo de cada envío con el servicio de paquetería: CSP = $

9 Más parámetros para analizar Costo mensual del vehículo y sus gastos: CVM = $2,500 Sueldo y prestaciones del repartidor, por mes: RM = $7,500 Capacidad máxima de entrega mensual del repartidor: CEM = 160 9

10 Análisis 1: El Servicio de Paquetería El servicio de paquetería (SP) que está utilizando actualmente don Eulalio, les cobra $100 por envío. Si consideramos a la cantidad de envíos mensual como EM y el precio total de los envíos como CT 1, cómo quedaría la ecuación que relaciona ambas variables?: Esto establece una relación lineal entre el costo total CT 1 y la cantidad de envíos EM. 10

11 Análisis 1: El Servicio de Paquetería Grafica la relación de CT 1 (la variable dependiente, en el eje y), contra EM (la variable independiente, en el eje x). Nota que: En esta relación, la ordenada al origen (b) es igual a cero (a envío cero, costo cero). La gráfica se encuentra sólo en el Cuadrante I del plano cartesiano (sólo puede haber valores positivos para la cantidad de envíos y para su costo total mensual). 11

12 Gráfica del Costo Total Mensual con el Servicio de Paquetería (CT 1 ) vs. Cantidad de Envíos Mensual (EM) 12

13 Análisis 2: reparto con recursos propios El costo mensual de reparto con recursos propios (CT 2 )sería la suma del costo mensual del vehículo y sus gastos (CVM), más el sueldo y prestaciones por mes del repartidor (RM): CT2 = CVM + RM = $2,500 + $7,500 = $10,000 Aquí notamos que CT 2 no depende de la cantidad de envíos, siempre y cuando sean hasta 160 (la capacidad máxima que puede entregar el repartidor por mes). Así, cómo quedaría la ecuación para el reparto con recursos propios?:. 13

14 Análisis 2: reparto con recursos propios Grafica la relación de CT 2 (la variable dependiente, en el eje y), contra EM (la variable independiente, en el eje x). Nota que: La pendiente de esta recta debe ser cero (0). En esta relación, la ordenada al origen (b) es igual a $10,000. La gráfica se encuentra sólo en el Cuadrante I del plano cartesiano (sólo puede haber valores positivos para la cantidad de envíos y para su costo total mensual). 14

15 Gráfica del Costo Total Mensual con recursos propios (CT 2 ) vs. Cantidad de Envíos Mensual (EM) 15

16 Evaluación de las propuestas Para evaluar las condiciones con las que cada propuesta es más económica (Servicio de Mensajería vs. reparto con recursos propios), podemos ayudarnos con 3 herramientas: Resolver el sistema de ecuaciones para encontrar el cruce donde las 2 propuestas tienen el mismo costo. Graficar juntas las ecuaciones de las 2 propuestas, para ver el punto de cruce. Hacer una tabla comparativa de las 2 propuestas, tomando varios valores de entregas mensuales. 16

17 Resolviendo el sistema de ecuaciones Sea el sistema de ecuaciones formado por las propuestas 1 y 2 (Servicio de Mensajería y reparto con recursos propios) : Ecuación 1: CT = $100 EM 1 Ecuación 2: CT 2 = $10,000 El cruce sucede cuando CT 1 = CT 2. 17

18 Resuelve el sistema de ecuaciones Iguala la ecuación 1 a la ecuación 2 y despeja EM para encontrar la cantidad de envíos mensuales donde ambas propuestas tienen el mismos costo total mensual: Así, en qué punto se encuentra el cruce?: 18

19 Gráfica del Costo Total Mensual con el Servicio de Paquetería (CT 1 ) vs. Cantidad de Envíos Mensual (EM) 19

20 Tabla comparativa SM vs. con recursos propios Haz una tabla comparativa de los costoso totales mensuales de las dos alternativas de reparto (SM vs. con recursos propios), dados ciertos valores para la cantidad de envíos por mes (EM): EM CT 1 ($) CT 2 ($) N/A N/A 20

21 Conclusiones: escenario 1 Con base en la resolución del sistema de ecuaciones, la gráfica y la tabla comparativa, responde las siguientes preguntas: a. Qué propuesta es más económica para menos de 100 envíos por mes? b. Qué propuesta es más económica para más de 100 envíos por mes? 21

22 Conclusiones: escenario 2 Supongamos que con el tiempo la necesidad de envíos de la zapatera de don Eulalio se incrementan a 170 envíos por mes (excediendo la capacidad máxima de reparto de su vehículo), qué tipo de reparto debería utilizar? c. Seguir repartiendo con recursos propios y complementarse con el Servicio de Mensajería. d. Volver a repartir sólo con el Servicio de mensajería. e. Comprar un segundo vehículo y contratar a otro repartidor. 22

23 Conclusiones: escenario 3 Don Eulalio le pregunta al Sr. Gastón cuándo sería económico comprar otro vehículo más y contratar a otro repartidor. Cuál sería la respuesta del Sr. Gastón? f. No será necesario comprar otro vehículo ni contratar a otro repartidor. g. Cuando la necesidad de envíos por mes se incremente hasta más de 300. h. Cuando la necesidad de envíos por mes se incremente hasta más de

24 Este material fue elaborado para el tutorial del Programa Practymathe. El contenido es responsabilidad de la M.C.C. María Dolores Gabriela Meza Puesto. Este documento puede ser utilizado, siempre y cuando se cite la fuente. MDGMP. México. Abril,

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

Explorando la ecuación de la recta pendiente intercepto

Explorando la ecuación de la recta pendiente intercepto Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164 EJERCICIO 16 LA COMPETENCIA PERFECTA El modelo de competencia perfecta es uno de los modelos de mercado más importantes en microeconomía. En este ejercicio analizamos dicho modelo. * Consideremos una situación

Más detalles

2. SISTEMAS DE ECUACIONES LINEALES. Introducción

2. SISTEMAS DE ECUACIONES LINEALES. Introducción 2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA UNIDAD: ÁLGEBRA Y FUNCIONES SISTEMAS DE ECUACIONES Dos ecuaciones de primer grado, que tienen ambas las mismas dos incógnitas, constituen un sistema de ecuaciones lineales. La forma

Más detalles

Lección 4.1. Sistemas de Ecuaciones. 03/06/2013 Prof. José G. Rodríguez Ahumada 1 de 21

Lección 4.1. Sistemas de Ecuaciones. 03/06/2013 Prof. José G. Rodríguez Ahumada 1 de 21 Lección 4.1 Sistemas de Ecuaciones 03/06/013 Prof. José G. Rodríguez Ahumada 1 de 1 Actividades 4.1 Referencia Texto: Seccíón 9.1 Sistema de Ecuaciones; Problemas impares 1-9 páginas 64 (593 y 594); Sección

Más detalles

Lección 13: Resolución algebraica de sistemas de ecuaciones

Lección 13: Resolución algebraica de sistemas de ecuaciones GUÍA DE MATEMÁTICAS III Lección 1: Resolución algebraica de sistemas de ecuaciones En la lección anterior hemos visto cómo resolver gráficamente un sistema de ecuaciones. Si bien ese método es relativamente

Más detalles

USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA

USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA En la enseñanza de las matemáticas la calculadora básica o graficadora puede ayudar a que los estudiantes refinen sus conjeturas

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones CUADERNO Nº 6 NOMBRE: FECHA: / / Sistemas de ecuaciones Contenidos 1. Sistemas de ecuaciones lineales Ecuación lineal con dos incógnitas Sistemas de ecuaciones lineales Clasificación de sistemas 2. Métodos

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

Cuaderno de Actividades 4º ESO

Cuaderno de Actividades 4º ESO Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

Cada función polinomial genera distintas gráficas en el plano cartesiano. Hay casos especiales de la función polinomial general.

Cada función polinomial genera distintas gráficas en el plano cartesiano. Hay casos especiales de la función polinomial general. UNIDAD I. FUNCIONES Y RELACIONES.5. Funciones algebraicas: Polinomiales. Las expresiones algebraicas pueden clasificarse en monomios, binomios, trinomios y polinomios. Monomios. Expresiones de un término.

Más detalles

Microcurrículo del ÁREA DE: MATEMÁTICAS. Unidad y temas. Logro e Indicadores Indicadores De Logro

Microcurrículo del ÁREA DE: MATEMÁTICAS. Unidad y temas. Logro e Indicadores Indicadores De Logro Microcurrículo del ÁREA DE: MATEMÁTICAS fecha Grado noveno Sesión 1-10 (semanas) Unidad Unidad y temas Temas Unidad #1.Conjunto de los números imaginarios. Números Imaginarios: Concepto, operaciones básicas

Más detalles

Inecuaciones en dos variables

Inecuaciones en dos variables Inecuaciones en dos variables Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,. Inecuaciones de primer grado

Más detalles

Frontera de posibilidades de producción y coste de oportunidad

Frontera de posibilidades de producción y coste de oportunidad Frontera de posibilidades de producción y coste de oportunidad ENUNCIADO PROBLEMA 3 Supongamos la siguiente tabla donde se resumen las posibilidades de producción de una economía que produce dos bienes:

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado Contenidos 1. Expresiones algebraicas Identidad y ecuación Solución de una ecuación. Ecuaciones de primer grado Definición Método de resolución Resolución de problemas 3. Ecuaciones

Más detalles

Economía II - Guía de Trabajos Prácticos Unidad I: Teoría del Consumidor

Economía II - Guía de Trabajos Prácticos Unidad I: Teoría del Consumidor Economía II - Guía de Trabajos Prácticos Unidad I: Teoría del Consumidor Repaso instrumentos básicos de Economía I 1- Supongamos que un incremento del 5% en el precio de una excursión a la Isla Victoria

Más detalles

CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO

CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO Documento elaborado por Jaime Aguilar Moreno Docente área económica Universidad del Valle Sede Buga CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO OBJETIVO DEL CAPÍTULO Lograr que el estudiante

Más detalles

Contabilidad General

Contabilidad General Contabilidad General 1 Sesión No. 8 Nombre: Balance General, estado de situación financiera o estado de posición financiera. Primera parte. Objetivo El estudiante identificará los elementos que conforman

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras Notas de Clase -2011 Carlos Mario Morales C 2 Unidad de Aprendizaje Interés Compuesto Contenido Introducción 1. Concepto de interés compuesto 2. Modelo de Interés compuesto 3. Tasa

Más detalles

#Desarrollo. Evaluación Actividad:2 Producto: Investigación. Puntaje: Saberes. Investiga la aplicación de la parábola en su entorno.

#Desarrollo. Evaluación Actividad:2 Producto: Investigación. Puntaje: Saberes. Investiga la aplicación de la parábola en su entorno. #Desarrollo Actividad: En equipo, investiga cinco aplicaciones de la parábola, describe cada una de ellas, añade las imágenes correspondientes y entrega un reporte escrito a tu profesor. El reporte deberá

Más detalles

Funciones constantes, lineales y afines 1.

Funciones constantes, lineales y afines 1. Funciones constantes, lineales y afines 1. 1.- Rectas horizontales y verticales. Ej.1.- A continuación tienes la gráfica de la recta y = 0. Qué puntos de corte tiene con los ejes? Qué posición tiene respecto

Más detalles

GUÍA PARA EL EXAMEN DE UBICACIÓN DE MATEMÁTICAS TECNOLÓGICO DE MONTERREY

GUÍA PARA EL EXAMEN DE UBICACIÓN DE MATEMÁTICAS TECNOLÓGICO DE MONTERREY GUÍA PARA EL EXAMEN DE UBICACIÓN DE MATEMÁTICAS TECNOLÓGICO DE MONTERREY INSTRUCCIONES Este examen debe ser presentado antes de las inscripciones, por los alumnos de primer ingreso que provengan de preparatorias

Más detalles

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente: LA RECTA Recuerda: Una recta es una función de la forma y = mx + n, siendo m y n números reales m es la pendiente de la recta y n es la ordenada en el origen La ordenada en el origen nos indica el punto

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

Ejercicios resueltos de funciones

Ejercicios resueltos de funciones Ejercicios resueltos de funciones 1) Representa en un eje de coordenadas los siguientes puntos: A(1,5), B(-3,3), C(0, -4), D (2,0). 2) Representa en dos ejes de coordenadas las funciones siguientes: a)

Más detalles

Nuestro primer ejemplo nos dice: Escribe la ecuación de una línea que es perpendicular a la grafica de Y= ½x + 4 y pasa por los puntos (0,-1).

Nuestro primer ejemplo nos dice: Escribe la ecuación de una línea que es perpendicular a la grafica de Y= ½x + 4 y pasa por los puntos (0,-1). CGT.5.G.3-Pam Beach-Write the equation of a line perpendicular to a line through a point. La lección de hoy es sobre escribir una ecuación de una línea perpendicular a una línea dado un punto. El cuál

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

3. Contenidos del curso, problemas centrales o interrogantes básicas.

3. Contenidos del curso, problemas centrales o interrogantes básicas. 2. Propósitos del curso Al finalizar el curso el alumno será capaz de aplicar las técnicas adecuadas con el objeto de analizar y solucionar los problemas así como proyectar los resultados. 3. Contenidos

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

Matemáticas II PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR.

Matemáticas II PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. PRUEBA DE ACCESO A LA UNIVERSIDAD 0 Matemáticas II BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR Examen Criterios de Corrección y Calificación UNIBERTSITATERA SARTZEKO PROBAK 0ko

Más detalles

MEDICIONES DE RESISTENCIA Y POTENCIA DC

MEDICIONES DE RESISTENCIA Y POTENCIA DC PRACTICA Nº 3 MEDICIONES DE RESISTENCIA Y POTENCIA DC Objetivos Analizar el funcionamiento del Puente de Wheatstone y efectuar mediciones de resistencias aplicando el método de detección de cero. Efectuar

Más detalles

La función cuadrática

La función cuadrática La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola

Más detalles

TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1

TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1 Capítulo 9 TRANSFORMACIONES DE f () = 2 9.1.1 9.1.2 A fin de lograr un buen dominio de la modelación de datos relaciones en situaciones cotidianas, los alumnos deben ser capaces de reconocer transformar

Más detalles

CALIDAD 1 JOSÉ MANUEL DOMENECH ROLDÁN PROFESOR DE ENSEÑANZA SECUNDARIA

CALIDAD 1 JOSÉ MANUEL DOMENECH ROLDÁN PROFESOR DE ENSEÑANZA SECUNDARIA CALIDAD 1 DIAGRAMA DE CORRELACIÓN-DISPERSIÓN QUÉ ES EL DIAGRAMA DE CORRELACIÓN-DISPERSIÓN? Es una herramienta gráfica que permite demostrar la relación existente entre dos clases de datos y cuantificar

Más detalles

CONSOLIDACIÓN DE EMPLEO TEMPORAL. Información de interés sobre la convocatoria y recomendaciones

CONSOLIDACIÓN DE EMPLEO TEMPORAL. Información de interés sobre la convocatoria y recomendaciones CONSOLIDACIÓN DE EMPLEO TEMPORAL Información de interés sobre la convocatoria y recomendaciones Qué es la consolidación de empleo temporal? un proceso de selección destinado a la contratación fija de los

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

4. Método Simplex de Programación Lineal

4. Método Simplex de Programación Lineal Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción

Más detalles

Función grado 1. a) b) c) x y x y x y 2 5 3 3 2 3 3 7,5 7 7 3 4 7 17,5 9 9 5 6. 1 Proporcionalidad

Función grado 1. a) b) c) x y x y x y 2 5 3 3 2 3 3 7,5 7 7 3 4 7 17,5 9 9 5 6. 1 Proporcionalidad Función grado 1 1 Proporcionalidad 1 Qué son variables proporcionales? Sabiendo que Kgs de fruta cuestan 500 Pts haz una tabla con 4 valores que relacione precio con kilos de fruta. Cuánto vale la constante

Más detalles

Rúbrica para evaluar un proyecto 1

Rúbrica para evaluar un proyecto 1 Rúbrica para evaluar un proyecto 1 Criterios Excelente Bueno Regular Insuficiente Puntos obtenidos Forma Apariencia, organización, ortografía, puntuación y gramática mecanografiado o elaborado en computadora.

Más detalles

Ecuación de la Recta

Ecuación de la Recta PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto

Más detalles

PROBLEMAS DE OPTIMIZACIÓN LINEAL

PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMA DE LA PRODUCCIÓN 1.- Una fábrica elabora dos tipos de productos, A y B. El tipo A necesita 2 obreros trabajando un total de 20 horas, y se obtiene un beneficio

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

TEMA 6 LA EMPRESA: PRODUCCIÓN, COSTES Y BENEFICIOS

TEMA 6 LA EMPRESA: PRODUCCIÓN, COSTES Y BENEFICIOS TEMA 6 LA EMPRESA: PRODUCCIÓN, COSTES Y BENEFICIOS 1 Contenido 1. Introducción 2. Conceptos básicos 3. La función de producción y la productividad 3.1. Concepto de función de producción 3.2. Productividad

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

Clase 8 Sistemas de ecuaciones no lineales

Clase 8 Sistemas de ecuaciones no lineales Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. TEMA 4 Ejercicios / 1 TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. 1. Tenemos un sistema homogéneo de 5 ecuaciones y 3 incógnitas: a. Es posible que sea incompatible?. Por qué? b. Es posible

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES Definición Un sistema lineal de dos ecuaciones con dos incógnitas es un par de expresiones algebraicas que se suelen representar de la siguiente forma: ax + by = p cx + dy = q donde

Más detalles

Escribe expresiones y ecuaciones

Escribe expresiones y ecuaciones A NOMRE FECHA PERÍODO Escribe expresiones y ecuaciones (páginas 150 152) Los problemas del mundo fuera del salón de clases, por lo general, se dan en palabras. Uno traduce estos problemas en expresiones

Más detalles

FUNCIONES LINEALES Y AFINES

FUNCIONES LINEALES Y AFINES www.matesronda.net José A. Jiménez Nieto FUNCIONES LINEALES Y AFINES. LA FUNCIÓN LINEAL = m El tren AVE lleva una velocidad media de 40 km/h. La siguiente tabla nos da el espacio que recorre en función

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO NOVENO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Noveno. PERIODO: Tercero UNIDAD: Sistemas de ecuaciones

Más detalles

EXAMEN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES

EXAMEN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES EXAMEN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES Se recomienda: a) Antes de hacer algo, lee todo el examen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte del examen

Más detalles

CAPÍTULO. 1 Conceptos básicos

CAPÍTULO. 1 Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.4.2 Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes

Más detalles

Bloque 15. Valor absoluto: funciones lineales y cuadráticas

Bloque 15. Valor absoluto: funciones lineales y cuadráticas Bloque 15 Valor absoluto: funciones lineales y cuadráticas Bloque 15 Valor absoluto: Funciones lineales y cuadráticas Presentación El bloque tiene como propósitos centrales (i) (ii) Determinar el dominio

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

Sesión No. 7. Contextualización. Nombre: Sistemas de ecuaciones lineales

Sesión No. 7. Contextualización. Nombre: Sistemas de ecuaciones lineales Matemáticas 1 Sesión No. 7 Nombre: Sistemas de ecuaciones lineales Contextualización En un principio debemos de saber que en realidad para resolver adecuadamente un sistema de ecuaciones lineales consideremos

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES 1.- ECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS Una ecuación como 2x + 3y = 7 es una ecuación de primer grado con dos incógnitas. Es de primer grado porque las letras

Más detalles

Parte I. 1. (V/F) Dos curvas de indiferencia de un consumidor solo pueden cortarse en un punto.

Parte I. 1. (V/F) Dos curvas de indiferencia de un consumidor solo pueden cortarse en un punto. Estimados estudiantes: esta es una guía que pretende ayudarlos a estudiar. Si la trabajan a conciencia, con cada pregunta o ejercicio podrán reforzar conceptos y les ayudará a comprender el tema. Los trabajos

Más detalles

PLAN DE CLASE. mediante la fórmula m =.

PLAN DE CLASE. mediante la fórmula m =. Nivel escolar Área de conocimiento Título de la actividad para desarrollar en clase Objetivos Secundaria Matemáticas Pendiente de una recta. Inducir a los estudiantes a que deduzcan el concepto de pendiente

Más detalles

Contabilidad Gerencial. SESIÓN 8: Análisis estratégicos de costos e inventarios

Contabilidad Gerencial. SESIÓN 8: Análisis estratégicos de costos e inventarios Contabilidad Gerencial SESIÓN 8: Análisis estratégicos de costos e inventarios Contextualización de la Sesión 8 Para qué sirven los métodos de costeo? Para las empresas es importante conocer a fondo la

Más detalles

Procedimiento. Herramientas Estadísticas Básicas

Procedimiento. Herramientas Estadísticas Básicas /AGOSTO/011 1/8 1. Objetivo Dar a conocer los lineamientos referentes a la aplicación de las herramientas estadísticas básicas para el análisis y solución de problemas y mejora continua.. Alcance Cuando

Más detalles

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual:

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual: Prueba de hipótesis Problema Un grupo de profesores, de cierto estado de la república, plantea una investigación acerca del aprendizaje de las ciencias naturales en la escuela primaria. Uno de los objetivos

Más detalles

Función lineal y afín

Función lineal y afín Función lineal y afín Objetivos 1. Comprender el concepto de ejes de coordenadas 2. Comprender el concepto de función 3. Obtener información a partir de la gráfica de una función 4. Manejar la función

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

UMBRAL DE RENTABILIDAD

UMBRAL DE RENTABILIDAD Enunciado UMBRAL DE RENTABILIDAD Problema 3 La empresa Mochilay, S.A. se dedica a la fabricación de mochilas escolares. Sus costes fijos son de 100.000, los costes variables unitarios ascienden a 10, y

Más detalles

LA MAXIMIZACION DE BENEFICIOS CON UN INSUMO VARIABLE

LA MAXIMIZACION DE BENEFICIOS CON UN INSUMO VARIABLE LA FUNCION DE PRODUCCION Y LA MAXIMIZACION DE BENEFICIOS lorenzo castro gómez 1 LA MAXIMIZACION DE BENEFICIOS CON UN INSUMO VARIABLE El objeto del análisis insumo-producto es determinar la cantidad óptima

Más detalles

Sucesiones (páginas 511 515)

Sucesiones (páginas 511 515) A NMRE FECHA PERÍD Sucesiones (páginas 5 55) Una sucesión es una lista de números en un cierto orden. Cada número se llama término de la sucesión. En una sucesión aritmética, la diferencia entre cualquier

Más detalles

UNIDAD DIDÁCTICA 5: Geometría analítica del plano

UNIDAD DIDÁCTICA 5: Geometría analítica del plano UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La

Más detalles

GEOMETRÍA ANALÍTICA DEL PLANO

GEOMETRÍA ANALÍTICA DEL PLANO GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos? CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?

Más detalles

FECHA OBJETIVO CONTENIDO 12 DE MARZO. Introducir el tema de funciones

FECHA OBJETIVO CONTENIDO 12 DE MARZO. Introducir el tema de funciones Página 1 de 11 INA Turismo Bachillerato por madurez Cronograma 2011 de Matemáticas Profesora: Lordys Serrano Ramírez FECHA OBJETIVO CONTENIDO 12 DE MARZO Introducir el tema de funciones inicio de clases

Más detalles

RESOLUCIÓN DE ECUACIONES E INECUACIONES

RESOLUCIÓN DE ECUACIONES E INECUACIONES Matemáticas con la calculadora Classpad. RESOLUCIÓN DE ECUACIONES E INECUACIONES INTRODUCCIÓN La calculadora posee en el menú Principal un submenú de Acción en él, un menú secundario llamado [Ecuación/Desigualdad]

Más detalles

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

Matemáticas. 2º DE EDUCACIÓN SECUNDARIA OBLIGATORIA Mayo 2011

Matemáticas. 2º DE EDUCACIÓN SECUNDARIA OBLIGATORIA Mayo 2011 Matemáticas 2º DE EDUCACIÓN SECUNDARIA OBLIGATORIA Mayo 2011 INSTRUCCIONES En las páginas siguientes de este cuadernillo encontrarás una serie de preguntas relacionadas con el área de matemáticas. No se

Más detalles

CAPÍTULO 1. Introducción. la competitividad exige actualización y mejora continua por parte de todos y cada uno

CAPÍTULO 1. Introducción. la competitividad exige actualización y mejora continua por parte de todos y cada uno CAPÍTULO 1 Introducción La ingeniería industrial ha estado en continuo desarrollo desde sus inicios y hoy en día la competitividad exige actualización y mejora continua por parte de todos y cada uno de

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

14.1 Introducción. 14.2 Caso 1: Area bajo una curva.

14.1 Introducción. 14.2 Caso 1: Area bajo una curva. Temas. Capacidades Calcular áreas de regiones del plano. 14.1 Introducción Area bajo una curva En esta sesión se inicia una revisión de las principales aplicaciones de la integral definida. La primera

Más detalles

CAPITULO III MARCO METODOLOGICO

CAPITULO III MARCO METODOLOGICO CAPITULO III MARCO METODOLOGICO A. S DE LA INVESTIGACION 1. GENERAL Proporcionar a las Cajas de Crédito de la Zona Oriental un modelo para aplicar en forma adecuada las técnicas de análisis de puesto,

Más detalles

Lección 10: Representación gráfica de algunas expresiones algebraicas

Lección 10: Representación gráfica de algunas expresiones algebraicas LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3 UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CURSO : IN47A GESTIÓN DE OPERACIONES PROFESOR : A. SAURÉ A. WEINTRAUB AUXILIARES : J. PASSI J. RODRÍGUEZ

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 Problemas resueltos Problema 4: Considere el sistema de ecuaciones x y = 3 (x 2) 2 +y = 1 Problemas resueltos

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN TIEMPO: Una hora y treinta minutos. INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro

Más detalles

Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema.

Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema. Materia: Matemática de Octavo Tema: Propiedades de la Adición y la Multiplicación en Q Sabes cómo simplificar una expresión con fracciones utilizando propiedades? Echa un vistazo a este dilema. Para simplificar

Más detalles

Construyamos una tabla de valores que incluya valores negativos y positivos de.

Construyamos una tabla de valores que incluya valores negativos y positivos de. Materia: Matemáticas de 4to año Tema: Representación gráfica de una función exponencial Marco teórico Funciones exponenciales Iniciemos esta sección construyendo las gráficas de algunas funciones exponenciales.

Más detalles

CURSOS CENEVAL TOLUCA

CURSOS CENEVAL TOLUCA Precálculo Propiedades de los números reales Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

FUNCIONES LINEAL Y POTENCIA

FUNCIONES LINEAL Y POTENCIA FUNCIONES LINEAL Y POTENCIA La función lineal La función lineal puede describirse en forma genérica con la fórmula y = ax + c, donde a (la pendiente) y c (la ordenada al origen) son constantes. La gráfica

Más detalles

NOTA RELATIVA A LA LIMITACIÓN DE GASTOS FINANCIEROS PREVISTA EN EL ARTÍCULO 16 DE LA LEY 27/2014 DE 27 DE NOVIEMBRE.

NOTA RELATIVA A LA LIMITACIÓN DE GASTOS FINANCIEROS PREVISTA EN EL ARTÍCULO 16 DE LA LEY 27/2014 DE 27 DE NOVIEMBRE. NOTA Nº 1/15 NOTA RELATIVA A LA LIMITACIÓN DE GASTOS FINANCIEROS PREVISTA EN EL ARTÍCULO 16 DE LA LEY 27/2014 DE 27 DE NOVIEMBRE. CUESTIÓN PLANTEADA El objeto de la presente Nota es aclarar cómo debe operar

Más detalles

MACROECONOMÍA DE LAS ECONOMÍAS ABIERTAS MODELO AHORRO INVERSIÓN Y TIPO DE CAMBIO REAL

MACROECONOMÍA DE LAS ECONOMÍAS ABIERTAS MODELO AHORRO INVERSIÓN Y TIPO DE CAMBIO REAL 1 MACROECONOMÍA DE LAS ECONOMÍAS ABIERTAS MODELO AHORRO INVERSIÓN Y TIPO DE CAMBIO REAL En el presente apartado, se recurre al modelo de ahorro inversión para explicar, a través del planteamiento de casos

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

PLANEACIÓN DEL CONTENIDO DE CURSO

PLANEACIÓN DEL CONTENIDO DE CURSO FACULTAD DE INGENIERÍA PROGRAMA DE AGROINDUSTRIAL PLANEACIÓN DEL CONTENIDO DE CURSO 1. IDENTIFICACIÓN DEL CURSO NOMBRE : Balance de Energía CÓDIGO : 730070 SEMESTRE : Cuarto (IV) NUMERO DE CRÉDITOS : Tres

Más detalles

5 Relaciones entre variables.

5 Relaciones entre variables. ANÁLISIS EPLORATORIO DE DATOS 39 ANÁLISIS EPLORATORIO DE DATOS 40 Relaciones entre variables..1 Ejercicios. Ejercicio.1 En una muestra de 0 individuos se recogen datos sobre dos medidas antropométricas

Más detalles

PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.

PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. Matemáticas º ESO Federico Arregui PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en es igual a su cuadrado?. Qué número multiplicado por 3 es 0

Más detalles

Propiedades (páginas 333 336)

Propiedades (páginas 333 336) A NOMRE FECHA PERÍODO Propiedades (páginas 333 336) Las propiedades son enunciados abiertos que satisfacen todos los valores de las variables. Para multiplicar una suma por un número, Propiedad 3(5 2)

Más detalles