Escribiendo números usando la notación

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Escribiendo números usando la notación"

Transcripción

1 Unidad 2: Introducción a la notación Bitácora del Estudiante Escribiendo números usando la notación Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. La distancia al satélite es 2.37 x km. 2. Reescribe 10 4 a. con factores múltiples de 10 (10 X 10...) Palabras claves: notación punto decimal Objetivos de aprendizaje: Escribir un número usando notación. b. en forma estándar 3. La distancia al satélite también puede escribirse como km. 4. Cuando multiplicas un número por una potencia de 10, mueves el punto decimal a la derecha tantas posiciones decimales como. 5. Multiplicar por 10,000 significa que mueves el punto decimal posiciones a la derecha. 6. El en la potencia de 10 y el número de lugares que se mueve el punto decimal a la derecha es el mismo. 7. Un número en notación se escribe como el producto de dos números: un número que es mayor que o igual a pero menor que y una potencia de. 91

2 4.3 x , x ,600,000,000 Nombre: Unidad 2: Introducción a la notación Es tu Turno Escribiendo números usando la notación 1. Dígito descubrió que el Sol está a 9.3 X 10 7 millas de la Tierra. a. Escribe 10 7 en forma estándar: b. Para escribir 9.3 x 10 7 en forma estándar, cuántas posiciones a la derecha mueves el punto decimal en 9.3? c. En el número aquí mostrado, coloca un punto decimal de manera que el número sea igual a 9.3 x d. Escribe 9.3 X 10 7 millas en forma estándar: 2. Selecciona la expresión que está escrita correctamente en notación : a. 11 x 10 3 c. 1.9 x b. 6.2 x 1 5 d. 1.4 x e. 0.4 x Completa esta tabla. Si un número está escrito en notación, escribe éste en forma estándar. Si un número está escrito en forma estándar, escribe éste en notación. Notación Científica Forma Estándar 7.5 x

3 Unidad 2: Introducción a la notación Bitácora del Estudiante Comparando números en notación Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Para cambiar un número de forma estándar a notación, mueves el punto decimal a la hasta que sólo quede dígitos que no sean cero frente al punto decimal kilómetro = metros. 3. Para cambiar metros a kilómetros, divides por. 4. Explica por qué divides en lugar de multiplicar cuando cambias de metros a kilómetros: Palabras claves: notación punto decimal Objetivos de aprendizaje: Convertir números a notación. Reconocer que 1 kilo es igual a Utilizar la calculadora en línea para expresar números en notación. Comparar dos números escritos en notación. 5. Luego que Dígito movió su nave, indica a la nueva distancia que está en notación. 6. Indica a qué distancia está ahora la nave de la Tierra en forma estándar. 7. Cuando comparas dos números en notación, por qué deberías comparar primero los exponentes? 8. Cuál número es mayor, 2.3 x 10 6 ó 9.3 x 10 5? Explica. 93

4 Unidad 2: Introducción a la notación Es tu Turno Comparando números en notación 1. Dígito descubrió que Mercurio está a 36 millones de millas del sol. a. Escribe 36 millones en forma estándar: b. Escribe 36 millones en notación : c. Dígito descubrió que Marte está a 1.4 X 10 8 millas del Sol. Cuál está más cerca del Sol, Mercurio o Marte? d. Explica tu respuesta a la pregunta c. 2. Una gota de agua tiene 3.3 X moléculas. Escribe este número en forma estándar: Escribe dos ventajas de escribir un número como éste en notación. 3. Nuestra galaxia contiene sobre 350 mil millones de estrellas (350,000,000,000) Escribe este número en notación :. 94

5 Unidad 2: Introducción a la notación Escribiendo números entre 0 y 1 en notación Bitácora del Estudiante Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Expresa el diámetro de un átomo de carbón en forma estándar. 2. Completa la tabla. Potencias de Forma estándar Exponente Números de ceros Palabras claves: notación punto decimal Objetivos de aprendizaje: Escribir un número entre 0 y 1 en notación. Explorar las potencias de 10 como enteros negativos y 0. Convertir números están en notación a su forma estándar. 3. Según el exponente disminuye por 1, qué pasa con el valor del número? 4. Explica por qué 10 = El número en un exponente negativo te dice el número de ceros o potencia de 10 bajo 6. Expresa el diámetro de un átomo de carbón en notación. 7. Expresa el diámetro de un átomo de titanio en notación. 8. Expresa el diámetro de un átomo de titanio en forma estándar. 95

6 Unidad 2: Introducción a la notación Es tu Turno Escribiendo números entre 0 y 1 en notación 1. En la tabla, los números dados están escritos en forma estándar. Si la notación de un número en forma estándar está correcta, escribe correcto en la columna que le sigue al número. Si la notación de un número estándar no está correcta, escribe en la tabla la notación que está correcta. Forma estándar Notación x x x x x En la tabla, los números dados están escritos en notación. Si la forma estándar de un número en notación está correcta, escribe correcto en la columna que le sigue al número. Si la forma estándar de un número en notación no está correcta, escribe en la tabla la forma estándar que está correcta. Notación Forma estándar 4.3 x x x x x ,200,000 96

7 Unidad 2: Introducción a la notación Repaso de la Unidad Escribiendo números usando la notación 1. En su punto más cercano, Marte está a 55 millones, 700 mil kilómetros de la Tierra. a. Escribe esta distancia en forma estándar: b. Escribe esta distancia en notación : 2. En su punto más lejano, Marte está a 399 millones de kilómetros de la Tierra. a. Escribe esta distancia en forma estándar: b. Escribe esta distancia en notación : Comparando números en notación 3. En su punto más cercano, cuán lejos, en metros, está Marte de la Tierra? Expresa tu respuesta en notación : 4. En su punto más lejano, cuán lejos, en metros, está Marte de la Tierra? Expresa tu respuesta en notación : 5. En su punto más cercano, Venus está a 4.14 x metros de la Tierra. Qué planeta está más cerca de la Tierra, Venus o Marte? Escribiendo números entre 0 y 1 en notación 6. El largo, en metros, de un cromosoma humano es a. Escribe este largo, en notación : b. Escribe este largo, en centímetros, en notación : 97

8 Repaso de la Unidad Unamos todo lo aprendido 7. Un niño de 9 años de edad inventó la palabra googol para describir un número bien grande. Cuando Dígito buscó la definición de la palabra, descubrió que un googol es el número 1 seguido de cien ceros. a. Puedes escribir un googol en forma estándar? b. Escribe un googol con notación : c. Utiliza un googol como ejemplo para escribir una oración que le explique a un amigo cómo puede, de manera eficiente, expresar valores grandes y pequeños utilizando notación. 98

9 Unidad 2: Introducción a la notación Avalúo de la Unidad 1. Escribe cada número en notación : a b c d e. 767,000,000,000 f. doce millones 2. Escribe cada número en forma estándar: --4 a x 10 b. 9.3 x c. 2 x d. 1.7 x e x f x Reescribe cada número, en metros, usando notación : a. 1 x 10-2 cm b. 8 x 10 4 mm c. 6.3 x 10 8 km d x 10-4 km 99

10 Avalúo de la Unidad 4. Reescribe las siguientes medidas en orden de menor a mayor: x 10 9 km 6,023 m mm 6,023,000 cm x 10 4 km 6 mm,,,, 100

Explorando el Teorema de Pitágoras

Explorando el Teorema de Pitágoras Bitácora del Estudiante Explorando el Teorema de Pitágoras Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. El satélite del tiempo recibirá energía a través de su:. 2. Cada panel

Más detalles

Fracciones y decimales (páginas 62 66)

Fracciones y decimales (páginas 62 66) A NOMRE FECHA PERÍODO Fracciones y decimales (páginas 6 66) Un decimal que termina, tal como 0, es un decimal terminal Todos los decimales terminales son números racionales 0,000 Un decimal que se repite,

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #3: jueves, 2 de junio de 2016. 3 Decimales 3.1 Sistema de numeración

Más detalles

Factorización prima (páginas 197 200)

Factorización prima (páginas 197 200) A NOMRE FECHA PERÍODO Factorización prima (páginas 9 00) Un número primo es un número entero mayor que que tiene exactamente dos factores, y sí mismo. Un número compuesto es un número entero mayor que

Más detalles

NOTACIÓN CIENTÍFICA Y CIFRAS SIGNIFICATIVAS. GRM. Física I. Semestre 2014-1

NOTACIÓN CIENTÍFICA Y CIFRAS SIGNIFICATIVAS. GRM. Física I. Semestre 2014-1 NOTACIÓN CIENTÍFICA Y CIFRAS SIGNIFICATIVAS 1 REGLAS DE LOS EXPONENTES Algunos ejemplos: 2 NOTACIÓN CIENTÍFICA Manera compacta de reportar un número muy grande: ej. número de átomos en el cuerpo humano

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 1 Pág. 1 Página 43 PRACTICA Relación entre fracción y decimal 1 Transforma en número decimal las siguientes fracciones: 11 1 e 9 4 11 11, 4,083 1 0,05 9 4 0, e 1 03 0,351 11 3 300 1 03 3 300 Clasifica

Más detalles

Ejercicios: 1) Escribe el valor de cada potencia:

Ejercicios: 1) Escribe el valor de cada potencia: Potencias Potencia es una expresión matemática que permite expresar la multiplicación reiterada de un número por sí mismo. Una potencia está compuesta por: Base: número que se multiplica reiteradamente.

Más detalles

6º lección TEMA 6.- LAS FRACCIONES

6º lección TEMA 6.- LAS FRACCIONES º lección TEMA.- LAS FRACCIONES -.Los términos de una fracción son el numerador y el denominador. -. El denominador indica el número de partes iguales en que se divide la unidad. -. El numerador indica

Más detalles

Explorando la ecuación de la recta pendiente intercepto

Explorando la ecuación de la recta pendiente intercepto Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el

Más detalles

Trabajo Práctico N 1: Números enteros y racionales

Trabajo Práctico N 1: Números enteros y racionales Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles

Potencias y raíces. 2º de ESO

Potencias y raíces. 2º de ESO 45 2º ESO 45 CAPÍTULO 3: POTENCIAS Y RAÍCES 45 46 1. POTENCIAS 46 46 1.1. CONCEPTO DE POTENCIA: BASE Y EXPONENTE 1.2. CUADRADOS Y CUBOS 1.3. LECTURA DE POTENCIAS 1.4. POTENCIAS DE UNO Y DE CERO 1.5. POTENCIAS

Más detalles

Repartido de Ciencias. Conceptos Básicos.

Repartido de Ciencias. Conceptos Básicos. Repartido de Ciencias. Conceptos Básicos. Concepto de MAGNITUD: cantidad física que se utiliza para expresar Leyes. Esta cantidad se define cuando se han establecido un conjunto de procedimiento o recetas

Más detalles

DECIMALES. Ejercicio nº 1.- a Expresa en forma de fracción: a.1) 2,3. a.2) 2,08. 31 7 b) Escribe en forma decimal las fracciones: y.

DECIMALES. Ejercicio nº 1.- a Expresa en forma de fracción: a.1) 2,3. a.2) 2,08. 31 7 b) Escribe en forma decimal las fracciones: y. DECIMALES Ejercicio nº 1.- a Expresa en forma de fracción: a.1) 1,2 a.2) 2,08 1 7 b) Escribe en forma decimal las fracciones: y. 0 Justifica, previamente, si los decimales van a ser exactos o periódicos.

Más detalles

4.3 Leyes de los logaritmos

4.3 Leyes de los logaritmos 352 CAPÍTULO 4 Funciones exponenciales y logarítmicas 83. Dificultad de una tarea La dificultad en lograr un objetivo (como usar el ratón para dar clic en un icono en la pantalla de la computadora) depende

Más detalles

Criterios de evaluación. Objetivos. Contenidos. Actitudes. Conceptos. Procedimientos

Criterios de evaluación. Objetivos. Contenidos. Actitudes. Conceptos. Procedimientos P R O G R A M A C I Ó N D E L A U N I D A D Objetivos Calcular potencias de base un número entero. 2 Conocer y utilizar las propiedades de las operaciones con potencias. 3 Conocer qué es una potencia cuyo

Más detalles

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11 RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES º B CURSO 00- Expresa las siguientes fracciones en forma decimal e indica de qué tipo es dicho cociente / /0 0/ / Entero, Decimal exacto 0 0, Periódico puro,

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

Lección 9: Fracciones decimales

Lección 9: Fracciones decimales LECCIÓN 9 Toluca 3º 7º 2º Guadalajara 6º 20º 9º Monterrey 4º 0º 1º Distrito Federal 2º 13º 4º Acapulco 18º 29º 21º a) En cuál ciudad se registró la temperatura más baja a las 7 de la mañana? b) En cuál

Más detalles

Usando la Notación Científica /G. NOTAS DEL PROFESOR INVESTIGACIÓN TI MATHFORWARD TM. Objetivos Matemáticos. Vocabulario.

Usando la Notación Científica /G. NOTAS DEL PROFESOR INVESTIGACIÓN TI MATHFORWARD TM. Objetivos Matemáticos. Vocabulario. Objetivos Matemáticos Los estudiantes convertirán números en notación estándar a notación científica y viceversa. Los estudiantes identificarán números escritos en notación científica. Los estudiantes

Más detalles

Escribiendo números usando la notación científica

Escribiendo números usando la notación científica Centenas Decenas Unidades Punto decimal Décimas Centésimas Milésimas Diezmilésima s Cienmilésima s Millonésimas Diezmillonési mas Cienmillonési mas Milmillonésim as Diezmilmillon ésimas Escribiendo números

Más detalles

Números decimales. 1.1. Lectura de las fracciones decimales

Números decimales. 1.1. Lectura de las fracciones decimales Números decimales 1. Fracción decimal Son de uno muy frecuente y se las representa con la notación particular, que consiste en escribir sólo el numerador y recordar el número de ceros que siguen a la unidad

Más detalles

Enteros y valor absoluto (páginas 106 108)

Enteros y valor absoluto (páginas 106 108) A NOMRE FECHA PERÍODO Enteros y valor absoluto (páginas 106 108) Un entero es cualquier número del conjunto {, 3, 2, 1, 0, 1, 2, 3, }. Los enteros mayores de 0 son enteros positivos. Los enteros menores

Más detalles

Lección 13: Unidades de área del sistema métrico decimal

Lección 13: Unidades de área del sistema métrico decimal LECCIÓN 13 Lección 13: Unidades de área del sistema métrico decimal Las unidades de área del Sistema Métrico Decimal se basan en las unidades de longitud del mismo sistema. Por ejemplo, un centímetro cuadrado

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL

SISTEMA DE NUMERACIÓN DECIMAL 1 SISTEMA DE NUMERACIÓN DECIMAL 1. Indica los órdenes: centenas = centenas de millar = unidades de millón = millares = decenas de millar = centenas de millón = decena de millón = decenas simples = 2. Escribe

Más detalles

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y Números Reales. 8 ejercicios para practicar con soluciones Ordena de menor a mayor las siguientes fracciones: y 8 Reducimos a común denominador: 0 80 0 00 0 y 0 0 0 0 0 0 8 0 El orden de las fracciones,

Más detalles

Universidad Rey Juan Carlos HOJA DE PROBLEMAS TEMA 3: REPRESENTACIÓN DE LA INFORMACIÓN

Universidad Rey Juan Carlos HOJA DE PROBLEMAS TEMA 3: REPRESENTACIÓN DE LA INFORMACIÓN Universidad Rey Juan Carlos Ingeniería Técnica en Informática de Sistemas Estructura y Tecnología de Computadores HOJA DE PROBLEMAS TEMA 3: REPRESENTACIÓN DE LA INFORMACIÓN 1 6. Convertir A05B3D00 dado

Más detalles

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos

Más detalles

Un plan para resolver problemas (páginas 6 9)

Un plan para resolver problemas (páginas 6 9) A NOMRE FECHA PERÍODO Un plan para resolver problemas (páginas 6 9) Puedes usar un plan de cuatro pasos para resolver problemas. Explora Planifica Resuelve Examina Evalúa la información dada en el problema

Más detalles

2. Nombra 4 magnitudes fundamentales y 3 magnitudes derivadas.

2. Nombra 4 magnitudes fundamentales y 3 magnitudes derivadas. UD1: LAS MAGNITUDES Y SU MEDIDA MAGNITUDES FUNDAMENTALES Y DERIVADAS 1. Qué es una magnitud? 2. Nombra 4 magnitudes fundamentales y 3 magnitudes derivadas. 3. Completa la frase siguiente: La unidad es

Más detalles

Guía N 3: Números Enteros

Guía N 3: Números Enteros NOMBRE CURSO Guía N 3: Números Enteros FECHA ITEM I. En las figuras siguientes marca con un punto de color cada una de las etapas de cada caso. ITEM II. Compara los siguientes números y escribe los signos

Más detalles

CIFRAS SIGNIFICATIVAS LAS MEDIDAS Y SU CORRECTA EXPRESIÓN

CIFRAS SIGNIFICATIVAS LAS MEDIDAS Y SU CORRECTA EXPRESIÓN CIFRAS SIGNIFICATIVAS LAS MEDIDAS Y SU CORRECTA EXPRESIÓN María de los Dolores Ayala Velázquez Departamento de Física, División de CBI INDICE La medida y su representación...2 Forma correcta de expresar

Más detalles

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE Que se pueden escribir de la forma b a, donde a y b son enteros y b 0. Operaciones: suma,

Más detalles

TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO TEMA 1 : LOS NÚMEROS NATURALES. 1. Escribe en números romanos las siguientes cantidades:

TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO TEMA 1 : LOS NÚMEROS NATURALES. 1. Escribe en números romanos las siguientes cantidades: TRABAJO DE RECUPERACIÓN MATEMÁTICAS 1º ESO NOMBRE: GRUPO: TEMA 1 : LOS NÚMEROS NATURALES 1. Escribe en números romanos las siguientes cantidades: a) 42 b) 159 c) 520 2. Escribe como se leen estas cantidades:

Más detalles

Razones (páginas 380 383)

Razones (páginas 380 383) A NOMRE FECHA PERÍODO Razones (páginas 80 8) Puedes comparar dos cantidades usando una razón. Comúnmente se expresa una razón como una fracción reducida. Si las dos cantidades que comparas tienen diferentes

Más detalles

C.E.I.P. Ignacio Halcón. Proyecto Curricular. Matemáticas

C.E.I.P. Ignacio Halcón. Proyecto Curricular. Matemáticas Fracciones Decimales y Porcentajes - 5º Las Fracciones y los Números Decimales Rocío ha pintado el tablero en franjas de colores. Indica la fracción que representa cada uno de esos colores. Hemos dividido

Más detalles

Área de paralelogramos, triángulos y trapecios (páginas 314 318)

Área de paralelogramos, triángulos y trapecios (páginas 314 318) NOMRE FECHA PERÍODO Área de paralelogramos, triángulos y trapecios (páginas 34 38) Cualquier lado de un paralelogramo o triángulo puede usarse como base. La altitud de un paralelogramo es un segmento de

Más detalles

República Bolivariana de Venezuela Universidad Alonso de Ojeda Vicerrectorado Académico Facultad de Ingeniería Escuela de Computación

República Bolivariana de Venezuela Universidad Alonso de Ojeda Vicerrectorado Académico Facultad de Ingeniería Escuela de Computación República Bolivariana de Venezuela Universidad Alonso de Ojeda Escuela de Computación UNIDAD I SISTEMA DE UNIDADES Adaptado: Ing. Ronny Altuve Ciudad Ojeda, Mayo de 2015 UNIDAD I. SISTEMA DE UNIDADES UNIDAD.

Más detalles

Alianza para el Aprendizaje de las Ciencias y las Matemáticas (AlACiMa) Actividad de Matemáticas Nivel 4-6. Por los Pueblos de Puerto Rico

Alianza para el Aprendizaje de las Ciencias y las Matemáticas (AlACiMa) Actividad de Matemáticas Nivel 4-6. Por los Pueblos de Puerto Rico Nivel 4-6 Por los Pueblos de Puerto Rico Guía del Maestro Propósito: Usar una fracción como una razón para comparar cantidades de una misma cosa. Estándares: Numeración, Conexiones Tiempo: Un periodo de

Más detalles

Lección 8: Potencias con exponentes enteros

Lección 8: Potencias con exponentes enteros GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como

Más detalles

UNIDAD 3: NÚMEROS DECIMALES

UNIDAD 3: NÚMEROS DECIMALES UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.

Más detalles

Funciones lineales y no lineales (páginas 560 563)

Funciones lineales y no lineales (páginas 560 563) A NOMRE FECHA PERÍODO Funciones lineales y no lineales (páginas 560 563) Las funciones lineales tienen gráficas que son líneas rectas. Estas gráficas representan tasas de cambio constantes. Las funciones

Más detalles

Lección 1 Comparación de números decimales

Lección 1 Comparación de números decimales Lección 1 Comparación de números decimales A los hijos de Gonoveva les hicieron un examen médico en el Centro de Salud. El doctor midió y pesó a los niños Manuel mide 1 metro y 30 centímetros de estatura.

Más detalles

Alumno-a: CPEPA Somontano de Barbastro. Enseñanzas Iniciales. El entorno y el medio

Alumno-a: CPEPA Somontano de Barbastro. Enseñanzas Iniciales. El entorno y el medio Alumno-a: CPEPA Somontano de Barbastro. Enseñanzas Iniciales. El entorno y el medio La Tierra y el Sol. Vivimos en el planeta Tierra. Un planeta es un cuerpo sólido que da vueltas alrededor de una estrella.

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

Polinomios. Un polinomio tiene la siguiente forma general: Donde: y las potencias de las variables descienden en valor

Polinomios. Un polinomio tiene la siguiente forma general: Donde: y las potencias de las variables descienden en valor Polinomios Polinomios Definición: Un polinomio es una expresión algebraica que cumple con las siguientes condiciones: Ningún término de la expresión tiene un denominador que contiene variables Ningún término

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

Tema 3 POTENCIAS Y NOTACIÓN CIENTÍFICA 1. Notación científica. Mr: Gonzalo Flores C

Tema 3 POTENCIAS Y NOTACIÓN CIENTÍFICA 1. Notación científica. Mr: Gonzalo Flores C POTENCIAS Y NOTACIÓN CIENTÍFICA 1 Notación científica Mr: Gonzalo Flores C POTENCIAS Y NOTACIÓN CIENTÍFICA 2 ESQUEMA DE LA UNIDAD 0. Potencias de exponente natural. Propiedades. 1. Potencias de exponente

Más detalles

Índice. Introducción... 4

Índice. Introducción... 4 Índice Introducción... 4 Fracciones y decimales... 8 Números racionales... 11 Sumar y restar números racionales... 19 Multiplicar y dividir números racionales 1... 25 Multiplicar y dividir números racionales

Más detalles

Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto:

Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto: I.- Teoría de conjuntos Definición de conjunto Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto: a) Por extensión

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

Matemáticas aliadas a las salud

Matemáticas aliadas a las salud Matemáticas aliadas a las salud MATE 3035 Introducción a Fracciones Relación parte a entero Fracción: un número que consiste de una o más partes iguales de una unidad 1 60 NUMERADOR (número de partes )

Más detalles

Actividades de refuerzo

Actividades de refuerzo MATEMÁTICAS 1º SECUNDARIA CUADERNO DE ACTIVIDADES DE REFUERZO Nombre: Curso: Fecha de entrega: 1 Números naturales. Divisibilidad 1. Rodea con una circunferencia los múltiplos de 4, y con un cuadrado los

Más detalles

Taller 2 - EJERCICIOS DE REPASO. ERROR ABSOLUTO Y RELATIVO Y REDONDEOS.

Taller 2 - EJERCICIOS DE REPASO. ERROR ABSOLUTO Y RELATIVO Y REDONDEOS. Taller 2 - EJERCICIOS DE REPASO. ERROR ABSOLUTO Y RELATIVO Y REDONDEOS. Medir es comparar cierta cantidad de una magnitud, con otra cantidad de la misma que se ha elegido como unidad patrón. Por ejemplo,

Más detalles

Por qué el Tránsito de Venus ocurre tan raramente... y con un ritmo tan especial? Leonarda Fucili y Rosa M. Ros *

Por qué el Tránsito de Venus ocurre tan raramente... y con un ritmo tan especial? Leonarda Fucili y Rosa M. Ros * Por qué el Tránsito de Venus ocurre tan raramente... y con un ritmo tan especial? Leonarda Fucili y Rosa M. Ros * Por qué el Tránsito de Venus ocurre tan raramente... y con un ritmo tan especial? Leonarda

Más detalles

MATEMÁTICAS 5. º CURSO UNIDAD 6: NÚMEROS DECIMALES

MATEMÁTICAS 5. º CURSO UNIDAD 6: NÚMEROS DECIMALES MATEMÁTICAS 5. º CURSO UNIDAD 6: NÚMEROS DECIMALES OBJETIVOS Reconocer las unidades decimales: décima, centésima y milésima Leer y escribir números decimales. Diferenciar la parte entera y decimal de un

Más detalles

Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43. se cuádrupla 16F 4F

Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43. se cuádrupla 16F 4F Slide 1 / 43 1 La fuerza gravitacional entre dos objetos es proporcional a Slide 2 / 43 2 os cuerpos se atraen entre sí gravitacionalmente. Si la distancia entre sus centros es reducido a la mitad, la

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

POTENCIAS Y RAÍCES. Signo de la base + * Expresa en forma de potencia: a) 100 = b) 16 = c) 81 = d) 49 =

POTENCIAS Y RAÍCES. Signo de la base + * Expresa en forma de potencia: a) 100 = b) 16 = c) 81 = d) 49 = POTENCIAS Y RAÍCES Potencias. Una potencia es una multiplicación de varios factores iguales. Los términos de una potencia son la base, que es el factor que se multiplica, y el exponente, que indica el

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles

Estándares de Contenido Sencillos de Entender Para Padres y Estudiantes: Matemáticas Estándares del Kindergarten de Matemáticas

Estándares de Contenido Sencillos de Entender Para Padres y Estudiantes: Matemáticas Estándares del Kindergarten de Matemáticas Estándares de Contenido Sencillos de Entender Para Padres y Estudiantes: Matemáticas Estándares del Kindergarten de Matemáticas 1.0 Sentido Numérico Puedo comparar grupos y saber si son iguales, mayores

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales.

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales. ESCUELA SECUNDARIA No. 264 MIGUEL SERVET GUÍA PARA EL EXAMEN DE MATEMÁTICAS DE 1 A, 1 B, 1 C, 1 D, CORRESPONDIENTE AL PRIMER BIMESTRE. La siguiente información te servirá para que estudies, sólo deberás

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

Un plan para resolver problemas (páginas 6 9)

Un plan para resolver problemas (páginas 6 9) A NOMRE FECHA PERÍODO Un plan para resolver problemas (páginas 6 9) Puedes usar un plan de cuatro pasos para resolver un problema. Explora Planifica Resuelve Examina Lee cuidadosamente el problema. Hazte

Más detalles

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban. DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 7 PRACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; 9 ;, 7; ),; ; b) Alguno de ellos es entero? c) Ordénalos de menor a mayor. a) Racionales: ; 9

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LOGARITMOS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LOGARITMOS LOGARITMOS Introducción El empleo de los logaritmos es de gran utilidad para entender muchos de los desarrollos que se analizan en la Matemática, y para explicar una variedad muy extensa de problemas que

Más detalles

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á NÚMEROS REALES Página 7 REFLEXIONA Y RESUELVE El paso de Z a Q Di cuáles de las siguientes ecuaciones se pueden resolver en Z y para cuáles es necesario el conjunto de los números racionales, Q. a) x 0

Más detalles

La Tierra es el tercer planeta más cercano al Sol. Está a millones de kilómetros del Sol. En tamaño, es el quinto., hay 4 planetas más pequeños que

La Tierra es el tercer planeta más cercano al Sol. Está a millones de kilómetros del Sol. En tamaño, es el quinto., hay 4 planetas más pequeños que 1 EL PLANETA TIERRA La Tierra es el tercer planeta más cercano al Sol. Está a millones de kilómetros del Sol. En tamaño, es el quinto., hay 4 planetas más pequeños que la Tierra. 2 La mayor parte de nuestro

Más detalles

Click para ir al sitio web:

Click para ir al sitio web: New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes y profesores.

Más detalles

PROBLEMAS DE DIAMANTE 2.1.1

PROBLEMAS DE DIAMANTE 2.1.1 PROBLEMAS DE DIAMANTE 2.1.1 En cada Problema de diamante, el producto de los dos números a los lados (izquierda y derecha) es el número arriba y la suma es el número de abajo. producto ab Los Problemas

Más detalles

( ) ( ) = ( ) = ( ) ) ( ( ) c) 128. 2 2 b) 7 7 3 4. c) 6 : 6. 2 2 2 7 7 7 c) 6 : 6 6 6. Tema 2 - Hoja 1: Potencias de exponente entero y fraccionario

( ) ( ) = ( ) = ( ) ) ( ( ) c) 128. 2 2 b) 7 7 3 4. c) 6 : 6. 2 2 2 7 7 7 c) 6 : 6 6 6. Tema 2 - Hoja 1: Potencias de exponente entero y fraccionario Tema - Hoja : Potencias de exponente entero y fraccionario Expresa los números como multiplicación de factores iguales y luego en forma de potencia: a b c 8 d 6 ( ( ( a = b = = = ( c 8 d = 6 = Expresa

Más detalles

Conoce los contenidos

Conoce los contenidos Unidad 3 ContenidoConoce los contenidos1 Decimales: valor posicional 2 Equivalencias entre fracciones y decimales Comparar y ordenar decimales 4 Suma de decimales 5 Resta de decimales 6 Multiplicación

Más detalles

Tema 1: Introducción. Primeros conceptos.

Tema 1: Introducción. Primeros conceptos. Tema 1: Introducción. Primeros conceptos. El papel de la geometría en las matemáticas de primaria: cuál es? cuál debería ser? En la puerta de la Academia de Platón se podía leer Que no entre aquí nadie

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

06-A-1/10 Sistema Métrico Decimal Magnitudes y medidas

06-A-1/10 Sistema Métrico Decimal Magnitudes y medidas 06-A-1/10 Medir es comparar dos cantidades viendo cuántas veces contiene una a otra. Al comparar los dos pies, hemos hecho una medida. Así el pie del gigante es... veces mayor que el de Paco. Magnitud

Más detalles

Funciones. Resumen del contenido

Funciones. Resumen del contenido C APÍTULO 7 Funciones Resumen del contenido En el Capítulo 7, los estudiantes aumentan su entendimiento del crecimiento lineal y de las ecuaciones observando en detalle una clase especial de relación llamada

Más detalles

Clasificando triángulos de acuerdo a sus lados

Clasificando triángulos de acuerdo a sus lados Bitácora del Estudiante Clasificando triángulos de acuerdo a sus lados Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. El peso total de Dígito y el planeador es de libras. 2.

Más detalles

Math Basics. for the Health Care Professional. Decimales UNIT FOURTH EDITION. Copyright 2014, 2009 by Pearson Education, Inc. All Rights Reserved

Math Basics. for the Health Care Professional. Decimales UNIT FOURTH EDITION. Copyright 2014, 2009 by Pearson Education, Inc. All Rights Reserved Math Basics for the Health Care Professional FOURTH EDITION UNIT 3 Decimales Copyright 2014, 2009 by Pearson Education, Inc. All Rights Reserved Repaso de Decimales El sistema decimal es un sistema basado

Más detalles

Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed.

Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Agosto, 00 Notación exponencial La notación exponencial se usa para repetir

Más detalles

MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011

MODULO DE LOGARITMO. 1 log 2 4 16. log N x b N N se llama antilogaritmo, b > 0 y b 1. Definición de Logaritmo. Liceo n 1 Javiera Carrera 2011 MODULO DE LOGARITMO Nombre:.. Curso : Medio Los aritmos están creados para facilitar los cálculos numéricos. Por aritmo podemos convertir los productos en sumas, los cocientes en restas, las potencias

Más detalles

Operaciones con fracciones I

Operaciones con fracciones I Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Introducción Sabes que con la calculadora puedes encontrar interesantes patrones numéricos?

Introducción Sabes que con la calculadora puedes encontrar interesantes patrones numéricos? Introducción Sabes que con la calculadora puedes encontrar interesantes patrones numéricos? Las actividades a continuación te ayudarán a descubrir importantes datos sobre los números y las operaciones

Más detalles

UNIDAD 1 PLAN DE APOYO

UNIDAD 1 PLAN DE APOYO UNIDAD 1 PLAN DE APOYO NÚMEROS ENTEROS 7 Básico Autor Thomas Bustos Ortiz I INDICE TAREAS CODICIONES FICHAS Ordenan y comparan números naturales Suman y restan de números naturales Conocen números enteros

Más detalles

Conocimiento del Medio Natural, Social y Cultural UNIDAD 8. La Tierra en el Universo FICHA 8.1

Conocimiento del Medio Natural, Social y Cultural UNIDAD 8. La Tierra en el Universo FICHA 8.1 UNIDAD 8. La Tierra en el Universo FICHA 8.1 1. Cómo se llama la galaxia donde está el Sistema Solar?... 2. Cuáles son los componentes del Sistema Solar?...... 3. Cuáles son los nombres de los planetas

Más detalles

Kilometros o fracciones de km Puede recorrer 10 km, de su casa al colegio

Kilometros o fracciones de km Puede recorrer 10 km, de su casa al colegio NOTACIÓN CIENTÍFICA Nomenclatura antigua Notación tradicional Prefijo métrico Notación científica trillón 1,000,000,000,000 tera 10 12 billón 1,000,000,000 giga 10 9 millón 1,000,000 mega 10 6 mil 1,000

Más detalles

Mira los dibujos, escribe las palabras en otro papel y contesta las preguntas: Cuál es la letra que más veces aparece en todas las palabras?

Mira los dibujos, escribe las palabras en otro papel y contesta las preguntas: Cuál es la letra que más veces aparece en todas las palabras? Problemas 1 Problema No. 1 Mira los dibujos, escribe las palabras en otro papel y contesta las preguntas: Cuántas terminan en la misma letra? Cuál es la letra que más veces aparece en todas las palabras?

Más detalles

Cuando el exponente es un número negativo, la potencia se calcula invirtiendo la base y cambiando de signo al exponente. Ejemplos: 2 = 1 2 = 1 8

Cuando el exponente es un número negativo, la potencia se calcula invirtiendo la base y cambiando de signo al exponente. Ejemplos: 2 = 1 2 = 1 8 POTENCIAS Una Potencia es una expresión de la forma:, que se lee como b elevado a n o b a la n-ésima potencia. b se denomina base y n se denomina exponente. También se puede escribir como un operador en

Más detalles

a) ( 3) b) ( 2) c) ( 1) d) ( 5) a) ( 2) 3 b) ( 4) : 2 c) ( 2) : ( 4) a) ( 2) 3 = 4 3 = 12 b) ( 4) : 2 = 64 : 8 = 8 c) ( 2) : ( 4) = 32 : ( 4) = 8

a) ( 3) b) ( 2) c) ( 1) d) ( 5) a) ( 2) 3 b) ( 4) : 2 c) ( 2) : ( 4) a) ( 2) 3 = 4 3 = 12 b) ( 4) : 2 = 64 : 8 = 8 c) ( 2) : ( 4) = 32 : ( 4) = 8 Ejercicios de potencias y raíces con soluciones 1 Sin realizar las potencias, indica el signo del resultado: a) ( ) 4 b) ( ) 10 c) ( 1) 7 d) ( 5) 9 a) Positivo por tener exponente par. b) Positivo por

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL

SISTEMA DE NUMERACIÓN DECIMAL SISTEMA DE NUMERACIÓN DECIMAL Se llama decimal o de base diez porque se utilizan diez símbolos para representar todos los números. Los diez símbolos, cifras son: 0, 1, 2,3, 4, 5, 6, 7, 8, 9 La relación

Más detalles

1 El Número Real. 4.- Orden en R. Desigualdades numéricas. Intervalos

1 El Número Real. 4.- Orden en R. Desigualdades numéricas. Intervalos 1 El Número Real 1.- Los números irracionales. Números reales. 2.- Aproximación decimal de un número real. 2.1.- Aproximaciones 2.2.- Error absoluto y cota de error 2..- Error relativo 2.4.- Aproximaciones

Más detalles

6to GRADO. Operaciones con decimales HOJAS DE TRABAJO

6to GRADO. Operaciones con decimales HOJAS DE TRABAJO 6to GRADO Operaciones con decimales HOJAS DE TRABAJO Multiplicar y dividir por potencias de diez Mueve el punto decimal dependiendo de la cantidad de ceros el punto decimal se mueve a la derecha el punto

Más detalles

INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR

INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR Adaptación del Experimento Nº1 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 36-42. Autorizado por el Autor. Materiales: Cilindros

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

Teoría de errores. Departamento de Análisis Matemático Universidad de La Laguna

Teoría de errores. Departamento de Análisis Matemático Universidad de La Laguna Teoría de errores BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles