ERRORES EN LAS MEDIDAS (Conceptos elementales)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ERRORES EN LAS MEDIDAS (Conceptos elementales)"

Transcripción

1 ERRORES EN LAS MEDIDAS (Coceptos elemetales). Medida y tipos de errores Ua tarea esecial e este Laboratorio de Física de Primero es familiarizarse co la medida de magitudes físicas. Medir cosiste e comparar ua magitud de u sistema dado co la misma de otro sistema que se toma como referecia o patró (uidad). Por eemplo, la logitud de u muelle, L 0, se compara co la uidad "milímetro" que sumiistra ua regla graduada. Sea el resultado de ua primera medida L = 54 mm. Normalmete, al repetir la medida co la misma regla, se obtiee u valor diferete, por eemplo L = 53 mm. Esta diferecia se debe a causas accidetales (diferete apreciació de la persoa, ua vibració o movimieto iadvertido de la regla, etc.). Etoces se habla de error accidetal o aleatorio, que por su propia aturaleza será diferete cada vez; e este caso el resultado de medir ua magitud se debe dar como u valor promedio de todas las medidas. Si se utiliza ua regla mal calibrada se obtiee u valor diferete, por eemplo L 3 = 55 mm. E este caso se deomia error sistemático porque aparecerá superpuesto al aleatorio e todas la medidas e igual proporció. E este laboratorio supodremos la simplificació de que los errores sistemáticos se puede despreciar frete a los aleatorios; salvo casos excepcioales, esta suposició es correcta. E cualquier caso, el itervalo L e el que se puede ecotrar la medida de L 0 se deomia error absoluto (e las mismas uidades de L 0 ), y el cociete etre el error absoluto y el valor medido, es decir L/L, se deomia error relativo (adimesioal, frecuetemete e porcetae).. Precisió de los istrumetos El eemplo de la Fig. (ua regla milimetrada) ilustra el cocepto de precisió de u istrumeto de medida aalógico. Si se desea medir co la regla la distacia etre los dos trazos largos, y supoiedo que se puede apreciar de modo fiable ua divisió pequeña ( mm), la medida estará compredida etre 53 mm y 54 mm. Por tato, se toma como precisió del istrumeto la mitad de la divisió más pequeña apreciable, es decir ±0.5 mm e modo de error absoluto y ±0.5/53.5 = ± ( %) e modo de error relativo. Estos cometarios sobre el istrumeto regla se aplica de modo similar a los istrumetos aalógicos e geeral (casos de la agua de u croómetro sobre la escala graduada circular o los cuadraditos del propio papel milimetrado e el que se hace las gráficas) Fig.. Medida de ua logitud co ua regla E el caso de istrumetos digitales, el papel de las pequeñas divisioes aalógicas lo desempeña el último dígito sigificativo (a meos que se especifique ua precisió meor). Así, e el caso de u voltímetro que proporcioa 4 dígitos, ua lectura de voltae de 0.53 V se debe iterpretar 6 TECNICAS EXPERIMENTALES I, Errores e las medidas, /6

2 como (0.53±0.0) V; la precisió absoluta será ±0.0 V (último dígito) y la relativa ±0.0/0.53 = ± ( 0.%). 3. Errores accidetales Ua evaluació adecuada de los errores accidetales requiere el uso de métodos estadísticos. Para que el alumo se familiarice co los errores, e este primer cotacto co la medida se le exige ua evaluació doble e cada práctica, segú se describe a cotiuació. Ambos métodos se ilustra co el eemplo de la Fig., e el que se determia la aceleració de la gravedad g usado u pédulo. El periodo T de u pédulo simple viee dado e fució de su logitud L por la expresió T = 4π L/g, por tato escribiedo g L = T () 4π 3 y represetado L e fució de T, como se ha hecho e la Fig., se obtiee ua recta de pediete g/(4π ) de cuyo valor se determia g. Las barritas verticales y horizotales que aparece e cada puto idica el error obteido e varias medidas de ese puto y se deomia barras de error. E la figura se ha represetado todas iguales, y exageradas para mayor claridad. L, m α δ T δ L T, s Fig.. Datos experimetales y auste visual de la ecuació (). 3.. Evaluació visual El método que aquí llamamos visual cosiste e trazar la recta por etre la ube de putos medios mediate u "auste visual uicioso", es decir que el peso de los putos que queda por arriba de la recta sea similar al de los que queda por debao. La recta debe represetar la tedecia de la ube de putos, si que tega que pasar por uo o varios de los putos ecesariamete. El valor de g se obtiee de la pediete medida sobre la recta y o de los putos mediate δl g Ta α = = () δt 4π E el caso de esta figura se tiee g = 9,7385 m/s. A cotiuació se traza dos rectas adicioales (de trazos fios e la Fig. ) que represeta las pedietes "máxima" y "míima" posibles de la ube de putos, de las que se obtiee de modo aálogo g max = 0,453 m/s y g mi = 8,8775 m/s, cuya diferecia es g =.5757 m/s. Tomado la mitad de este valor por arriba y la mitad por abao, el error absoluto será g = ± m/s. Como se ha tomado valores extremos de la pediete el valor máximo del error será g = ±0.8 m/s, prescidiedo de las cifras o sigificativas. Por tato, TECNICAS EXPERIMENTALES I, Errores e las medidas, /6

3 cosideraremos o represetativas todas las cifras a partir de las décimas y el resultado debe escribirse así: evaluació empírica g = (9.7 ± 0.8) m/s (3) siedo el error relativo máximo de 8%. Coviee isistir e que los decimales superfluos o debe escribirse, porque, además de iecesarios, cofude sobre la precisió real de la medida. 3.. Evaluació aalítica Ua vez realizada la evaluació visual aterior, y expresada la medida segú se ha hecho e (3), se realiza la evaluació aalítica por medio del método de míimos cuadrados, u resume del cual se da e el Apédice. Este método permite obteer aalíticamete el meor auste posible de la recta haciedo míimo el cuadrado de la diferecia etre el valor medido y el que da la recta. El resultado e este caso da (9.7944±0.303) m/s, de modo que, tomado por prudecia el valor de 0.3 como error, escribiremos: evaluació aalítica g = (9.8 ± 0.3) m/s (4) siedo el error relativo de 3%. La razó de que ahora el error estimado sea meor, o es sólamete debido a la imprecisió de la apreciació visual. Se debe pricipalmete a que la defiició de error usada e el auste por míimos cuadrados o es la de error máximo, sio u error cuadrático medio (tambié llamado error típico o estádar) que o icluye los valores más aleados del cetro del itervalo porque se cosidera demasiado poco probables. 4. Propagació de errores e las fórmulas Frecuetemete la magitud que se desea coocer viee dada por ua expresió matemática e la que aparece varias magitudes que hay que medir. Utlizado de uevo el eemplo del pédulo, el valor de la gravedad e la fórmula () viee dado e fució de las dos magitudes L y T por: L g = 4π (5) T El error e la medida de g se obtiee del siguiete modo. Cosideremos e primer lugar que el error de L es despreciable (L es costate) y que el error T es pequeño. Etoces, lo que varía g (su error) al variar T e T se puede calcular co buea aproximació co la diferecial de (5), es decir, dg( t) g T g = ± T = ± 4π L T ; = m (6) dt 3 T g T E el caso e que L tambié presete error ± L (tambié pequeño), el error ± g se puede obteer difereciado la expresió (5) para g(l,t) cosiderada como fució de las dos variables L y T, es decir utilizado derivadas parciales, g g 4π g L T g L T = ± L 4π L T + ; = ± + L T = ± + (7) 3 T T g L T TECNICAS EXPERIMENTALES I, Errores e las medidas, 3/6

4 Como la probabilidad de que el sigo del error sea + ó es aleatoria, e este caso e que aparece ua suma es prudete tomar todos los sigos positivos al cosiderar el error fial. Las reglas geerales que se deduce de este método so las siguietes (compruébese que el eemplo aterior las cumple): a) El error absoluto de la suma o diferecia es la suma de los errores absolutos de los sumados, el error relativo de u producto o cociete es la suma de los errores relativos de los factores, y c) el de ua potecia es igual al expoete por el error relativo de la base. Pero e caso de duda, es recomedable difereciar la expresió correspodiete. 5. Procedimieto práctico A la hora de realizar ua Práctica, se recomieda seguir el siguiete procedimieto práctico: A. Se lee deteidamete el guió, para idetificar los obetivos y coceptos físicos que aparece y para tomar ota de las precaucioes de carácter persoal y sobre los istrumetos. B. Se determia la precisió de todos los istrumetos de acuerdo co la secció. C. Se realiza alguas medidas de prueba para familiarizarse co la técica de medida, y para detectar los aspectos delicados del experimeto y el orde de magitud de los errores aleatorios. Frecuetemete éstos so mayores que la precisió de los istrumetos por lo que se desprecia el error istrumetal; si fuera meores, será la precisió istrumetal la que determie el error fial de la medida. D. Se hace las medidas que se pide e el guió, atediedo especialmete a los aspectos delicados, y se aota e las Tablas que aparece al fial del guió. E. Si so varias medidas repetidas, se hace la media y se calcula su error cuadrático medio. Si es ua magitud e fució de otra que se va variado, se hace la represetació gráfica correspodiete co los valores medios y las barras de error si procede, y se determia su valor y su error, primero visualmete y después por míimos cuadrados. F. Se cometa las icidecias de las medidas y se hace u aálisis físico de los resultados. Coviee isistir e que la estimació adecuada del error (pequeño o grade), la maera correcta de expresarlo y el uicio crítico de las medidas so obetivos más importates e este Laboratorio que presetar medidas muy precisas. Por ello, la evaluació de los errores y el uicio crítico de las medidas costituye ua fracció importate de calificació a fial del curso. TECNICAS EXPERIMENTALES I, Errores e las medidas, 4/6

5 Apédice : Evaluació aalítica de los errores. Couto de medidas de la misma catidad E la gra mayoría de experimetos e Física, al medir la catidad descoocida L 0, la probabilidad p(l) de obteer u cierto valor L viee dada por la fució de Gauss (distribució ormal o campaa, véase su forma e la Fig. A), que se escribe: ( L L ) (σ ) p( L) = e (A) σ π Es fácil ver que el máximo de dicha fució ocurre para L = L ; este valor tambié es el más probable y resulta ser el valor medio del couto L defiido por: L = = L (A) L σ L L + σ Fig. A. Distribució ormal de Gauss dode, que debe ser grade, es el úmero de veces que se ha medido L 0. La magitud σ se deomia desviació típica o error cuadrático medio, e idica lo que tiee que variar L respecto a L para que p(l) sea e / e (A). Viee dada por la expresió: σ =± ( L ) L = ( ) (A3) E la Fig. A se ha idicado por medio de la regió rayada, compredida etre L σ y L + σ. El 68.3% de las medidas cae detro de esta regió, y el 99.7% etre L σ y L + σ. El valor L = L L = σ se toma como ua represetació razoable del error absoluto de L 0 y es el que usaremos e el Laboratorio cuado sea ecesario.. El método de míimos cuadrados Sea dos magitudes físicas x e y relacioadas por ua fució lieal del tipo y = ax + b (A4) La represetació gráfica de esta fució es ua líea recta de pediete a y ordeada e el orige b. Si, tomadas ua serie de medidas de x y de y, se tiee la sucesió de valores (x,y ), (x,y ), (x 3,y 3 ),..., (x,y ), las desviacioes δ de los valores experimetales respecto a los dados por la fució (A4) será δ = y (ax + δ = y (ax +. (A5) δ = y (ax + Sea ε (a, la suma de los cuadrados de todas las desviacioes, es decir TECNICAS EXPERIMENTALES I, Errores e las medidas, 5/6

6 ε ( a, = δ ( a, (A6) = El método de auste de la recta a la distribució de putos experimetales cosiste e hacer míima la fució ε (a,. Los valores de a y de b que miimiza esta fució so aquéllos que hace cero las correspodietes derivadas parciales, es decir: ε( a, = 0 a y ε( a, = 0 b (A7) Estas dos codicioes forma u sistema de dos ecuacioes co las dos icógitas a y b cuya solució es: xy x y y ax = = = = = a = ; b = = y ax (A8) x x = = La estimació de los errores absolutos de a y b requiere u poco más de cálculo que se puede cosultar e la bibliografía, y los valores depede de los criterios usados para defiirlos. E este Laboratorio usaremos las siguietes expresioes: ( ) y ax b x = a = ; b = x x = = a = (A9) Los errores a y b reflea asimismo el grado de correlació etre las variables x e y para austarse a la recta (A4). Auque para cuatificar el grado de correlació es frecuete utilizar el llamado coeficiete de correlació, r, aquí sólo usaremos los a y b ateriores que tiee u sigificado físico directo. E el caso de que para cada puto (x,y ) se haya tomado varias medidas y se tega barras de error como las represetadas e la figura, e (A8) y (A9) utilizaremos para (x,y ) el valor medio de dichas medidas. Este es u procedimieto aproximado que, al o cosiderar el error de cada puto e las dos variables, simplifica el tratamieto. E muchos casos las variables del experimeto so tales que para x = 0 se tiee ecesariamete y = 0; e ese caso la recta debe pasar por el orige de coordeadas, y su pediete viee dada por a = = = xy x ; (A8) Bibliografía. W. H. Westphal, Prácticas de Física, Ed. Labor, Madrid (965).. J. Mathews ad R. L. Walker, Matemáticas para Físicos, Ed. Reverté, Barceloa (979). TECNICAS EXPERIMENTALES I, Errores e las medidas, 6/6

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS INTRODUCCIÓN

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

( ) ( )( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( ) Algebra uiversitaria UNIDAD III. POLINOMIOS 3.. Técicas elemetales para buscar raíces Recordado la defiició de raíz U poliomio P(x) tiee ua raíz r si y solo si P(r) = 0. Recordar el teorema de factorizació

Más detalles

2. Estimación de errores de medidas directas

2. Estimación de errores de medidas directas Estimació de errores y forma de expresar los resultados de las prácticas. Error: Defiició E el laboratorio igua medida tiee ifiita precisió. Por ello, ua parte importate del proceso de medida es la estimació

Más detalles

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor

Tema 7 (IV). Aplicaciones de las derivadas (2). Representación gráfica de curvas y fórmula de Taylor Tema 7 (IV) Aplicacioes de las derivadas () Represetació gráfica de curvas y fórmula de Taylor Aplicacioes de la derivada primera El sigo de la derivada primera de ua fució permite coocer los itervalos

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

Técnicas experimentales de Física General 1/11

Técnicas experimentales de Física General 1/11 La distribució de Itroducció. Ejemplo. Defiició geeral de. Grados de libertad. reducido. La distribució de. Probabilidades de. Ejemplos: 1. Distribució de Poisso.. Bodad de u ajuste. Técicas eperimetales

Más detalles

Muestreo. Mucho de las acciones y decisiones que se toman están basados en la información de una muestra.

Muestreo. Mucho de las acciones y decisiones que se toman están basados en la información de una muestra. 1 Muestreo Muco de las accioes y decisioes que se toma está basados e la iformació de ua muestra. La preguta que siempre se ace, es: qué tamaño de muestra es suficiete para obteer ua buea aproximació de

Más detalles

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra:

T ema 8 ESTIMACIÓN. Conceptos previos. Población y muestra: T ema 8 ESTIMACIÓN Coceptos previos Població y muestra: Població se refiere al cojuto total de elemetos que se quiere estudiar ua o más características. Debe estar bie defiida. Llamaremos N al úmero total

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 6 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (2 putos) Sea las matrices A= y B = (1 1). -5-4 Eplique qué dimesió debe teer la matriz X para

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2004 (Juio Modelo 5) Solucioes Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x+y 6 3x-2y 13 Sea el sistema de iecuacioes. x+3y -3 x 0 (2 putos) Dibuje el recito cuyos

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL.

DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. DISTRIBUCIONES DE PROBABILIDAD. DISTRIBUCIÓN DE PROBABILIDAD BINOMIAL. E estadística, la distribució biomial es ua distribució de probabilidad discreta que mide el úmero de éxitos e ua secuecia de esayos

Más detalles

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo

Test de Kolmogorov Smirnov Patricia Kisbye El test chi-cuadrado en el caso continuo Test de Kolmogorov Smirov Técicas de validació estadística Bodad de auste Kolmogorov-Smirov Patricia Kisbye FaMAF 29 de mayo, 2008 Icoveiete: No es secillo costruir los itervalos a partir de las probabilidades.

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos

EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos EL CONTRASTE DE HIPOTESIS: Esquemas y ejemplos Ua vez expuesta la lógica de u Cotraste de Hipótesis y tras haber defiido los térmios y coceptos ivolucrados, hay que decir que esa lógica geeral se cocreta

Más detalles

Señales en Tiempo Discreto

Señales en Tiempo Discreto Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales

Más detalles

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).

ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas). ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

Tema 6: Distribuciones Muestrales

Tema 6: Distribuciones Muestrales Tema 6: Distribucioes Muestrales El objetivo es efectuar ua geeralizació de los resultados de la muestra a la població. Iferir o adiviar el comportamieto de la població a partir del coocimieto de ua muestra.

Más detalles

MANUAL DE LABORATORIO DE FÍSICA GENERAL 9ª Edición EXPERIENCIA N 01

MANUAL DE LABORATORIO DE FÍSICA GENERAL 9ª Edición EXPERIENCIA N 01 MEDICIONES EXPERIENCIA N 01 Galileo Galilei Nació e Pisa el 15 de febrero de 1564. Astróomo y Físico. 1564-164. "No me sieto obligado a creer que u Dios que os ha dotado de iteligecia, setido comú, y raciociio,

Más detalles

PRÁCTICA # 3 PREPARACIÓN DE GRÁFICAS GRÁFICAS LINEALES

PRÁCTICA # 3 PREPARACIÓN DE GRÁFICAS GRÁFICAS LINEALES TEORIA PRÁCTICA # 3 PREPARACIÓN DE GRÁFICAS GRÁFICAS LINEALES Cuado se realiza experimetos usualmete se obtiee ua serie de datos, por ejemplo los mostrados e la tabla. Geeralmete, lo que se quiere es ecotrar

Más detalles

:: OBJETIVOS [3.1] :: PREINFORME [3.2]

:: OBJETIVOS [3.1] :: PREINFORME [3.2] :: OBJETIVOS [3.] Verificar que la resistecia equivalete a ua asociació de resistecias e serie se obtiee sumado aritméticamete las resistecias coectadas Verificar que la resistecia equivalete a ua asociació

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

CAPÍTULO V. SUCESIONES Y SERIES

CAPÍTULO V. SUCESIONES Y SERIES (Aputes e revisió para orietar el apredizaje) CAPÍTULO V. UCEIONE Y ERIE DEFINICIÓN. Ua sucesió ifiita, o simplemete sucesió, es ua fució cuyo domiio está costituido por el cojuto de los úmeros aturales

Más detalles

Estadístico. Parámetro

Estadístico. Parámetro La iferecia estadística comprede el establecer ciertos juicios co respecto a algo después de examiar solamete ua parte o muestra de ello. Así, se ofrece ua muestra gratis de u uevo producto alimeticio

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8

Cálculo de límites. 8.1. Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

(finitas o infinitas)

(finitas o infinitas) Series ifiitas. SUCESIONES: Es u cojuto de úmeros: a,a a, dispuestos e u orde defiido y que guarda ua determiada ley de formació, que se expresa por ua formula Sucesió fiita: umero itado de térmios:, 5,8-5.

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la

ANEXO B. Se define como Regresión al estudio de la fuerza, consistencia o grado de asociación de la ANEXO B B.. Regresió Se defie como Regresió al estudio de la fuerza, cosistecia o grado de asociació de la correlació de variables idepedietes [6]. B... Regresió Lieal Simple El objeto de u aálisis de

Más detalles

ESTUDIO DEL PÉNDULO FÍSICO PARA INTRODUCIR MÉTODOS NUMÉRICOS DE RESOLUCIÓN DE ECUACIONES DIFERENCIALES NO LINEALES

ESTUDIO DEL PÉNDULO FÍSICO PARA INTRODUCIR MÉTODOS NUMÉRICOS DE RESOLUCIÓN DE ECUACIONES DIFERENCIALES NO LINEALES ESTUDIO DEL PÉNDULO FÍSICO PARA INTRODUCIR MÉTODOS NUMÉRICOS DE RESOLUCIÓN DE ECUACIONES DIFERENCIALES NO LINEALES Atoio Herádez, Cristia Neipp, Augusto Belédez Departameto de Física, Igeiería de Sistemas

Más detalles

Tema 7: Estimación por intervalos de confianza.

Tema 7: Estimación por intervalos de confianza. Estadística 69 Tema 7: Estimació por itervalos de cofiaza. 7. Itroducció. Cuado tratamos la estimació putual, uo de los problemas que se platearo es que el valor de la estimació es sólo uo de los valores

Más detalles

14. Técnicas de simulación mediante el método de Montecarlo

14. Técnicas de simulación mediante el método de Montecarlo 4. Técicas de simulació mediate el método de Motecarlo 4. Técicas de simulació mediate el método de Motecarlo Qué es la simulació? Proceso de simulació Simulació de evetos discretos Números aleatorios

Más detalles

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados

TEMA 7. ESTIMACIÓN. 7.2. Estimación puntual. Propiedades deseables de los estimadores 7.2.1. Introducción y definiciones 7.2.2. Estimadores Insegados TEMA 7. ETIMACIÓN 7.1. Itroducció y defiicioes 7.. Estimació putual. Propiedades deseables de los estimadores 7..1. Itroducció y defiicioes 7... Estimadores Isegados 7.3. Estimació por itervalos de cofiaza

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Licenciatura en Matemáticas Febrero 2011. x(1 x) θ 1 I [0,1] (x). (1)

Licenciatura en Matemáticas Febrero 2011. x(1 x) θ 1 I [0,1] (x). (1) Estadística I Exame Liceciatura e Matemáticas Febrero 2011 1. Sea X 1,..., X ua muestra aleatoria de ua variable X co distribució Beta de parámetros 2 y θ > 0. Esto último sigifica que la fució de desidad

Más detalles

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica.

Métodos Numéricos. La solución es una relación funcional entre dos variables. No todas las ecuaciones diferenciales tienen solución analítica. Métodos Numéricos Métodos aalíticos Solució de ecuacioes difereciales Métodos Numéricos Métodos aalíticos: La solució es ua relació fucioal etre dos variables. No todas las ecuacioes difereciales tiee

Más detalles

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación.

Estimador Es la regla o procedimiento, expresado en general por medio de una fórmula, que se utiliza para deducir la estimación. Teoría de la Estimació Estadística Teoría de la Estimació Estadística Razó para estimar Los admiistradores utiliza las estimacioes porque se debe tomar decisioes racioales, si que tega la iformació pertiete

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1

) se obtiene un valor específico del estimador que recibe el nombre de estimación del parámetro poblacional θ y lo notaremos por = g ( x 1 ESTIMACIÓN PUNTUAL. ESTIMACIÓN POR INTERVALOS DE CONFIANZA. 1. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA El objetivo básico de la iferecia estadística es hacer iferecias o sacar coclusioes sobre la població

Más detalles

UNIVERSIDAD ANTONIO NARIÑO GUIA 1

UNIVERSIDAD ANTONIO NARIÑO GUIA 1 UNIVERSIDAD ANTONIO NARIÑO GUIA ANTIDERIVADAS OBJETIVO: Apreder el cocepto de atiderivada e itegral idefiida y resolver itegrales usado las formulas básicas. ocepto: Dada ua fució, sabemos como hallar

Más detalles

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves.

Algoritmos y Estructuras de Datos II, Segundo del Grado de Ingeniería Informática, Test de Análisis de Algoritmos, marzo Test jueves. Algoritmos y Estructuras de Datos II, Segudo del Grado de Igeiería Iformática, Test de Aálisis de Algoritmos, marzo 017. Test jueves. Para cada problema habrá que justificar razoadamete la respuesta que

Más detalles

Muestreo estratificado

Muestreo estratificado Capítulo 1 Muestreo estratificado El objetivo del diseño de ecuestas por muestreo es maximizar la catidad de iformació para u coste dado. El muestreo aleatorio simple suele sumiistrar bueas estimacioes

Más detalles

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1

Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 1 MEDICIONES Y ERRORES.

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 1 MEDICIONES Y ERRORES. Págia 1 de 18 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FÍSICA I/11 PRÁCTICA No. 1 MEDICIONES Y

Más detalles

Muestreo Aleatorio Simple

Muestreo Aleatorio Simple Capítulo 1 Muestreo Aleatorio Simple Este método de muestreo proporcioa u puto de partida para ua exposició de los métodos de muestreo probabilístico o porque sea uo de los métodos de muestreo más utilizados

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar

Más detalles

Los datos para el estudio consisten de m muestras de una población detallando: = número de elementos no aceptables en la muestra j

Los datos para el estudio consisten de m muestras de una población detallando: = número de elementos no aceptables en la muestra j Gráfico NP Resume El procedimieto Gráfico NP crea u gráfico de cotrol para datos que describe el úmero de veces que ocurre u eveto e m muestras tomadas de u producto o proceso. Los datos podría represetar

Más detalles

9 SUCESIONES. LÍMITES DE SUCESIONES

9 SUCESIONES. LÍMITES DE SUCESIONES 9 SUCESIONES. LÍMITES DE SUCESIONES EJERCICIOS PROPUESTOS 9. Co ua calculadora, forma térmios de las siguietes sucesioes y estudia a qué valores tiede. a) a b) b c) c 5 a) a a 8 5,6 a 0 00,98 a 0 00 0

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. ALGEBRA ELEMENTAL INDICE AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa... Ley distriutiva... 1.- EXPONENTES Y RADICALES...

Más detalles

ONDAS SOBRE UNA CUERDA

ONDAS SOBRE UNA CUERDA ONDAS SOBRE UNA CUERDA Objetivo: Aalizar el comportamieto de las odas estacioarias e ua cuerda relacioado la tesió, la frecuecia de oscilació, la logitud de la cuerda y el úmero de segmetos que se forma

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 006 (Modelo 1 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua impreta local edita periódicos y revistas. Para cada periódico ecesita u cartucho de

Más detalles

OPCIÓN A EJERCICIO 1 (A) -5 0

OPCIÓN A EJERCICIO 1 (A) -5 0 IES Fco Ayala de Graada Sobrates 014 (Modelo 1 ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 014 MODELO 1 OPCIÓN A EJERCICIO 1 (A) -5 0-1 -8-1 Sea las matrices B =

Más detalles

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.

CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos. CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

CALIBRACIÓN LINEAL. Jordi Riu, Ricard Boqué

CALIBRACIÓN LINEAL. Jordi Riu, Ricard Boqué CALIBRACIÓN LINEAL Jordi Riu, Ricard Boqué Departameto de Química Aalítica y Química Orgáica Uiversitat Rovira i Virgili. Pl. Imperial Tàrraco, 1 43005-Tarragoa Itroducció La mayoría de métodos aalíticos

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

Método de máxima verosimilitud. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Método de máxima verosimilitud. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Método de máxima verosimilitud Curso de Estadística TAE,2005 J.J. Gómez Cadeas Muestras Cosiderar ua variable aleatoria x descrita por la pdf f(x). El espacio de muestras está costituido por todos los

Más detalles

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+ Problema. E el diagrama se preseta los tres primeros cuadriláteros de ua secuecia que iicia e u puto e el cetro del tablero crece desde ese puto hacia fuera, cuál es el úmero de putos que está e el perímetro

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo 4 Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Unidad 1: Números Complejos

Unidad 1: Números Complejos Uidad 1: Números Complejos 11 Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

Wilfrido Massieu. PRACTICA No. 2

Wilfrido Massieu. PRACTICA No. 2 INSTITUTO POLITÉCNICO NCIONL Cetro De studios Cietíficos Y Tecológicos Wilfrido Massieu LBOTOIO D FÍSIC I LUMNO: GUPO: POFSO: FCH: QUIPO: CLIF. : PCTIC No. 2 1. NOMB: MDICIONSY OS. II. OBJTIVOS: Describir

Más detalles

PROCESO DE POISSON Rosario Romera Febrero 2009

PROCESO DE POISSON Rosario Romera Febrero 2009 1 PROCESO DE POISSON Rosario Romera Febrero 2009 1. Proceso de Coteo U proceso estocástico fn t g t0 es u proceso de coteo si N t represeta el total de sucesos ocurridos asta el tiempo t. Sea u espacio

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

Pre-PAES 2016 Media aritmética, moda y mediana.

Pre-PAES 2016 Media aritmética, moda y mediana. Pre-PAES 016 Media aritmética, moda y mediaa. Nombre: Secció: Las medidas de tedecia cetral (MTC) so ciertos valores alrededor de los cuáles tiede a cocetrarse los datos de ua població, esto se debe a

Más detalles

Lentes divergentes. Estudiar propiedades de lentes divergentes. Análisis de aberraciones por esfericidad.

Lentes divergentes. Estudiar propiedades de lentes divergentes. Análisis de aberraciones por esfericidad. etes divergetes Objetivo Estudiar propiedades de letes divergetes. Aálisis de aberracioes por esfericidad. Actividad etes divergetes Estas letes tiee la característica de ser más delgadas e el cetro que

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva TEMA 1 Estadística Descriptiva 1. Variables estadísticas uidimesioales a) Itroducció b) Estudio descriptivo de ua variable c) Represetacioes gráficas d) Medidas de tedecia cetral

Más detalles

Diferencial Total. se define. en el punto x

Diferencial Total. se define. en el punto x Dierecial Total El propio ombre derivada parcial os debiera idicar que e cotraposició al caliicativo parcial eiste otro que lo complemeta Tal ombre el correspodiete cocepto eiste se le llama dierecial

Más detalles

ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN POR INTERVALOS DE CONFIANZA Estimació por itervalos de cofiaza. I.E.. A uqueira I pag. Coceptos ETIMACIÓN POR INTERVALO DE CONFIANZA E este tema vamos a estudiar como estimar, es decir proosticar, u parámetro de la població, geeralmete

Más detalles

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados

Métodos Numéricos (SC 854) Ajuste a curvas. 2. Ajuste a un polinomio mediante mínimos cuadrados Métodos Numéricos SC 854 Auste a curvas c M Valezuela 007 008 7 de marzo de 008 1 Defiició del problema E el problema de auste a curvas se desea que dada ua tabla de valores i,f i ecotrar ua curva que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

Orden en los números naturales

Orden en los números naturales 88 Aritmética U istrumeto para medir usado fraccioes comues Refleioes adicioales Dividir ua uidad e partes iguales: El Teorema de Thales se refiere a dividir u segmeto e cualquier úmero de segmetos iguales.

Más detalles

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4

(3 ) (6 ) 5 (3 x ) 5 81x. log (3 4) log 5 3log 5 5 (3log 5) y x x. cos 7 4 ( 1) 2 (3 ) 2 4 E.T.S.I. Idustriales y Telecomuicació Curso 010-011 Tema : Fucioes reales de ua variable real Cálculo de derivadas Calcular la derivada primera de las siguietes fucioes: 1. y 5 1 6 6 y 5 ( ) (6 ) 5 5 5

Más detalles

TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA

TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA 1 TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA Mario Melo Araya Ex Profesor Uiversidad de Chile melomarioqca@gmail.com Estructuralmete las substacias químicas está costituidas por etidades elemetales

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = -

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = - IES Fco Ayala de Graada Sobrates de 004 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A - 0 0 - - - Sea las matrices A=, B= y C= - 0 0 - ( puto) Calcule (A I ) B, siedo I la matriz idetidad

Más detalles