TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

Save this PDF as:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales."

Transcripción

1 T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas digiales. El raamieno analógico requiere un análisis deallado de las señales, ya que ésas pueden pasar por infinidad de valores, mienras que, el concepo digial de las señales las limia a niveles o valores (el cero y el uno lógicos). La elecrónica digial analiza y esudia los crierios para procesar esos niveles de forma que permian el diseño de sisemas elecrónicos que susiuyan o complemenen a los analógicos. Para la fabricación de esos sisemas se recurre a los disposiivos lógicos que exisen en el mercado. Esos disposiivos generalmene se enconrarán en forma de circuios inegrados y esarán diseñados basándose en una filosofía de rabajo, o lo que es lo mismo, pariendo de una familia lógica deerminada. 1. Sisemas analógicos y digiales. El hombre desarrolla una gran canidad de sisemas para ineraccionar con el medio que le rodea. Esos sisemas generalmene perciben magniudes físicas, ales como emperaura, humedad, posición, inensidad de luz, iempo, ec. y generan un cambio en ellas. Muchos de esos sisemas emplean circuios elecrónicos porque resula muy sencillo represenar magniudes físicas mediane señales elécricas y, además, esas señales elécricas son fáciles de procesar mediane circuios elecrónicos económicos y fiables, se pueden ransmiir a largas disancias y almacenarse para reproducirlas más arde. Los sisemas elecrónicos se clasifican en analógicos y digiales: 1. Los primeros rabajan con señales analógicas, que son señales coninuas. 2. Los sisemas digiales son aquellos que rabajan con señales digiales, que son señales discreas. Señales coninuas son aquellas que pueden omar un número infinio de valores y cambian inerrumpidamene sin escalonamienos ni disconinuidades. La mayoría de magniudes físicas de la nauraleza varían de forma coninua. Por ejemplo, la

2 2 T-1 Inroducción a la elecrónica digial emperaura (ver figura 1-1) no varía de 20ºC a 25ºC de forma insanánea, sino que alcanza los infinios valores que hay en ese rango. Temperaura (ºC) Hora del día Señales discreas son aquellas que no cambian de forma uniforme, presenan disconinuidades (varían bruscamene de un insane a oro) y sólo pueden adquirir un número finio de valores. En algunos casos ineresa represenar las magniudes analógicas de forma digial. Si simplemene medimos la emperaura cada hora, obenemos muesras que represenan la emperaura a lo largo de inervalos de iempo (cada hora). De esa forma, se ha converido la magniud coninua en una magniud discrea, que se puede digializar, represenando cada valor muesreado mediane un código digial. La figura 1-2 represena el resulado 1 de muesrear la evolución de la emperaura cada hora. Temperaura (ºC) Figura 1-1. Gráfica de una magniud analógica Figura 1-2. Gráfica de una magniud discrea. Hora del día La elecrónica digial emplea sisemas binarios, en los que sólo exisen dos esados posibles, un nivel de ensión alo HI, llamado 1 ( a veces 5V) y un nivel de ensión bajo LO, llamado 0 (a veces 0V) (ver figura 1-3). En los sisemas digiales la combinación de esos dos esados se denomina código y se uiliza para represenar números e información en general. Un dígio se denomina bi. La información binaria que manejan los sisemas digiales aparece en forma de señales que represenan secuencias de bis. u() HI LO Figura 1-3. Señal digial. 1 Hay que hacer noar que la señal obenida ras muesrear es una señal discrea pero no digial.

3 T-1 Inroducción a la elecrónica digial 3 2. Códigos de numeración. La necesidad de esablecer canidades para poder ponderar magniudes, conar y operar con ellas, hace que se esablezcan unos sisemas de numeración a ravés de unos códigos perfecamene esrucurados que faciliarán dichas areas Sisema numérico decimal. El sisema de numeración más uilizado en la acualidad es el sisema numérico decimal, que presena las siguienes caracerísicas: Tiene base 10. Usa 10 símbolos para represenar los valores numéricos, que son los dígios del 0 al 9. Se originó como consecuencia de ener 10 dedos. Es un sisema dependiene del orden, el valor numérico se obiene sumando los producos de cada dígio por la base (10) elevada a la posición que ocupa ese dígio. El valor del número decimal 7438 se calcula como: 7 x x x x Sisema numérico binario. Los sisemas lógicos binarios basan su funcionamieno en dos esados ( 0 y 1 ), por ano será necesario consruir un código basado en dos dígios que permia ponderar magniudes y operar con ellas. Al código binario más empleado se le denomina binario naural y posee las siguienes caracerísicas: Tiene base o raíz 2. Usa solamene dos dígios, 0 y 1. Se incluye con el número el subíndice 2, para diferenciar las formas binarias de las decimales. A los dígios binarios se les llama bis (del inglés binary digi). Al igual que en los número decimales, el valor de una palabra binaria dependen de la posición de sus bis, y es igual a la suma de los producos de cada dígio por dos elevado a la posición relaiva del bi. Por ejemplo el valor decimal del número binario se calcula como: = 1 x x x 2 + 1x 2 = = El bi más a la derecha (LSB) es el menos significaivo, es decir, el de menor peso. El bi más a la izquierda (MSB) es el más significaivo, es decir, el de mayor peso. Se puede esablecer una regla para pasar siempre de cualquier código al decimal: Se muliplicará cada coeficiene por la base elevada a la posición que ocupa y poseriormene se sumará odo. El valor binario del número decimal 175 es y se obiene de la siguiene forma: LSB MSB

4 4 T-1 Inroducción a la elecrónica digial De igual forma exise una regla que permie pasar de un código en sisema decimal a cualquier oro sisema: Se dividirá sucesivamene el código decimal por la base del nuevo sisema, hasa que el cociene ya no sea divisible. Enonces se omará como dígio mayor el úlimo cociene y los siguienes dígios lo formarán los resos obenidos hasa el primero Tamaño de los números binarios. A los números binarios se les llama palabras binarias, por ejemplo el número 1012 es una palabra binaria de res bis. A las palabras binarias de 8 bis se les llama byes y a las de 4, nibbles. La mayoría de equipos digiales uilizan amaños de palabra múliplos de 8 bis. Tabla 1-1. Códigos binarios de 3 bis. Decimal Binario Con un número binario de n bis se pueden represenar 2 n valores disinos. Para: n = 8, enemos 2 8 = 256 valores. n = 16, enemos 2 16 = valores. n = 32, enemos 2 32 = valores. En la abla1-1 se muesran las posibles combinaciones de una palabra de 3 bis. El mayor número decimal que podemos represenar con n bis es 2 n 1 (resamos uno por empezar enr cero). En el ejemplo anerior, para n = 3 podemos represenar 8 números decimales disinos (del 0 al 7). Para 8 bis el valor máximo sería = ( ) Código BCD (Binary Coded Digi). Es un código binario que como su nombre indica esá formado por la conversión de cada dígio de un número decimal a su forma binaria, por ejemplo 9450 = (1001)(0100)(0101)(0000) BCD. Se puede apreciar que el equivalene BCD del número 9450 difiere del equivalene binario (9450 = ). Para obener el valor decimal de un número codificado en BCD, haremos agrupaciones de 4 bis empezando por la derecha (bi menos significaivo) y converiremos cada grupo en la cifra decimal correspondiene, por ejemplo: (11)(1000)(0111)(0110)BCD= La principal venaja de ese código de numeración es la facilidad para converir a/desde decimal. Sin embargo presena grandes inconvenienes, ya que requiere más dígios que la forma binaria por lo que resula menos eficiene y no se emplea cuando hay que almacenar mucha información, y la ariméica es más complicada que en binario. En la abla 1-2 se muesran los primeros 15 números codificados en BCD. 2 Suponemos que sólo vamos a rabajar con números posiivos.

5 T-1 Inroducción a la elecrónica digial Código Gray. Tabla 1-2. Código BCD de 0 a 15. BCD Decimal Binario Decenas Unidades Es un código binario que se caraceriza por modificar un sólo bi de un esado al siguiene. Para converir un número binario (naural) a un número en código Gray se aplican las siguienes reglas (ver abla 1-3): El bi más significaivo (MSB) en el código Gray es el mismo que el correspondiene al número binario. Tabla 1-3. Código Gray de 4 bis. Decimal Binario Gray Yendo de izquierda a derecha, sumamos cada par adyacene de los bis en código binario para obener el siguiene bi en código Gray, eniendo en cuena que los acarreos deben descararse. Al cambiar un solo bi permie deecar errores. Por ejemplo imaginemos la salida de un disposiivo que cambia de un valor 7 a 8. En binario sería de a , con lo que varían en oal 4 dígios (res pasan de 1 a 0 y oro de 0 a 1). Si leemos la salida del disposiivo en el momeno que ésa esá cambiando de valor, podríamos leer 1111 u oro dao erróneo si los bis no cambiaran a la misma velocidad. En el código Gray eso no sucede, ya que al cambiar un solo bi siempre leeríamos 7 (01002) u 8(11002).

6 6 T-1 Inroducción a la elecrónica digial Por ese moivo se emplea mucho en sensores de posición angular (ver figura 1-4). Su mayor inconveniene es la dificulad de realizar cómpuos. Binario (3 bis) Gray (3 bis) Figura 1-4. Ilusración de cómo el código Gray resuelve errores en sensores de posición de ejes Código hexadecimal. Cualquier enero se puede usar como base de un sisema numérico. Enre los sisemas de numeración más comunes, además de los códigos binarios mencionados, se encuenra el código hexadecimal. Los números hexadecimales requieren de 16 símbolos, empleando 0,1,...,9, A,B,C,D,E y F (abla 1-4). Se uiliza ese código para represenar de forma compaca los números binarios debido a que es muy sencillo converir de binario a hexadecimal y viceversa. Tabla 1-4. Código hexadecimal. Decimal Binario Hexadecimal A B C D E F Para converir un número hexadecimal en decimal empleamos la regla genérica expuesa con anerioridad, es decir, muliplicaremos cada cifra por poencias de 16. Por ejemplo 123h = 1x x x 16 0 = 1x x = 291. Para realizar la ransformación inversa ambién aplicamos la regla general, dividimos sucesivamene por 16. En la abla 1-5 se puede ver un ejemplo. Tabla 1-5. Conversión de binario a hexadecimal Número Reso =B = 1B86 h

7 T-1 Inroducción a la elecrónica digial 7 Para obener el equivalene hexadecimal de un número expresado en forma binaria agruparemos los bis de cuaro en cuaro comenzando por el bi de menor peso (más a la derecha) y codificaremos cada grupo. Por ejemplo = (1101)(0001) 2 = D1 h Dado que esa ransformación es muy sencilla, para converir un número decimal a hexadecimal lo expresaremos primero en binario y a parir de ese úlimo en hexadecimal. En el proceso inverso (hexadecimal a binario) susiuiremos cada dígio hexadecimal por el código binario de cuaro bis correspondiene. 3. Venajas e inconvenienes de las écnicas digiales frene a las analógicas. Exise una creciene dependencia de las écnicas digiales más que de las analógicas debido a que presenan: 1) Facilidad para ransmiir, procesar y almacenar información, y de forma más fiable y eficiene. 2) Mayor exaciud y precisión. La represenación de una magniud analógica que puede omar un número infinio de valores, mediane una digial que puede omar sólo un número finio, supone siempre una aproximación. Sin embargo el proceso de medición siempre represena una aproximación, por lo que si se realiza la aproximación digial con la definición suficiene (empleando un número alo de dígios de precisión), las señales digiales obenidas no deben reducir la precisión de la medición. En los sisemas analógicos la precisión esá limiada, a res o cuaro dígios, ya que los valores de los volajes y corrienes dependen de los componenes del circuio. 3) Los sisemas digiales son más fáciles de diseñar. Eso se debe a que los circuios empleados son circuios de conmuación, donde no son imporanes los valores exacos de corriene y volaje, sino el rango donde se encuenran (ALTO o BAJO). 4) Mayor esabilidad. Se ven menos afecados por ruidos, mienras que los sisemas analógicos varían con la emperaura, por la olerancia de los componenes, ec. 5) Flexibilidad. El comporamieno de un circuio digial se puede reprogramar fácilmene. Como inconveniene cabe desacar, que dado que las variables reales (emperaura, presión, humedad, ec.) son de carácer coninuo y por ano analógico, para realizar el procesamieno digial es necesario incorporar al sisema converidores analógicos-digiales (A/D) y/o digiales-analógicos (D/A) que encarecen el cose del sisema.

8 8 T-1 Inroducción a la elecrónica digial En la figura 1-5 se observa un ejemplo de Procesamieno de Señal en el que se uilizan ambas écnicas (analógicas y digiales). La señal analógica será una represenación de la magniud física objeo de procesamieno (en la figura 1-5, emperaura) y la señal digial será una aproximación de esa señal analógica. T V i u i () u i () Analógica Digial Temperaura (analógica) Disposiivo de medición Converidor Figura A/D Procesamieno digial Digial u o () Converidor D/A Analógica Conrolador V Ajuse de emperaura V o Figura 1-5. Esquema ípico de un sisema de procesamieno de señales. 4. Clasificación de los circuios digiales. Los circuios digiales según su funcionamieno los podemos dividir en combinacionales y secuenciales (ver figura 1-6): 1. Los sisemas combinacionales son aquellos en los cuales la salida sólo depende de la combinación de las enradas (se esudiarán en el ema 2). 2. En los sisemas secuenciales la salida depende no sólo de la combinación de las enradas sino ambién del esado anerior. Son sisemas con memoria (se esudiarán en el ema 3). Ci Enrada Binaria Circuio Combinacional Salidas Binarias Enrada Binaria Circuio Secuencial Salidas Binarias Esado Figura 1-6. Sisema combinacional y sisema secuencial.

LECCIÓN N 3 SEÑALES. Introducción

LECCIÓN N 3 SEÑALES. Introducción LECCIÓN N 3 SEÑALES Inroducción Señales coninuas y discreas Señales ípicas Señales periódicas y aperiódicas Parámeros ípicos. Especro de frecuencias Ruido y disorsión Elecrónica General Inroducción En

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas 2 Elemenos de un sisema domóico Conenidos 2.1 Unidad de conrol 2.2 Disposiivos de enrada 2.3 Acuadores 2.4 Elecrodomésicos domóicos 2.5 Medios de comunicación en redes domésicas 2.6 Tecnologías aplicadas

Más detalles

RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005

RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005 RESULTADOSEDUCATIVOS RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005 FÓRMULA RE01 NOMBREdelINDICADOR Diferencia del loro promedio

Más detalles

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales.

ELECTRÓNICA DIGITAL. Sistemas analógicos y digitales. ELECTRÓNICA DIGITAL El tratamiento de la información en electrónica se puede realizar de dos formas, mediante técnicas analógicas o mediante técnicas digitales. El analógico requiere un análisis detallado

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

Dispositivos semiconductores

Dispositivos semiconductores Deparameno de Telecomunicaciones Disposiivos semiconducores 3 Inroduccion Veremos los disposiivos semiconducores más básicos: los diodos. Veremos las variables más comunes de esos semiconducores; El diodo

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

Práctica 2: Análisis en el tiempo de circuitos RL y RC

Práctica 2: Análisis en el tiempo de circuitos RL y RC Prácica 2: Análisis en el iempo de circuios RL y RC Objeivo Esudiar la respuesa ransioria en circuios serie RL y RC. Se preende ambién que el alumno comprenda el concepo de filro y su uilidad. 1.- INTRODUCCIÓN

Más detalles

En el campo del control industrial se diferencian dos tipos de sistemas: MONITORIZACIÓN. Display S A L I D A. Alarmas S A L I D A

En el campo del control industrial se diferencian dos tipos de sistemas: MONITORIZACIÓN. Display S A L I D A. Alarmas S A L I D A MUESTREO DE SEÑALES Tipos de Señales de los Procesos Indusriales El ipo de señales usadas en conrol de procesos dependen del nivel en el que nos siuemos. Así, a nivel alo se uilizan señales de comunicación

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

Guía de Ejercicios Econometría II Ayudantía Nº 3

Guía de Ejercicios Econometría II Ayudantía Nº 3 Guía de Ejercicios Economería II Ayudanía Nº 3 1.- La serie del dao hisórico del IPC Español desde enero de 2002 hasa diciembre de 2011, esá represenada en el siguiene gráfico: 115 110 105 100 95 90 85

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

INTRODUCCIÓN 1.- PRESENTACIÓN DEL RAMO

INTRODUCCIÓN 1.- PRESENTACIÓN DEL RAMO INTRODUCCIÓN I - 1 1.- PRESENTACIÓN DEL RAMO Señal, es una canidad física que varía con el iempo. En la gran mayoría las aplicaciones la ingeniería elécrica y elecrónica, las señales presenes en un sisema

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN.

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN. El seguro de vida como variable aleaoria. Cómo calcular su función de disribución. Nieo Ranero, Armando Universiy of Valencia, Spain Do. Maemáicas Económico Empresarial, Edificio Deparamenal Orienal, Av.

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Tema 1. SISTEMAS DE NUMERACION

Tema 1. SISTEMAS DE NUMERACION Tema 1. SISTEMAS DE NUMERACION SISTEMAS DE NUMERACION Sistemas de numeración Sistema decimal Sistema binario Sistema hexadecimal Sistema octal. Conversión entre sistemas Códigos binarios SISTEMAS DE NUMERACION

Más detalles

En esta sección inicial el estudiante se va a familiarizar con el uso de algunos instrumentos de laboratorio.

En esta sección inicial el estudiante se va a familiarizar con el uso de algunos instrumentos de laboratorio. Prácica de Laboraorio Nº 1. INSTRUMENTOS DE LORTORIO EL INVERSOR LÓGIO. Objeivos : - Familiarizarse con el uso de algunos insrumenos de laboraorio. - Funcionamieno del inversor lógico. Medición de algunos

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

Construcción de señales usando escalones y rampas

Construcción de señales usando escalones y rampas Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne

Más detalles

SISTEMAS DE NUMERACIÓN. www.portalelectrozona.com

SISTEMAS DE NUMERACIÓN. www.portalelectrozona.com SISTEMA DECIMAL El sistema decimal, como su nombre indica, tiene diez cifras o dígitos distintos, que son 4 5 Por lo tanto, diremos que la BASE del sistema de numeración DECIMAL es (base ). 6 7 8 9 Pongamos

Más detalles

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA Por Mónica Orega Moreno Profesora Esadísica. Deparameno Economía General y Esadísica RESUMEN El aumeno de la siniesralidad laboral

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

J.1. Análisis de la rentabilidad del proyecto... 3

J.1. Análisis de la rentabilidad del proyecto... 3 Esudio de la implanación de una unidad produciva dedicada a la Pág 1 abricación de conjunos soldados de aluminio J.1. Análisis de la renabilidad del proyeco... 3 J.1.1. Desglose del proyeco en coses ijos

Más detalles

1. SISTEMAS DIGITALES

1. SISTEMAS DIGITALES 1. SISTEMAS DIGITALES DOCENTE: ING. LUIS FELIPE CASTELLANOS CASTELLANOS CORREO ELECTRÓNICO: FELIPECASTELLANOS2@HOTMAIL.COM FELIPECASTELLANOS2@GMAIL.COM PAGINA WEB MAESTROFELIPE.JIMDO.COM 1.1. INTRODUCCIÓN

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones

Más detalles

Control Digital. Práctica de Regulación Automática I. Abel Alberto Cuadrado Vega 24 de mayo de 2004

Control Digital. Práctica de Regulación Automática I. Abel Alberto Cuadrado Vega 24 de mayo de 2004 Conrol Digial Prácica e Regulación Auomáica I Abel Albero Cuarao Vega 24 e mao e 2004 1. Esquema e conrol igial El esquema básico el conrol igial figura 2) es semejane al el conrol analógico figura 1)

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

13/10/2013. Clase 02: Sistemas de Numeración. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar.

13/10/2013. Clase 02: Sistemas de Numeración. Sistemas Digitales y Arquitectura de Computadoras. Ing. Christian Lezama Cuellar. Clase 02: Sistemas de Numeración Ing. Christian Lezama Cuellar Semestre 2013-I Sistemas Digitales y Arquitectura de Computadoras 1 Conjunto de números que se relacionan para expresar la relación existente

Más detalles

Unidad Didáctica. Códigos Binarios

Unidad Didáctica. Códigos Binarios Unidad Didáctica Códigos Binarios Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

Metodología de cálculo del diferencial base

Metodología de cálculo del diferencial base Meodología de cálculo del diferencial base El diferencial base es el resulado de expresar los gasos generales promedio de operación de las insiuciones de seguros auorizadas para la prácica de los Seguros

Más detalles

Tema 1: La autofinanciación

Tema 1: La autofinanciación Tema : La auofinanciación.. Concepo y ipos de auofinanciación..2. La amorización de los elemenos parimoniales.3. Los beneficios reenidos.4. Venajas e inconvenienes de la auofinanciación irección Financiera

Más detalles

Aplicaciones del Ampli cador Operacional

Aplicaciones del Ampli cador Operacional Aplicaciones del Ampli cador Operacional J.I.Huircan Universidad de La Fronera January 6, 202 Absrac Exisen muchas aplicaciones con el Ampli cador Operacional (AO). El análisis en aplicaciones lineales

Más detalles

Medición del tiempo de alza y de estabilización.

Medición del tiempo de alza y de estabilización. PRÁCTICA # 2 FORMAS DE ONDA 1. Finalidad Esudiar la respuesa de configuraciones circuiales simples a diferenes formas de exciación. Medición del iempo de alza y de esabilización. Medición del reardo. Medición

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Sistema binario 0,1 Sistema octal 0, 1, 2, 3, 4, 5, 6, 7 Sistema decimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Sistema hexadecimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Una señal

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

ELECTRONICA DE POTENCIA

ELECTRONICA DE POTENCIA LTRONIA D POTNIA TIRISTORS Anonio Nachez A4322 LTRONIA IV A4.32.2 lecrónica IV 2 3 INDI 1. onmuación naural 2. onmuación forzada 3. Méodos de apagado: lasificación 4. lase A: Auoconmuado por carga resonane

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

Sistemas de comunicación óptica

Sistemas de comunicación óptica 5. Opoelecrónica 5.1. Inroducción 5.2. Nauraleza ondulaoria de la luz 5.3. Elemenos de la física de esado sólido 5.4. Modulación de la luz 5.5. Disposiivos de visualización 5.6. Lasers 5.7. Foodeecores

Más detalles

6. ALGEBRAS DE BOOLE

6. ALGEBRAS DE BOOLE 6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES SISTEMA DE NUMERACIÓN BASE 2 El sistema de numeración binario es el conjunto de elementos {0, 1} con las operaciones aritméticas (suma, resta,

Más detalles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles

Nota Técnica Índice de Tipo de Cambio Efectivo Real Multilateral con ponderadores móviles Noa Técnica Índice de Tipo de Cambio Efecivo Real Mulilaeral con ponderadores móviles 1. Inroducción: La presene noa écnica preende inroducir y explicar al público el Índice de Tipo de Cambio Efecivo Real

Más detalles

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido.

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido. EJERCICIOS FUNCIONES 4º OPCIÓN B 1 De las siguienes funciones decir cuál de ellas son funciones, en ese caso indica el dominio el recorrido. a) b) c) Aplicando el es de la línea verical se observa que

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

TEMA 5. EL TIRISTOR. INTRODUCCIÓN. Estructura Básica del SCR Ánodo

TEMA 5. EL TIRISTOR. INTRODUCCIÓN. Estructura Básica del SCR Ánodo INTRODUCCIÓN. Esrucura Básica del SCR Ánodo TEM 5. EL TIRISTOR Puera V V >0 Puera V

Más detalles

Foundations of Financial Management Page 1

Foundations of Financial Management Page 1 Foundaions of Financial Managemen Page 1 Combinaciones empresarias: decisiones sobre absorciones y fusiones de empresas Adminisración financiera UNLPam Faculad de Ciencias Económicas y Jurídicas Profesor:

Más detalles

Test. Cada pregunta correcta está valorada con 0.5 puntos y cada incorrecta resta 0.25 puntos

Test. Cada pregunta correcta está valorada con 0.5 puntos y cada incorrecta resta 0.25 puntos Teléf.: 91 533 38 4-91 535 19 3 8003 MADRID EXAMEN DE ECONOMETRÍA (enero 010) 1h 15 Apellidos: Nombre: Tes. Cada preguna correca esá valorada con 0.5 punos y cada incorreca resa 0.5 punos 1.- Al conrasar

Más detalles

Definición. Elementos de un Sistema de Control

Definición. Elementos de un Sistema de Control TEORÍA DE CONTROL. Tema 1. Inroducción a los Sisemas de Conrol Sisema de Conrol Los conroles auomáicos o sisemas de conrol consiuyen una pare muy imporane en los procesos indusriales modernos, donde se

Más detalles

Fotodetectores y fotoemisores

Fotodetectores y fotoemisores 5. Opoelecrónica 5.1. Inroducción 5.2. Nauraleza ondulaoria de la luz 5.3. Elemenos de la física de esado sólido 5.4. Modulación de la luz 5.5. Disposiivos de visualización 5.6. Lasers 5.7. Foodeecores

Más detalles

MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA

MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA (Borrador) Ignacio Vélez-Pareja Deparameno de Adminisración Universidad Javeriana, Bogoá, Colombia Abril de 2000 Resumen

Más detalles

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 Insiuo Nacional de Esadísica y Censos (INDEC) Dirección

Más detalles

3. Matrices y álgebra matricial

3. Matrices y álgebra matricial Marices y álgebra maricial Repasaremos algunos concepos básicos de la eoría maricial Nos cenraremos en aspecos relacionados con el álgebra lineal, la inversión y la diagonalización de marices Veremos algunas

Más detalles

Indicadores demográficos METODOLOGÍA

Indicadores demográficos METODOLOGÍA Indicadores demográicos METOOLOGÍA 1. Objeivos y uilidades El objeivo de esa operación esadísica es la obención de una serie de indicadores descripivos de la siuación demográica de Galicia, con la que

Más detalles

Primeros conmutadores: diodos de cristal y de tubos de vacío (1906). Transistor (TRT): más pequeño y fiable, de material semiconductor (1950).

Primeros conmutadores: diodos de cristal y de tubos de vacío (1906). Transistor (TRT): más pequeño y fiable, de material semiconductor (1950). Código binario en Sistemas Digitales Historia Primeros conmutadores: diodos de cristal y de tubos de vacío (1906). Transistor (TRT): más pequeño y fiable, de material semiconductor (1950). Circuitos integrados

Más detalles

Diagnóstico y reparaciones automotrices con osciloscopio

Diagnóstico y reparaciones automotrices con osciloscopio Tu Manual combo Fascículo + DD Diagnósico y reparaciones auomorices con osciloscopio Los conroles del osciloscopio Cómo inerprear los oscilogramas Pruebas a sensores y acuadores Mediciones en el bus CAN

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores S.A.B. de C.V. (en adelante IPC y BMV respectivamente).

Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores S.A.B. de C.V. (en adelante IPC y BMV respectivamente). Auorización SHCP: 09/11/2010 Fecha de publicación úlima modificación: 29/08/2014 Fecha de enrada en vigor: 05/09/2014 Condiciones Generales de Conraación del Conrao de Fuuro sobre el Índice de Precios

Más detalles

Tema 2 : Códigos Binarios

Tema 2 : Códigos Binarios Tema 2 : Códigos Binarios Objetivo: Conocer diferentes códigos binarios Conocer algunos códigos de detección y corrección de errores. Códigos alfanuméricos 1 Códigos Binarios A la representación de cifras,

Más detalles

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto) Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación

Más detalles

Sistemas de numeración, operaciones y códigos

Sistemas de numeración, operaciones y códigos Sistemas de numeración, operaciones y códigos Slide 1 Sistemas de numeración Slide 2 Números decimales El sistema de numeración decimal tiene diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9 Es un sistema

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97 SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

6.- Señales digitales

6.- Señales digitales EAL - #3-6.- Señales digiales Dado un mensaje digial (p.ej. ) exisen diversos méodos para ransmiirlo como una señal elécrica (señal digial), algunos de los mas comunes, suponiendo ransmisión sincrónica,

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

Mtro. Horacio Catalán Alonso

Mtro. Horacio Catalán Alonso ECONOMETRIA TEORÍA DE LA COINTEGRACIÓN Mro. I. REGRESIÓN ESPURÍA Y X Dos series que presenan camino aleaorio. Si ambas series se consideran en una modelo economérico. Y = Y -1 + u u N(0,s 2 u) X =X -1

Más detalles

Informática. Temas 27/03/2014. Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon

Informática. Temas 27/03/2014. Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon Informática Carrera: Bioingeniería Profesora: Lic. S. Vanesa Torres JTP: Ing. Thelma Zanon Temas O Sistema de Numeración O Conversión entre números decimales y binarios. O El tamaño de las cifras binarias

Más detalles

CAPÍTULO 3: INFILTRACIÓN

CAPÍTULO 3: INFILTRACIÓN 27 CAPÍTULO 3: INFILTRACIÓN 3.1 DEFINICIÓN El agua precipiada sobre la supericie de la ierra, queda deenida, se evapora, discurre por ella o penera hacia el inerior. Se deine como inilración al paso del

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

Tema I. Sistemas Numéricos y Códigos Binarios

Tema I. Sistemas Numéricos y Códigos Binarios Tema I. Sistemas Numéricos y Códigos Binarios Números binarios. Aritmética binaria. Números en complemento-2. Códigos binarios (BCD, alfanuméricos, etc) Números binarios El bit. Representación de datos

Más detalles

INSTITUTO NACIONAL DE PESCA

INSTITUTO NACIONAL DE PESCA INSTITUTO NACIONAL DE PESCA Dirección General de Invesigación Pesquera en el Pacífico Nore Subdirección de Tecnología en el Pacífico Nore. Indicadores económico-financieros para la capura de camarón y

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

Tema 5 El Transistor MOS

Tema 5 El Transistor MOS FUNAMENTO FÍCO Y TECNOLÓGCO E LA NFORMÁTCA Tema 5 El Transisor MO Agusín Álvarez Marquina Esrucura física y polarización del ransisor nmo de acumulación (ource= Fuene) G (Gae= Puera) (rain= renador) (+)

Más detalles

TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN

TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN En el Tema 2 analizamos el papel de las expecaivas en los mercados financieros. En ése nos cenraremos en los de bienes y servicios. El papel que desempeñan las

Más detalles

SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES

SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES Unidad Aritmética Lógica La Unidad Aritmético Lógica, en la CPU del procesador, es capaz de realizar operaciones aritméticas, con datos numéricos expresados en el sistema binario. Naturalmente, esas operaciones

Más detalles

RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES

RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES CONSIDERANDO: Que el arículo 86 de la Ley 87-01 de fecha 9 de mayo de 2001, que crea el Sisema Dominicano de Seguridad Social,

Más detalles

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA JOSE LEONARDO CHIRINO PUNTO FIJO EDO-FALCON CATEDRA: ARQUITECTURA DEL COMPUTADOR PROFESOR: ING.

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA JOSE LEONARDO CHIRINO PUNTO FIJO EDO-FALCON CATEDRA: ARQUITECTURA DEL COMPUTADOR PROFESOR: ING. INSTITUTO UNIVERSITARIO DE TECNOLOGÍA JOSE LEONARDO CHIRINO PUNTO FIJO EDO-FALCON CATEDRA: ARQUITECTURA DEL COMPUTADOR PROFESOR: ING. JUAN DE LA ROSA T. TEMA 1 Desde tiempos remotos el hombre comenzó a

Más detalles

La Arquitectura OSI TRANSMISIÓN DE DATOS. La Arquitectura OSI y TCP/IP. Conceptos Básicos. Medio de Transmisión Guiados Punto a punto Multipunto

La Arquitectura OSI TRANSMISIÓN DE DATOS. La Arquitectura OSI y TCP/IP. Conceptos Básicos. Medio de Transmisión Guiados Punto a punto Multipunto La Arquiecura OSI TRANSMISIÓN DE DATOS Ing. Alvaro E. Chavez Zubiea La Arquiecura OSI y TCP/IP Concepos Básicos Facores que condicionan la ransmisión: La calidad de la señal que se ransmie Las caracerísicas

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

TÉCNICAS DE TRANSMISIÓN Y MODULACIÓN

TÉCNICAS DE TRANSMISIÓN Y MODULACIÓN UNIDAD DIDÁCTICA 4 TÉCNICAS DE TRANSMISIÓN Y MODULACIÓN bps-baudios-bps-baudios-bps-baudios-bps-baudios-bps-baudios-bps-baudios-bps-baudios-bps-baudios-bpsbaudios-bps-baudios-bps-baudios-bps-baudios-bps-baudios-bps-baudios-bps-baudios-bps-baudios-bps-baudios-

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

4.7. Integración de Word y Excel

4.7. Integración de Word y Excel 47 Inegración de Word y Excel 471 Combinar correspondencia Qué procedimieno seguiría para hacer las siguienes areas? Generar una cara de soliciud de permiso de los padres de familia para cada uno de sus

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles