Introducción a la Informática

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a la Informática"

Transcripción

1 DAI Departamento Académico de Informática Introducción a la Informática L21: Representación de datos en Sistemas de Computadoras Ingº Manuel Peñaloza Figueroa Objetivos: Entender los fundamentos de la representación y manipulación numérica de los datos en computadoras digitales. Dominar la habilidad de convertir entre varios sistemas radix (radix = base de un sistema numérico) Entender como los errores pueden ocurrir en los cálculos por causa del: desbordamiento (overflow) truncamiento 2 1

2 Objetivos: Ganar familiaridad con los mas populares códigos de caracteres. Darse cuenta de las diferencias entre: como la data es almacenada en la memoria del computador como la data es transmitida sobre las líneas de telecomunicaciones (y) como la data es almacenada en discos. Entender los conceptos de detección de errores y códigos de corrección. 3 bit, Byte, word, nibble Un bit es la unidad de información más básica en una computadora. Es un estado de "on" ó "off" en un circuito digital. Algunas veces estos estados son voltaje "high" (alto) ó "low" (bajo) en vez de "on" ó "off". Un byte es un grupo de 8 bits. Un byte es la unidad direccionable mas pequeña posible del almacenamiento de una computadora. El término, "direccionable" significa que un byte particular puede ser recuperado de acuerdo con su localización en memoria. 4 2

3 bit, Byte, word ó palabra, nibble Una palabra ó word es un grupo contiguo de bytes ó bits. Las palabras ó words pueden ser cualquier número de bits ó bytes. Tamaños de palabra ó word de 16, 32, ó 64 bits son los más comunes. En un sistema direccionable-por-palabra, una palabra es la más pequeña unidad de almacenamiento direccionable. Un nibble/nybble es un grupo de 4 bits El Byte, por lo tanto, consiste de 2 nibbles: Un nibble de "alto-orden" Un nibble de "bajo-orden" 5 Sistemas de Numeración posicional: Los Bytes almacenan números: El sistema binario es también llamado sistema de base-2. 2 símbolos la posición de cada bit representa una potencia de 2. El sistema decimal es el sistema de base símbolos Usa potencias de 10 para cada posición en un número. Cualquier cantidad entera puede ser representado exactamente usando cualquier base (ó radix). 6 3

4 Sistemas de Numeración posicional: El número decimal 947 en potencias de 10 es: 947 = El número decimal en potencias de 10 es: Sistemas de Numeración posicional: El número binario en potencias de 2 es: = = = 25 Cuando el radix de un número es algo otro que 10, la base es denotado por un subíndice. Algunas veces, el subíndice 10 es agregado por énfasis: =

5 Conversión de Decimal a Binario: Porque los números binarios son la base para toda representación de datos en sistemas de computadoras digitales, es importante que se vuelva competente con este sistema radix. El conocimiento del sistema de numeración binaria habilita a entender la operación de todos los componentes de la computadora así como el diseño de las arquitecturas del juego de instrucciones ISA ISA = Instruction Set Architecture 9 Conversión de Decimal a Binario: En un slide previo, se dijo que cada valor entero puede ser representado exactamente usando cualquier sistema radix ó cualquier base. Se puede usar cualquiera de 2 métodos para conversión radix: El método de substracción es más intuitivo, pero engorroso, sin embargo refuerza las ideas detrás de la matemáticas radix. El método del resto de la división. 10 5

6 Conversión de Decimal a Binario: Suponga que se desea convertir el número decimal 190 a base 3. Se sabe que 3 5 = 243, así ello es demasiado grande. La más grande potencia de 3 que se necesita es por lo tanto 3 4 = 81, y se necesitará 2 de estos, así 81 2 = 162. Escribir el 2 y substraer 162 de 190, dando Conversión de Decimal a Binario: Convertir 190 a base 3... La siguiente potencia de 3 es 3 3 = 27, se necesitará 1 de estos, así se substrae 27 y se toma nota del numeral 1 en el resultado. La siguiente potencia de 3, 3 2 = 9, es demasiado grande, se tiene que asignar un símbolo de cero y acarrear el

7 Conversión de Decimal a Binario: Convertir 190 a base 3... La siguiente potencia de 3 es 3 3 = 27, se necesitará 1 de estos, así se substrae 27 y se toma nota del numeral 1 en el resultado. La siguiente potencia de 3, 3 2 = 9, es demasiado grande,... se tiene que asignar un símbolo de cero y acarrear el Conversión de Decimal a Binario: Convertir 190 a base = 3 es de nuevo demasiado grande, así se asigna un símbolo de cero. La última potencia de 3, 3 0 = 1, es la última elección, y ello da una diferencia de cero. El resultado, leyendo de arriba hacia abajo es: =

8 Conversión de Decimal a Binario: Otro método para convertir enteros desde decimal a algún otro radix ó base es usar la división: Este método es mecánico y fácil. Emplea la idea que la división sucesiva por la base es equivalente a substracciones sucesivas por potencias de la base. Ejercicio: Usar el método del resto de la división para de nuevo convertir 190 en decimal a base Conversión de Decimal a Binario: Convertir 190 a base 3 Primero tomar el número que se desea convertir y dividirlo por el radix en el cual se desea expresar el resultado. En este caso, 3 divide veces, con un resto de 1. Registrar el cociente y el resto. 16 8

9 Conversión de Decimal a Binario: Convertir 190 a base 3 63 es lisamente divisible por 3. El cociente es 21 y el resto es cero. 17 Conversión de Decimal a Binario: Convertir 190 a base 3 Continuar de esta manera hasta que el cociente sea cero. En el cálculo final, se observa que 3 divide a 2 cero veces con un resto de 2. El resultado, leyendo de abajo hacia arriba es: =

10 Conversiones Decimal a Binario Valores fraccionarios pueden ser aproximados en todos los sistemas base. A diferencia de los valores enteros, las fracciones no necesariamente tienen representaciones exactas bajo todos los radix ó bases. La cantidad ½ es exactamente representable en los sistema binario y decimal, pero no lo es en el sistema de numeración ternaria (base 3). 19 Conversiones Decimal a Binario Valores fraccionarios: del sistema decimales tienen dígitos no-cero a la derecha del punto decimal. de otros sistemas radix tienen dígitos no-cero a la derecha del punto radix. Numerales a la derecha de un punto radix representan potencias negativas del radix: = = = ½ + ¼ = =

11 Conversiones Decimal a Binario Como con conversiones de números enteros, se puede usar cualquiera de 2 métodos: Método de la substracción Método de la multiplicación El método de substracción para fracciones es idéntica al método de substracción para números enteros. En vez de substraer potencias positivas del radix objetivo, se substraen potencias negativas del radix. Siempre se comienza con el mas grande valor primero: n -1, donde n es nuestro radix, y se prosigue adelante usando exponentes negativos mas grandes. 21 Conversiones Decimal a Binario El cálculo a la derecha es un ejemplo de usar el método de substracción para convertir el decimal a binario. El resultado, leyendo desde arriba abajo es: = Por supuesto, este método trabaja con cualquier base, no solamente el binario

12 Conversiones Decimal a Binario Usando el método de la multiplicación para convertir el decimal a binario. Se multiplica por el radix es decir por 2 (en este caso). El producto más a la izquierda acarrea dentro del lugar de las unidades. 23 Conversiones Decimal a Binario Convertir a binario Ignorar el valor en el lugar de las unidades en cada paso. Continuar multiplicando cada parte fraccional por el radix

13 Conversiones Decimal a Binario Convertir a binario Se termina cuando el producto es cero, ó hasta que se haya alcanzado del número deseado de lugares decimales. El resultado leyendo desde arriba hacia abajo es: = Este método también trabaja con cualquier base. Precisamente se usa el radix objetivo como el multiplicador. 25 Conversiones Decimal a Binario El sistema de numeración binaria es el mas importante sistema radix para computadoras digitales. Sin embargo, es difícil leer largos strings de números binarios e incluso un número decimal de tamaño modesto se vuelve un número binario muy grande. Por ejemplo: = Por compactación y facilidad de lectura, valores binarios son usualmente expresados usando el sistema de numeración hexadecimal, o base

14 Conversiones Decimal a Binario El sistema de numeración hexadecimal usa los números y las letras A, B, C, D, E, F. El número decimal 12 es C 16 El número decimal 26 es 1A 16 Es fácil convertir entre base 16 y base 2 por que 16 = 2 4 Así, para convertir desde binario a hexadecimal, todo lo que se necesita hacer es agrupar los dígitos binarios en grupos de 4. un grupo de 4 dígitos binarios es llamado un hexteto 27 Conversiones Decimal a Binario Usando grupos de hextetos, el número binario (= ) en hexadecimal es: Valores octales (base 8) son derivados del binario con usar grupos de 3 bits (8 = 2 3 ): Octal fue muy útil cuando computadoras usaban palabras de 6-bits 28 14

15 Representación de enteros con signo Las conversiones hasta aquí presentadas han involucrado solo números positivos. Para representar valores negativos, sistemas de computador asignan el bit de alto-orden para indicar el signo de un valor. El bit de alto-orden es el bit más a la izquierda. Es también llamado el bit mas significante. Los bits restantes contienen el valor del número. 29 Representación de enteros con signo Hay 3 modos en el cual números binarios con signo pueden ser expresados: Signo-magnitud Complemento a 1 Complemento a

16 Representación de enteros con signo En una palabra de 8-bit, la representación signomagnitud coloca el valor absoluto del número en los 7 bits a la derecha del bit de signo. Por ejemplo: en signo-magnitud de 8-bit: El 3 positivo es : El 3 negativo es: Computadoras ejecutan operaciones aritméticas sobre números signo-magnitud en mucho en el mismo modo como humanos llevan a cabo aritmética con lápiz y papel. Los humanos con frecuencia ignoran los signos de los operandos mientras ejecutan un cálculo, aplicando el signo apropiado después que 31 el cálculo está completo. Representación de enteros con signo La adición binaria es fácil: Se necesita conocer solamente 4 reglas: = = = = 10 La simplicidad de este sistema hace posible para los circuitos digitales llevar a cabo operaciones aritméticas. Se describirán estos Ver circuitos como las en reglas detalle de después. adición trabajan con números en signo-magnitud 32 16

17 Representación de enteros con signo Ejemplo: Usando aritmética binaria singomagnitud, encontrar la suma de 75 y 46: convertir 75 y 46 a binario Arreglar como una suma Separar los bits de signo (signo positivo) de los bits de magnitud. 33 Representación de enteros con signo Ejemplo: Usando aritmética binaria magnitud con signo, encontrar la suma de 75 y 46: Justamente como en aritmética decimal, se encuentra la suma comenzando con el bit más hacia la derecha y trabajando hacia la izquierda

18 Representación de enteros con signo Ejemplo: Usando aritmética binaria magnitud con signo, encontrar la suma de 75 y 46: En el segundo bit, se tiene un acarreo, así se anota o apunta arriba del tercer bit. 35 Representación de enteros con signo Ejemplo: Usando aritmética binaria magnitud con signo, encontrar la suma de 75 y 46: El tercer y cuarto bits también da acarreo

19 Representación de enteros con signo Ejemplo: Usando aritmética binaria magnitud con signo, encontrar la suma de 75 y 46: Una vez que se ha trabajado por todos los 8 bits, está hecho. En este ejemplo, se fue cuidadoso de escoger 2 valores cuya suma encajase en 7 bits. Si ese no el caso, se tiene un problema. 37 Representación de enteros con signo Ejemplo: Usando aritmética binaria magnitud con signo, encontrar la suma de 107 y 46: Se ve que el acarreo desde el sétimo bit overflows y es descartado, dando el resultado erróneo =

20 Representación de enteros con signo Los signos en representación de magnitud con signo trabajan justamente como lo signos en aritmética de lápiz y papel. Ejemplo: usando aritmética binaria signo-magnitud encontrar la suma de - 46 y Porque los signos son los mismo, todo lo que se tiene que hacer es sumar los números y proveer el signo negativo cuando esté hecho. 39 Signo-magnitud Adición con signo mezclada (o substracción) es hecha del mismo modo. Ejemplo: Usando aritmética binaria de signo - magnitud, encontrar la suma de 46 y El signo del resultado se obtiene del signo del número que es mas grande. Observe el "pedir prestado" del segundo y sexto bits

21 Signo-magnitud La representación de signo-magnitud es fácil para la gente entender, pero requiere hardware de computadora complicado. Otra desventaja de signo-magnitud es que permite 2 diferentes representaciones para el cero: Cero positivo +0 Cero negativo - 0 Por esta razones (entre otros) los sistemas de computadoras emplean sistemas de complemento para representación del valor numérico. 41 Sistemas de Complemento En sistemas de complemento, valores negativos son representados por alguna diferencia entre un número y su base. En sistemas de complemento a base disminuida, un valor negativo es dado por la diferencia entre el valor absoluto de un número y uno menos que su base. En el sistema binario, esto da complemento a 1. Ello asciende a poco mas que invertir los bits de un número binario

22 Complemento a 1 El complemento a 1 en binario se obtiene cambiando los unos por ceros y los ceros por unos. La representación de números positivos en complemento a 1 sigue las mismas reglas del sistema signo-magnitud. La representación de los números negativos en complemento a 1 es el complemento a 1 del número positivo. Ejemplo: El número decimal 21 se expresa en complemento a 1 a 6 bits como , donde el primer bit "0" denota el bit de una magnitud positiva. El complemento a 1 a 6 bits del decimal 21, se obtiene por medio del complemento a 1 del número positivo , el cual es Complemento a 1 Por ejemplo: en complemento a 1 de 8-bit: 3 positivo es: negativo es: En complemento a 1 como en signo-magnitud, los valores negativos son indicados por un 1 en el bit de alto orden. Sistemas de complemento son útiles porque ellos eliminan la necesidad por circuitería especial para substracción. La diferencia de 2 valores es encontrado con agregar al minuendo el complemento del sustraendo

23 Complemento a 1 Por ejemplo: en Circuito de inversores que ejemplifica el complemento a 1 de una expresión 45 Complemento a 1 En la adición con complemento a 1, el bit de acarreo es llevado consigo y agregado a la suma. Ejemplo: usando aritmética binaria de complemento a 1, encontrar la suma de 48 y = 29 Note que: 19 en complemento a 1 es: en complemento a 1 es:

24 Complemento a 1 Aunque el llevar consigo final agrega alguna complejidad, el complemento a 1 es más simple para implementar que signo magnitud. Pero todavía tiene la desventaja de tener 2 representaciones diferentes para el cero; Cero positivo Cero negativo. Complemento a 2 soluciona este problema. Complemento a 2 es el complemento radix del sistema de numeración binaria. 47 Complemento a 2 Para expresar un valor en complemento a 2: Si el número es positivo, justamente convertirlo a binario y ya está hecho. Si el número es negativo, encontrar el complemento a 1 del número y entonces sumar 1, el resultado es la representación del número en complemento a 2. Ejemplo: En complemento a 1 de 8-bit, 3 positivo es : En complemento a 1 de 8-bit, 3 negativo es: En complemento a 2 de 8-bit, 3 negativo es:

25 Complemento a 2 Ejemplo: representar el número 5 10 en binario, utilizando complemento a 2 de 5-bit. Escribir el número en binario de 5-bit: Obtener el complemento a 1 de: 00101: Al complemento del número anterior se la suma 1: Verificación: -1x x x x x2 0 = = En complemento 2, el primer bit (es decir el más significativo) puede interpretarse como el signo, siendo cero para números positivos y 1 para números negativos. 49 Complemento a 2 Resta binaria en Complemento a 2: Se puede observar que el signo de un número positivo ó negativo se cambia calculando su complemento a 2. La resta de dos números con signo se calcula sumando el complemento a 2 del sustraendo al minuendo y descartando cualquier bit de acarreo final. El siguiente procedimiento es necesario para calcular la resta de dos números: Obtener el complemento a 2 del sustraendo. Efectuar la suma del minuendo y el sustraendo en complemento a 2. Sí la suma presenta rebasamiento indica que la repuesta es positiva, ignorar el rebasamiento. Si no hay rebasamiento, entonces la repuesta es negativa. Para obtener la magnitud del 50número binario, obtenga el l t 2 d l 25

26 Complemento a 2 Ejemplo: substraer ( ) 2 El complemento a 2 de = Sumamos el 1 er sumando y el complemento a 2 obtenido: binario decimal rebasamiento (se ignora) La respuesta es = 1x x x x2 0 = Complemento a 2 Ejemplo: substraer ( ) 2 El complemento a 2 de = Sumamos el 1 er sumando y el complemento a 2 obtenido: binario decimal no hay rebasamiento En complemento a 2: - 6 es: + 6 =

27 Complemento a 2 Con aritmética de complemento a 2, todo lo que se hace es sumar 2 números binarios. Justamente descartar cualquier acarreo que se produzca a partir del bit de alto-orden. Ejemplo: usando aritmética binaria de complemento a 2, encontrar la suma de 48 y -19 (a 8-bit) = 29 Note que: 19 en complemento a 1 es: en complemento a 1 es: Complemento a 2 Cuando se usa cualquier número finito de bits para representar un número, siempre se corre el riesgo de que el resultado de los cálculos se vuelva demasiado grande para ser almacenado en el computador. Mientras no siempre se pueda prevenir overflow, siempre se puede detectar overflow. En aritmética con complemento, una condición de overflow es fácil de detectar

28 Complemento a 2 Ejemplo: Usando aritmética binaria de complemento a 2, encontrar la suma de 107 y 46 a 8-bit. Se ve que el acarreo nocero desde el séptimo bit overflows dentro el bit de signo, dando el resultado erróneo de: = Regla en el para bit de detectar signo: bit overflow C in = 1en complemento a 2: Cuando el bit carry in y el bit carry out del bit de signo difieren, overflow ha bit C out = 0 ocurrido. 55 Complemento a 2 Multiplicación Binaria En la multiplicación de dos cantidades binarias es necesario considerar lo siguiente: La multiplicación binaria cumple las mismas reglas de la multiplicación decimal

29 Complemento a 2 Multiplicación Binaria Ejemplo: multiplicar las cantidades 1011 y Complemento a 2 Multiplicación con signo Se representan los operandos en complemento 2 y el resultado también se obtiene en complemento 2. El último multiplicando desplazado se niega

30 Complemento a 2 Observar lo siguiente: +3 = = = = = = = Complemento a 2 Beneficios: Una representación del cero La aritmética trabaja fácilmente Negar es medianamente fácil 3 = el complemento Booleano da: sumar 1 al LSB :

31 Complemento a 2 Rango de números: Complemento a 2 de 8-bit +127 = = = = -2 7 Complemento a 2 de 16-bit = = = = Complemento a 2 Conversión entre longitudes: Números positivos de empaquetan con 0 s delanteros +18 = = Números negativos se empaquetan con 1 s delanteros -18 = = i.e. empaquetar con MSB (bit de signo) 62 31

32 Complemento a 2 Adición: Adición normal binaria Monitorear bit de signo por overflow Substracción Tomar el complemento a 2 del sustraendo y sumar al minuendo i.e. a - b = a + (-b) Así solo se necesita circuitos de adición y complemento. 63 Complemento a 2 Hardware para adición y substracción: 64 32

33 Punto Flotante La representación signo-magnitud, complemento a 1 y complemento a 2 que se ha justamente presentado trata con valores enteros solamente. Sin modificación, estos formatos no son útiles en aplicaciones científicas o de negocios que tratan con valores de números reales. La representación en punto-flotante soluciona este problema. 65 Punto Flotante Si se es un programador listo, se puede ejecutar cálculos de punto-flotante usante cualquier formato entero. Esto es llamado emulación de punto-flotante, porque los valores de punto flotante no son almacenados como tales, justamente se crean programas que hacen parecer como si valores de punto flotante están siendo usados. La mayor parte de las computadoras de hoy en día están equipadas con hardware especializado que ejecuta aritmética de punto-flotante sin ninguna programación especial requerida

34 Punto Flotante Números reales La línea de números reales puede ser dividida en 7 regiones. 67 Punto Flotante Números reales 7 regiones de los números reales Large negative numbers less than Negative numbers between and Small negative numbers, magnitudes less than Zero. Small positive numbers, magnitudes less than Positive numbers between and Large positive numbers greater than

35 Punto Flotante Números en punto-flotante permiten un número arbitrario de lugares decimales a la derecha del punto decimal. Por ejemplo: = Ellos son con frecuencia expresados en notación científica. Por ejemplo: = '000,000 = Punto Flotante Computadores usan una forma de notación científica para representación en punto-flotante. Números escritos en notación científica tienen 3 componentes: Signo Mantisa Exponente 70 35

36 Punto Flotante La representación en computadora de un número de punto-flotante consiste de 3 campos de tamaño-fijo: Este es el arreglo estándar de estos campos. 71 Punto Flotante El campo de signo de 1-bit es el signo del valor almacenado. El tamaño del campo exponente, determina el rango de valores que pueden ser representados. El tamaño del significando determina la precisión de la representación

37 Punto Flotante La IEEE-754 Estándar de punto flotante de simple precisión usa un exponente de 8-bit y un significando de 23-bit, es decir = 32 bits. La IEEE-754 Estándar de doble precisión usa un exponente de 11-bit y un significando de 52-bit, es decir = 64 bits. Para propósitos ilustrativos se usará un modelo de 14-bit con un exponente de 5-bit y un significando de 8-bit. 73 Punto Flotante Formatos IEEE

38 Punto Flotante El significando de un número de punto flotante está siempre precedido por un punto binario implícito. El significando siempre contiene un valor binario fraccional. El exponente indica la potencia de 2 al cual el significando es elevado. 75 Punto Flotante Ejemplo: Exprese en el modelo de punto-flotante de 14-bit simplificado. Se sabe que 32 es 2 5 Así en notación científica (binaria) 32 = 1.0 x 2 5 = 0.1 x 2 6 Usando esta información, se pone 110 = 6 10 en el campo exponente y 1 en el significando como se muestra: 76 38

39 Punto Flotante Las ilustraciones mostradas a la derecha son todas representaciones equivalentes para el # 32 usando el modelo simplificado. No solo esta representaciones sinónimas gastan espacio, sino que pueden también causar confusión. 77 Punto Flotante Otro problema con el sistema es que no se ha tenido en cuenta exponentes negativos. No se tiene modo de expresar 0.5 =2-1 ( note que no hay signo en el campo exponente) Todos estos problemas pueden ser fijados o arreglados con ningún cambio al modelo básico

40 Punto Flotante Para resolver el problema de formas sinónimas, se establecerá una regla que el primer dígito del significando tiene que ser 1. Esto resulta en un único patrón para cada número de punto-flotante. En el estándar IEEE-754, este 1 es implícito significando que un 1 es asumido después del punto binario. Con usar un 1 implícito, se incrementa la precisión de la representación por una potencia de 2. En el modelo instructivo simple no se usará bits implícitos 79 Punto Flotante Para prever exponentes negativos, se usará un exponente polarizado (biased). Una polarización es un número que es aproximadamente medio en el rango de valores expresables por el exponente. Se substrae la polarización del valor en el exponente para determinar su verdadero valor. Para el caso, se tiene un exponente de 5-bit (2 5 = 32 32/2 = 16). Se usará 16 para la polarización. Esto es llamado representación exceso-16. Para el modelo, valores de exponente menor que 16 son negativos, representando números fraccionales

41 Punto Flotante Ejemplo: Expresar en el modelo revisado de punto-flotante de 14-bit (signo de 1-bit, exponente de 5-bit, significando de 8-bit). Se sabe que 32 = 1.0 x 2 5 = 0.1 x 2 6 Para usar exponente polarizado exceso-16, se agrega 16 a 6, dando = Gráficamente: 81 Punto Flotante Ejemplo: Expresar en el modelo revisado de puntoflotante de 14-bit. Se sabe que es 2-4 Así, en notación científica (binaria) = = 1.0 x 2-4 = 0.1 x 2-3. Para usar exponente polarizado exceso-16, se agrega 16 a -3, dando =

42 Punto Flotante Ejemplo: Expresar en el modelo revisado de puntoflotante de 14-bit. Se encuentra que = Normalizando, se tiene: = x 2 5 Para usar exponente polarizado exceso-16, se agrega 16 a 5, dando = También se necesita un 1 en el bit de signo. 83 Punto Flotante El estándar IEEE-754 de punto flotante de simple precisión usa una polarización de 127 sobre su exponente de 8-bit. Un exponente de 255 indica un valor especial: Si el significando es cero: el valor es ± infinito. Si el significando es no-cero, el valor es NaN "no un número", con frecuencia usado para "flag" un condición de error. El estándar de doble precisión tiene una polarización de 1023 sobre su exponente de 11- bit. El valor de exponente "especial" para un número de doble precisión es 2047, en vez del 255 usado para el estándar de simple precisión

43 Punto Flotante Estándar IEEE-754 s: signo de la fracción e: exponente polarizado ó sesgado f: fracción 85 Punto Flotante Estándar IEEE-754 Convenciones El punto binario está a la izquierda del bit más significativo del campo f. Se inserta un bit 1 implícito a la izquierda del punto binario (lo cual amplía la representación en 1 bit). Valor del número: n = ( 1) (2 )(1. f ) s e p se deriva de los 3 campos mediante la siguiente fórmula: donde: n = número (en decimal) p = 127 para simple precisión p = 1023 para doble precisión 86 43

44 Punto Flotante Estándar IEEE-754: Ejemplo 1: codificar el número decimal usando IEEE 754 de 32-bit: Obtener el signo El # es negativo ==> el signo es 1 Escribir el número (sin el signo) usando notación binaria = = = Normalizar el # Mover el punto radix (a la derecha/izquierda) de modo que quede solo un 1 a la izquierda del punto radix = Punto Flotante Estándar IEEE-754 Ejemplo 1: Obtener la fracción La mantisa es la fracción (la parte a la derecha del punto radix), completada con ceros a la derecha hasta obtener los 23-bit f = Polarizar el exponente y convertirlo a binario Para el formato IEEE 754 de 32-bit la polarización es 127 e = = 133 ==> =

45 Punto Flotante Estándar IEEE-754: Ejemplo 2: codificar el número decimal usando el estándar IEEE 754 de 32-bit: Obtener el signo El # es positivo ==> el signo es 0 Escribir el número (sin el signo) usando notación binaria 1 10 = = = Normalizar el # Mover el punto radix (a la derecha/izquierda) de modo que quede solo un 1 a la izquierda del punto binario = Punto Flotante Estándar IEEE-754 Ejemplo 2: Obtener la fracción La mantisa es la fracción (la parte a la derecha del punto radix), completada con ceros a la derecha hasta obtener los 23-bit f = Polarizar/sesgar el exponente y convertirlo a binario (completar a 8 bits si fuera necesario con ceros a la izquierda) Para el formato IEEE 754 de 32-bit la polarización es 127 e = = 127 ==> = =

46 Punto Flotante IEEE-754 de punto flotante de simple-precisión: 91 Punto Flotante Estándar IEEE

47 Punto Flotante Estándar IEEE-754 IEEE numerical types. 93 Punto Flotante Tanto el modelo de 14-bit que se ha presentado y el estándar IEEE-754 de punto flotante permiten 2 representaciones para el cero. Cero es indicado con todos ceros en el exponente y en el significando, pero el bit de signo puede ser ó 0 ó 1. Este es porque los programadores deben de evitar testear un valor de punto-flotante por igualdad a cero. Cero negativo no iguala al cero positivo

48 Punto Flotante La adición y substracción en punto-flotante son hechos usando métodos análogos a como se ejecutan cálculos usando lápiz y papel. La primer cosa que se hace es expresar ambos operandos en la misma potencia exponencial, luego sumar los números, preservando el exponente en la suma. Si el exponente requiere ajuste, se hace así al final del cálculo. 95 Punto Flotante Ejemplo; Encontrar la suma de y usando el modelo de punto-flotante de 14-bit. Se encuentra que: = 1100 = x = 1.01 = x 2 1 = x 2 4 (se desnormaliza el segundo operando en este caso) el exponente polarizado es: = 20 = Así, la suma es x

49 Punto Flotante Multiplicación en punto-flotante es también llevada a cabo en una manera semejante a como se ejecuta la multiplicación usando lápiz y papel. Se multiplican los 2 operandos y se suman sus exponentes. Si el exponente requiere ajuste, se hace de esa manera al final del cálculo. 97 Punto Flotante Ejemplo: Encontrar el producto de y usando el modelo de punto flotante de 14-bit Se encuentra que: = x 2 4, exponente: = 20 = = x 2 1, exponente: = 17 = Así, el producto es x 2 5 = x 2 4 El producto normalizado requiere un exponente de = , =

50 Punto Flotante No importa cuantos bits se use en una representación de punto-flotante, el modelo tiene que ser finito. El sistema de números reales es, por supuesto, infinito, así los modelos pueden dar nada mas que una aproximación de un valor real. En algún punto, cada modelo se estropea, introduciendo errores dentro los cálculos. Con usar un mayor número de bits en el modelo, se puede reducir estos errores, pero nunca se puede totalmente eliminarlos. 99 Punto Flotante El trabajo se vuelve a uno de reducir error, o al menos de ser consciente de la posible magnitud del error en los cálculos. Se tiene también que ser consciente que los errores pueden compound a través de operaciones aritméticas repetitivas. Por ejemplo, el modelo de 14-bit no puede exactamente representar el valor decimal En binario, es de 9 bits de ancho: normalizando es = = x 2 8 Modelo de 14-bit: signo de 1-bit, exponente de 5-bit, significando de 8-bit

51 Punto Flotante Cuando se intenta expresar en el modelo de 14-bit, se pierde el bit de bajo-orden, dando un error relativo de: % 128 Si se tuviera un procedimiento que repetidamente agregase 0.5 a 128.5, se podría tener un error de casi 2% después de solo 4 iteraciones. 101 Punto Flotante Errores de punto-flotante pueden ser reducidos cuando se usa operandos que son similares en magnitud. Si se estuviera repetidamente agregando 0.5 a 128.5, habría sido mejor iterativamente agregar 0.5 a si mismo y luego sumar a esta suma. En este ejemplo, el error fue causado por la pérdida del bit de bajo-orden. La pérdida del bit de alto-orden es mas problemática

52 Punto Flotante Propagación del error: 103 Punto Flotante Overflow y underflow en punto-flotante pueden causar que los programas "se caigan". Overflow ocurre cuando no hay espacio para almacenar los bits de alto-orden resultantes de un cálculo. Underflow ocurre cuando un valor es demasiado pequeño para almacenar, posiblemente resultante en división por cero. Experimentados programadores saben que es mejor para un programa "caerse" que tener que producir incorrectos, pero plausibles resultados

53 Códigos de caracteres Cálculos no son útiles hasta que sus resultados pueden ser displayados en una manera que es significativa a las personas. También se necesita almacenar los resultados de los cálculos, y proveer un medio para la entrada de data. Así, caracteres entendibles por el humano deben/tienen que ser convertidos a patrones de bit entendibles por el computador usando alguna clase/especie de esquema de codificación de caracteres. 105 Códigos de caracteres A medida que las computadoras han evolucionado, los códigos de caracteres han evolucionado. Memorias de computador y dispositivos de almacenamiento mas grandes permiten códigos de caracteres mas ricos. Los primerísimos sistemas de codificación de computadora usaban 6 bits. El Decimal Codificado Binario (BCD) fue uno de estos primeros códigos. Fue usado por mainframes IBM en los 1950s y 1960s

54 Códigos de caracteres La tabla representa los dígitos decimales de 0 a 9 en varios sistemas BCD: 107 Códigos de caracteres Para codificar en BCD un número decimal usando la codificación común, cada digito es codificado usando el patrón de 4-bit. Ejemplo: El número 127 sería:

55 Códigos de caracteres En 1964, BCD fue extendido a un código de 8-bit, Extended Binary-Coded Decimal Interchange Code (EBCDIC). EBCDIC fue uno de los primeros códigos de computador ampliamente usados que soportaban caracteres alfabéticos en mayúscula y minúscula, además de caracteres especiales, tal como caracteres de puntuación y de control. EBCDIC y BCD están todavía en uso por IBM mainframes hoy en día. 109 Códigos de caracteres Otros fabricantes de computadoras eligieron el ASCII de 7-bit (American Standard Code for Information Interchange) como un reemplazo para códigos de 6-bit. Mientras que BCD y EBCDIC estuvieron basados en códigos de tarjeta perforada, ASCII estaba basado en códigos de telecomunicaciones (Telex). Hasta hace poco, ASCII era el código de caracteres dominante fuera del mundo del mainframe IBM

56 Códigos de caracteres Muchos de los sistemas de hoy en día abrazan Unicode, un sistema de 16-bit que puede codificar los caracteres de cada lenguaje en el mundo. El lenguaje de programación Java, y algunos sistemas operativos ahora usan Unicode como su código de caracteres por defecto. El espacio de código Unicode está dividido en 6 partes. La primera parte es para códigos de alfabeto occidentales, incluyendo Inglés, Griego y Ruso. 111 Códigos de caracteres La asignación del espacio de código Unicode es mostrado a la derecha. Los caracteres Unicode mas bajo numerados comprenden el código ASCII. Los más altos proveen códigos definidos por el usuario

Introducción a la Informática

Introducción a la Informática Ingº Manuel Peñaloza Figueroa DAI Introducción a la Informática L21: Representación de datos en Sistemas de Computadoras Departamento Académico de Informática Objetivos: Entender los fundamentos de la

Más detalles

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas Fecha: 1 er semestre de 2011 INTRODUCCIÓN El sistema

Más detalles

Representación de la Información

Representación de la Información Representar: Expresar una información como una combinación de símbolos de un determinado lenguaje. Trece -> símbolos 1 y 3 Interpretar: Obtener la información originalmente representada a partir de una

Más detalles

ARQUITECTURA DE LAS COMPUTADORAS PRACTICA

ARQUITECTURA DE LAS COMPUTADORAS PRACTICA ARQUITECTURA DE LAS COMPUTADORAS PRACTICA SISTEMAS NUMÉRICOS INTRODUCCIÓN TEÓRICA: Definimos Sistema de Numeración como al conjunto de reglas que permiten, con una cantidad finita de símbolos, representar

Más detalles

Sistemas de Numeración Operaciones - Códigos

Sistemas de Numeración Operaciones - Códigos Sistemas de Numeración Operaciones - Códigos Tema 2 1. Sistema decimal 2. Sistema binario 3. Sistema hexadecimal 4. Sistema octal 5. Conversión decimal binario 6. Aritmética binaria 7. Complemento a la

Más detalles

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 4: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C"

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: EMPEZAR DE CERO A PROGRAMAR EN lenguaje C Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C" Autor: Carlos Javier Pes Rivas (correo@carlospes.com) Capítulo 2 REPRESENTACIÓN DE LOS DATOS 1 OBJETIVOS Entender cómo la computadora

Más detalles

Clase 02: Representación de datos

Clase 02: Representación de datos Arquitectura de Computadores y laboratorio Clase 02: Representación de datos Departamento de Ingeniería de Sistemas Universidad de Antioquia 2015-2 Contenido 1 2 Representación de la Información Y sistemas

Más detalles

Estructura de Computadores

Estructura de Computadores Estructura de Computadores Tema 2. Representación de la información Departamento de Informática Grupo de Arquitectura de Computadores, Comunicaciones y Sistemas UNIVERSIDAD CARLOS III DE MADRID Contenido

Más detalles

Representación de Datos. Una Introducción a los Sistemas Numéricos

Representación de Datos. Una Introducción a los Sistemas Numéricos Representación de Datos Una Introducción a los Sistemas Numéricos Tipos de Datos Datos Texto Número Imagen Audio Video Multimedia: Información que contiene números, texto, imágenes, audio y video. Como

Más detalles

Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 3: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

Tema 2. La Información y su representación

Tema 2. La Información y su representación Tema 2. La Información y su representación 2.1 Introducción. Un ordenador es una máquina que procesa información. La ejecución de un programa implica la realización de unos tratamientos, según especifica

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales

En la actualidad ASCII es un código de 8 bits, también conocido como ASCII extendido, que aumenta su capacidad con 128 caracteres adicionales Definición(1) Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos

Más detalles

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES

ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES ANEXO 2: REPRESENTACION DE LA INFORMACION EN LOS COMPUTADORES SISTEMA DE NUMERACIÓN BASE 2 El sistema de numeración binario es el conjunto de elementos {0, 1} con las operaciones aritméticas (suma, resta,

Más detalles

Representación de Datos y Aritmética Básica en Sistemas Digitales

Representación de Datos y Aritmética Básica en Sistemas Digitales Representación de Datos y Aritmética Básica en Sistemas Digitales Departamento de Sistemas e Informática Escuela de Electrónica Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional

Más detalles

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5.

1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Representación de la información Contenidos 1. Informática e información. 2. Sistemas de numeración. 3. Sistema binario, operaciones aritméticas en binario, 4. Sistemas octal y hexadecimal. 5. Conversiones

Más detalles

Informática Básica: Representación de la información

Informática Básica: Representación de la información Informática Básica: Representación de la información Departamento de Electrónica y Sistemas Otoño 2010 Contents 1 Sistemas de numeración 2 Conversión entre sistemas numéricos 3 Representación de la información

Más detalles

Tema 1. Representación de la información MME 2012-20131

Tema 1. Representación de la información MME 2012-20131 Tema 1 Representación de la información 1 Índice Unidad 1.- Representación de la información 1. Informática e información 2. Sistema de numeración 3. Representación interna de la información 2 Informática

Más detalles

EL LENGUAJE DE LAS COMPUTADORAS

EL LENGUAJE DE LAS COMPUTADORAS EL LENGUAJE DE LAS COMPUTADORAS Una computadora maneja sus instrucciones por medio de un sistema numérico binario, que es el más simple de todos al contar con sólo dos símbolos para representar las cantidades.

Más detalles

1. SISTEMAS DIGITALES

1. SISTEMAS DIGITALES 1. SISTEMAS DIGITALES DOCENTE: ING. LUIS FELIPE CASTELLANOS CASTELLANOS CORREO ELECTRÓNICO: FELIPECASTELLANOS2@HOTMAIL.COM FELIPECASTELLANOS2@GMAIL.COM PAGINA WEB MAESTROFELIPE.JIMDO.COM 1.1. INTRODUCCIÓN

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8

Capítulo 1: Sistemas de representación numérica Introducción. Dpto. de ATC, Universidad de Sevilla - Página 1 de 8 Dpto. de ATC, Universidad de Sevilla - Página de Capítulo : INTRODUCCIÓN SISTEMAS DE REPRESENTACIÓN NUMÉRICA Introducción Bases de numeración Sistema decimal Sistema binario Sistema hexadecimal REPRESENTACIÓN

Más detalles

TEMA 1 Representación de la información

TEMA 1 Representación de la información TEMA 1 Representación de la información Tema 1: Representación de la información. Aritmética y Representación binaria 1) Introducción BB1, Cap 2, Ap: 2.1, 2.2.1 2) Sistemas binario-octal-hexadecimal BB1,

Más detalles

Aritmética del computador. Departamento de Arquitectura de Computadores

Aritmética del computador. Departamento de Arquitectura de Computadores Aritmética del computador Departamento de Arquitectura de Computadores Contenido La unidad aritmético lógica (ALU) Representación posicional. Sistemas numéricos Representación de números enteros Aritmética

Más detalles

Arquitectura y Organización de Computadoras

Arquitectura y Organización de Computadoras Arquitectura y Organización de Computadoras Unidad 2: La información en una computadora: Tamaños principales: bit, byte, palabra, doble palabra. Aritmética del procesador. Representaciones numéricas de

Más detalles

TEMA 2 REPRESENTACIÓN BINARIA

TEMA 2 REPRESENTACIÓN BINARIA TEMA 2 REPRESENTACIÓN BINARIA ÍNDICE. INTRODUCCIÓN HISTÓRICA A LA REPRESENTACIÓN NUMÉRICA 2. REPRESENTACIÓN POSICIONAL DE MAGNITUDES 2. Transformaciones entre sistemas de representación (cambio de base)

Más detalles

Tema 2 Representación de la información. Fundamentos de Computadores

Tema 2 Representación de la información. Fundamentos de Computadores Tema 2 Representación de la información Fundamentos de Computadores septiembre de 2010 Índice Índice 2.1 Introducción 2.2 Representación de enteros 2.2.1 Representación posicional de los números. 2.2.2

Más detalles

Introducción a la Programación 11 O. Humberto Cervantes Maceda

Introducción a la Programación 11 O. Humberto Cervantes Maceda Introducción a la Programación 11 O Humberto Cervantes Maceda Recordando En la sesión anterior vimos que la información almacenada en la memoria, y por lo tanto aquella que procesa la unidad central de

Más detalles

Sistemas de numeración, operaciones y códigos

Sistemas de numeración, operaciones y códigos Sistemas de numeración, operaciones y códigos Slide 1 Sistemas de numeración Slide 2 Números decimales El sistema de numeración decimal tiene diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, y 9 Es un sistema

Más detalles

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU)

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU) Agenda 0 Tipos de datos 0 Sistemas numéricos 0 Conversión de bases 0 Números racionales o Decimales 0 Representación en signo-magnitud 0 Representación en complemento Unidad Central de Procesamiento (CPU)

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

Computación I Representación Interna Curso 2011

Computación I Representación Interna Curso 2011 Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Temario Representación de Números Enteros Representación de Punto Fijo Enteros sin signo Binarios puros

Más detalles

Notas de Diseño Digital

Notas de Diseño Digital Notas de Diseño Digital Introducción El objetivo de estas notas es el de agilizar las clases, incluyendo definiciones, gráficos, tablas y otros elementos que tardan en ser escritos en el pizarrón, permitiendo

Más detalles

3. Codificación de información en binario

3. Codificación de información en binario Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2005 2006 3. Codificación de información en binario Existen Distintos muchas formas distintas de expresar

Más detalles

Área Académica: Ingeniería en Computación. Profesor: M. en C. Evangelina Lezama León

Área Académica: Ingeniería en Computación. Profesor: M. en C. Evangelina Lezama León Área Académica: Ingeniería en Computación Tema: Datos Profesor: M. en C. Evangelina Lezama León Periodo: Enero-Junio 2012 Tema: Abstract The data are the base of computer. In this paper we study concepts,

Más detalles

SEGUNDO APUNTES ANALISTA DE SISTEMAS DE CLASE EN COMPUTACIÓN. Materia: DATOS. Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I

SEGUNDO APUNTES ANALISTA DE SISTEMAS DE CLASE EN COMPUTACIÓN. Materia: DATOS. Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I ANALISTA DE SISTEMAS EN COMPUTACIÓN Materia: DATOS Asignatura: SISTEMAS DE PROCESAMIENTO DEDATOS I Cátedra: Lic. Ulises Vazquez SEGUNDO APUNTES DE CLASE 1 INDICE SISTEMAS NUMÉRICOS - 1 RA PARTE...3 DEFINICIÓN

Más detalles

I.- Sistemas numéricos en computadores

I.- Sistemas numéricos en computadores I.- Sistemas numéricos en computadores 1.1- Datos e información Debido a la naturaleza de las memorias semiconductoras, las computadoras digitales se diseñan para trabajar con el sistema binario. Independientemente

Más detalles

Sistemas numéricos. Aurelio Sanabria Taller de programación

Sistemas numéricos. Aurelio Sanabria Taller de programación Sistemas numéricos Aurelio Sanabria Taller de programación II semestre, 2015 Sistemas numéricos Son un conjunto de reglas y símbolos que permiten construir representaciones numéricas. Los símbolos son

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO TRABAJO REALIZADO COMO APOYO PARA LA CATEDRA INFORMATICA I Autora: Ing. Ing. Sylvia

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

1.1 Sistema de numeración binario

1.1 Sistema de numeración binario 1.1 Sistema de numeración binario Un sistema de numeración consta de: Un conjunto ordenado de cifras y un conjunto de operaciones. Llamaremos Base al número de cifras que hay en dicho conjunto. De este

Más detalles

Tema I. Sistemas Numéricos y Códigos Binarios

Tema I. Sistemas Numéricos y Códigos Binarios Tema I. Sistemas Numéricos y Códigos Binarios Números binarios. Aritmética binaria. Números en complemento-2. Códigos binarios (BCD, alfanuméricos, etc) Números binarios El bit. Representación de datos

Más detalles

Sebastián García Galán Sgalan@ujaen.es

Sebastián García Galán Sgalan@ujaen.es Universidad de Jaén E.U.P. Linares Dpto. Telecomunicaciones Área de Ingeniería Telemática Sebastián García Galán Sgalan@ujaen.es TEMA 2: 2.1 CODIFICACIÓN 2.2 SISTEMAS DE NUMERACIÓN BASES DE NUMERACIÓN

Más detalles

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería Electrónica Asignatura: Informática I 1R2 Trabajo Práctico N 1 - Año 2014

Universidad Tecnológica Nacional Facultad Regional Tucumán Ingeniería Electrónica Asignatura: Informática I 1R2 Trabajo Práctico N 1 - Año 2014 Ingeniería Electrónica Asignatura: Informática I 1R Trabajo Práctico N 1 - Año 014 Numeración Binaria, Hexadecimal y Octal 1.- Introducción a los números binarios, hexadecimal y octal: Conversión de Decimal

Más detalles

Aritmética finita y análisis de error

Aritmética finita y análisis de error Aritmética finita y análisis de error Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Aritmética finita y análisis de error 1 / 47 Contenidos 1 Sistemas decimal

Más detalles

Representación de números en binario

Representación de números en binario Representación de números en binario Héctor Antonio Villa Martínez Programa de Ciencias de la Computación Universidad de Sonora El sistema binario es el más utilizado en sistemas digitales porque es más

Más detalles

INFORMATICA I. Sistemas de Numeración - Representación Interna. Autor: Jorge Di Marco

INFORMATICA I. Sistemas de Numeración - Representación Interna. Autor: Jorge Di Marco Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Formación Básica Dpto de Matemática Carrera de : Ingeniería Civil, Electricista, Electrónica, Industrial, Mecánica y Agrimensura Autor:

Más detalles

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN.

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. INDICE. CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. TÉRMINOS BÁSICOS DE LA INFORMÁTICA. REPRESENTACIÓN INTERNA DE LA INFORMACIÓN. El SISTEMA BINARIO DE NUMERACION. El sistema decimal

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

SISTEMAS NUMERICOS Y ERRORES

SISTEMAS NUMERICOS Y ERRORES SISTEMAS NUMERICOS Y ERRORES 1. Introducción a la Computación Numérica El primer computador electrónico en base a la tecnología de tubos al vacío fue el ENIAC de la Universidad de Pensilvania, en la década

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

TEMA 3 Representación de la información

TEMA 3 Representación de la información TEMA 3 Representación de la información Álvarez, S., Bravo, S., Departamento de Informática y automática Universidad de Salamanca Introducción Para que el ordenador ejecute programas necesita dos tipos

Más detalles

Sistema binario. Representación

Sistema binario. Representación Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza

Más detalles

Lógica Binaria. Arquitectura de Ordenadores. Codificación de la Información. Abelardo Pardo abel@it.uc3m.es. Universidad Carlos III de Madrid

Lógica Binaria. Arquitectura de Ordenadores. Codificación de la Información. Abelardo Pardo abel@it.uc3m.es. Universidad Carlos III de Madrid Arquitectura de Ordenadores Codificación de la Información Abelardo Pardo abel@it.uc3m.es Universidad Carlos III de Madrid Departamento de Ingeniería Telemática Lógica Binaria COD-1 Internamente el ordenador

Más detalles

1 LA INFORMACION Y SU REPRESENTACION

1 LA INFORMACION Y SU REPRESENTACION 1 LA INFORMACION Y SU REPRESENTACION 1.1 Sistemas de numeración Para empezar a comprender cómo una computadora procesa información, debemos primero entender cómo representar las cantidades. Para poder

Más detalles

Estructura de Datos. Unidad I Tipos de Datos

Estructura de Datos. Unidad I Tipos de Datos Estructura de Datos Unidad I Tipos de Datos Conceptos Básicos Algoritmo: es una secuencia finita de pasos o instrucciones ordenadas crono-lógicamente que describen un método para resolver un problema específico.

Más detalles

Guía 01: Sistemas Numéricos

Guía 01: Sistemas Numéricos Guía 01: Sistemas Numéricos 1.1.- Sistemas Numéricos, bases 2, 10 y 16 En los sistemas numéricos posicionales un número se expresa como los dígitos del sistema multiplicados por la base de dicho sistema

Más detalles

Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería Química Curso 2010/2011

Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería Química Curso 2010/2011 Módulo 1. Fundamentos de Computadores Informática y Programación Escuela de Ingenierías Industriales y Civiles Grado en Ingeniería Química Curso 2010/2011 1 CONTENIDO Tema 1. Introducción y conceptos básicos

Más detalles

❷ Aritmética Binaria Entera

❷ Aritmética Binaria Entera ❷ Una de las principales aplicaciones de la electrónica digital es el diseño de dispositivos capaces de efectuar cálculos aritméticos, ya sea como principal objetivo (calculadoras, computadoras, máquinas

Más detalles

Tema 1: Sistemas de numeración

Tema 1: Sistemas de numeración 1 Tema 1: Sistemas de numeración Felipe Machado Norberto Malpica Susana Borromeo Joaquín Vaquero López, 2013 2 01 Digital vs. Analógico Índice 02 Sistemas de numeración 03 Códigos binarios 04 Aritmética

Más detalles

Sistemas de numeración, operaciones y códigos.

Sistemas de numeración, operaciones y códigos. Tema : Sistemas de numeración, operaciones y códigos. Para representar ideas, los seres humanos (al menos los occidentales) utilizamos cadenas de símbolos alfanuméricos de un alfabeto definido. En el mundo

Más detalles

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte)

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA... 1 1. Representación interna de datos.... 1 1.2. Sistemas de numeración.... 2 1.3. Aritmética binaria...

Más detalles

Apuntes de Microcontroladores (Repaso de temas previos)

Apuntes de Microcontroladores (Repaso de temas previos) Apuntes de Microcontroladores (Repaso de temas previos) Por M. C. Miguelangel Fraga Aguilar Enero 2015 Representaciones numéricas En estos apuntes se usara el posfijo b para denotar un número escrito en

Más detalles

2. Desde los transistores hasta los Circuitos Integrados 3Sit 3. Sistemas de representación numérica éi 4. Números con signo

2. Desde los transistores hasta los Circuitos Integrados 3Sit 3. Sistemas de representación numérica éi 4. Números con signo Electrónica Digital: Introducción 1Sñl 1. Señales Analógicas lói Sñl Señales Diitl Digitales 2. Desde los transistores hasta los Circuitos Integrados 3Sit 3. Sistemas de representación numérica éi 4. Números

Más detalles

Representación de los números en la computadora

Representación de los números en la computadora Facultad de Ciencias Astronómicas y Geofísicas - UNLP - Representación de los números en la computadora Pablo J. Santamaría Representación de los números en la computadora. Pablo J. Santamaría. Abril 2013

Más detalles

Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal FCFA Febrero 2012

Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal FCFA Febrero 2012 Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal CONVERSIONES DE UN SISTEMA A OTRO Para la realización de conversiones entre números de bases diferentes se efectúan operaciones aritméticas

Más detalles

UNIVERSIDAD BOLIVARIANA DE VENEZUELA

UNIVERSIDAD BOLIVARIANA DE VENEZUELA Introducción: El análisis de la LOGICA DIGITAL precisa la consideración de dos aspectos diferentes: el proceso lógico, que es la base teórica de los computadores, calculadoras, relojes digitales, etc.

Más detalles

Electrónica Digital I (ED21) Sesión: 3 Aritmética Binaria. Ing. José C. Benítez P.

Electrónica Digital I (ED21) Sesión: 3 Aritmética Binaria. Ing. José C. Benítez P. Electrónica Digital I (ED21) Sesión: 3 Aritmética Binaria Ing. José C. Benítez P. Sesión 3. Temas Aritmética Binaria Números Binarios Conversión de fracciones decimales a binario Conversión de fracciones

Más detalles

Fundamentos de Informática 1er curso de ingeniería Industrial. Tema 2. Datos. Tema 2. Datos

Fundamentos de Informática 1er curso de ingeniería Industrial. Tema 2. Datos. Tema 2. Datos Fundamentos de Informática 1er curso de ingeniería Industrial Tema 2. Datos 1 Tema 2. Datos 2.1 Codificación binaria 2.2 Tipos de datos 2.3 Operaciones básicas 2.4 Expresiones 2.5 Almacenamiento 2 1 2.1

Más detalles

Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León.

Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León. Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León Programa 1. Introducción. 2. Operaciones lógicas. 3. Bases de la aritmética

Más detalles

Informática Bioingeniería

Informática Bioingeniería Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,

Más detalles

Tema 1 - Sistemas numéricos y códigos

Tema 1 - Sistemas numéricos y códigos - y códigos Eduardo Rodríguez Martínez Departamento de Electrónica División de Ciencias Básicas e Ingeniería Universidad Autónoma Metropolitana Unidad Azcapotzalco Email: erm@correo.azc.uam.mx Oficina:

Más detalles

Tema 3. Estructura de la información. Computacion - FA.CE.NA.

Tema 3. Estructura de la información. Computacion - FA.CE.NA. Tema 3 Estructura de la información Estructura de la información TEMA 3 Introducción. Sistemas de numeración: decimal, binario, hexadecimal. Conversiones. Operaciones Unidades de medida. Representación

Más detalles

CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA.

CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA. CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA. INTRODUCCIÓN La lógica es el arte de la argumentación correcta y verdadera Organon, Aristóteles de Estagira Desde hace mucho tiempo, el hombre en su

Más detalles

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen Tema 7.- Los circuitos digitales. Resumen Desarrollo del tema.. Introducción al tema. 2. Los sistemas de numeración.. El sistema binario. 4. Códigos binarios. 5. El sistema octal y hexadecimal. 6. El Álgebra

Más detalles

UNIDAD 3. Códigos. Arquitectura de Computadoras Licenciatura en Informática a Distancia FCA-UNAM

UNIDAD 3. Códigos. Arquitectura de Computadoras Licenciatura en Informática a Distancia FCA-UNAM UNIDAD 3 Códigos Introducción a la unidad Las computadoras digitales emplean el sistema binario para representar y manipular cualquier información. Lo anterior implica que las señales que se manejan en

Más detalles

APÉNDICE APEENDIX SISTEMAS NUMÉRICOS. En este apéndice...

APÉNDICE APEENDIX SISTEMAS NUMÉRICOS. En este apéndice... SSTEMS NUMÉROS PEENX PÉNE J En este apéndice... ntroducción a sistemas numéricos.......................... Sistema numérico decimal................................ Sistema numérico octal...................................

Más detalles

Introducción a Códigos

Introducción a Códigos Introducción a Página 1 Agenda Página 2 numéricos posicionales numéricos no posicionales Construcción de cantidades Sistema decimal Sistema binario binarios alfanuméricos Conversión decimal a binario Conversión

Más detalles

Representación de la Información en una Computadora

Representación de la Información en una Computadora Representación de la Información en una Computadora Sistemas de Numeración El sistema de numeración que utiliza el hombre es el sistema decimal (de base 10). Lo creamos en forma natural porque tenemos

Más detalles

3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA. b a. C.S. c. s - 66 Electrónica Digital

3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA. b a. C.S. c. s - 66 Electrónica Digital 3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA 3.1. Operaciones aritméticas: suma, resta, comparación y producto 3.2. Unidad lógica y aritmética: ALU 3.3. Codificación de números en binario 3.4. Codificación

Más detalles

ELO311 Estructuras de Computadores Digitales. Números

ELO311 Estructuras de Computadores Digitales. Números ELO311 Estructuras de Computadores Digitales Números Tomás Arredondo Vidal Este material está basado en: material de apoyo del texto de David Patterson, John Hennessy, "Computer Organization & Design",

Más detalles

Códigos Binarios de Representación de Datos

Códigos Binarios de Representación de Datos Códigos Binarios de Representación de Datos M. en C. Erika Vilches Parte 1 Código Gray No tiene pesos asignados a las posiciones de los bits y no es un código aritmético. Principal característica: Muestra

Más detalles

UNIDADES DE ALMACENAMIENTO DE DATOS

UNIDADES DE ALMACENAMIENTO DE DATOS 1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo

Más detalles

Ingeniería Técnica en Informática de Sistema E.T.S.I. Informática Universidad de Sevilla

Ingeniería Técnica en Informática de Sistema E.T.S.I. Informática Universidad de Sevilla Fundamentos de Computadores Representación Binaria Ingeniería Técnica en Informática de Sistema E.T.S.I. Informática Universidad de Sevilla Versión 1.0 (Septiembre 2004) Copyright 2004 Departamento de

Más detalles

Unidad 1 SISTEMAS NUMERICOS

Unidad 1 SISTEMAS NUMERICOS Unidad 1 SISTEMAS NUMERICOS Objetivos Comprender el manejo de números y operaciones aritméticas desde un lenguaje de programación de bajo nivel. Repasar los métodos de representación numérica de los sistemas:

Más detalles

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA 2010

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA 2010 Detalles de Matlab MATLAB utiliza la aritmética del punto flotante, la cual involucra un conjunto finito de números con precisión finita. Esta limitación conlleva dos dificultades: los números representados

Más detalles

LABORATORIO DE COMPUTADORAS

LABORATORIO DE COMPUTADORAS TP 1 LABORATORIO DE COMPUTADORAS Facultad de Ingeniería. UNJu Tema: Sistemas Numéricos y Diseño Combinacional y Secuencial Apellido y Nombre: LU: Carrera: Fecha: 2013 EJEMPLOS Estándar IEEE 754 El estándar

Más detalles

Tema 2 : Códigos Binarios

Tema 2 : Códigos Binarios Tema 2 : Códigos Binarios Objetivo: Conocer diferentes códigos binarios Conocer algunos códigos de detección y corrección de errores. Códigos alfanuméricos 1 Códigos Binarios A la representación de cifras,

Más detalles

Buceando en los MCUs Freescale...

Buceando en los MCUs Freescale... COMENTARIO TÉCNICO Buceando en los MCUs Freescale... Por Ing. Daniel Di Lella Dedicated Field Application Engineer EDUDEVICES www.edudevices.com.ar dilella@arnet.com.ar Matemática de Punto Flotante Por

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

Computación y Programación Representación de Datos

Computación y Programación Representación de Datos Universidad de Talca Facultad de Ingeniería Computación y Programación Representación de Datos Ya sabemos que cuando se ejecuta un programa, tanto el programa, como los datos que éste utiliza, se almacenan

Más detalles

Representación de la información

Representación de la información Representación de la información A. Josep Velasco González Con la colaboración de: Ramon Costa Castelló Montse Peiron Guàrdia PID_00163598 CC-BY-SA PID_00163598 2 Representación de la información CC-BY-SA

Más detalles

Materia: Informática. Nota de Clases Sistemas de Numeración

Materia: Informática. Nota de Clases Sistemas de Numeración Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

Organización del Computador. Prof. Angela Di Serio

Organización del Computador. Prof. Angela Di Serio Punto Flotante Muchas aplicaciones requieren trabajar con números que no son enteros. Existen varias formas de representar números no enteros. Una de ellas es usando un punto o coma fijo. Este tipo de

Más detalles

Matemática de redes Representación binaria de datos Bits y bytes

Matemática de redes Representación binaria de datos Bits y bytes Matemática de redes Representación binaria de datos Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo pueden entender

Más detalles

parte del tiempo de procesamiento en realizar este tipo de Es importante por que una computadora consume gran

parte del tiempo de procesamiento en realizar este tipo de Es importante por que una computadora consume gran Diseño de Circuitos Lógicos Aritmética Binaria Eric Rodríguez Peralta P.E. INGENIERO EN COMPUTACIÓN UNIVERSIDAD AUTÓNOMA DE GUERRERO 10 de septiembre de 2010 erodriguez@uagro.mx AC-506 1 de 24 Aritmética

Más detalles

Computación y Programación Representación de Datos

Computación y Programación Representación de Datos Universidad de Talca Facultad de Ingenieria Computación y Programación Representación de Datos Ya sabemos que cuando se ejecuta un programa, tanto el programa, como los datos que éste utiliza, se almacenan

Más detalles

Figura 1: Suma binaria

Figura 1: Suma binaria ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales

Más detalles