CONDENSADORES. 2 condensador. Rpta. pierde

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONDENSADORES. 2 condensador. Rpta. pierde"

Transcripción

1 CONDENSADORES 1. En una asociación de tres condensadores en serie con cargas Q 1, Q 2 y Q 3 la carga Q del condensador equivalente es igual a: a) Q=Q 1 +Q 2 +Q 3 b) Q=Q 1 =Q 2 =Q 3 c) (Q 1 +Q 2 +Q 3 )/2 d) 2 (Q 1 +Q 2 +Q 3 ) 2. Un condensador de placas planas y paralelas de área A y separación entre placas d almacena una carga Q. Si la separación entre las placas del condensador cargado disminuye a d/3, que cantidad de energía potencial eléctrica gana o pierde el 2 Q d condensador. Rpta. pierde 3Aε 0 3. Dos capacitores, C 1 = 2µ F y C 2 = 4 µf, están conectados en serie con una batería de 18 V. La batería se desconecta y las placas del mismo signo se conectan. Encuentre la carga final y la diferencia de potencial para cada capacitor. Rpta. (a) 16 µc, 32 µc, (b) 8 voltios. 4. En el circuito de la figura se tiene que los potenciales en los puntos b y d son iguales ( V b = V d ), además C 1 = 4µF, C 3 = 9µF, C 4 = 12µF, ε o = 10V.Hallar: a) el voltaje y la carga en C 3 b) el valor de la capacitancia C 2. Rpta. (a) 3,1V y 27,7µC, (b) 8,9µF 5. La figura muestra un circuito donde: C 1 = 10µF, C 2 = 20µF, C 3 = 40µF, C 4 = 60µF, V A = 120V y V B = 30V. Hallar: a) la capacidad equivalente del circuito entre los puntos A y B b) la carga en C 4 c) la diferencia de potencial entre los puntos M y N Rptas. (a) 30µF, (b) 0, (c) 90V 6. Cual de las proposiciones propuestas es correcta. I. Condensadores en serie cargados, todos adquieren la misma cantidad de carga eléctrica. II. Condensadores en serie cargados, todos tienen el mismo voltaje. III. Condensadores en paralelo cargados, todos tienen el mismo voltaje. Rpta. Solo I y III son correctos 7. En el circuito mostrado, los condensadores C 1 =1500µF y C 2 =2200µF. Antes de conectar el interruptor S, C 1 esta cargado con 15000µC y C 2 descargado. Después de cerrar el interruptor S, se pide: a) Hallar las cargas finales en cada condensador

2 b) La energía electrostática total de los condensadores después de cerrar el interruptor S 8. La figura muestra una asociación de condensadores. Inicialmente el condensador C 1 tiene la carga Q o = 660 µc, estando los condensadores C 2, C 3 y C 4 descargados. Si se cierra el interruptor S, determinar: a. La capacitancia equivalente entre los puntos a y b b. Las cargas finales de cada condensador c. La energía almacenada en el condensador C 1 antes y después de cerrar el interruptor S. C 1 =4µF, C2=5µF, C 3 =3µF, C 4 =6µF Rptas: a) 11 µf; b) 240 µc, 300µC, 120 µc ; c) 54,45 mj, 7,2 mj 9. En el circuito de la figura, los condensadores están inicialmente descargados. (INF-ExParc a) Se realizan las siguientes acciones: + Se cierra S1 12V Luego se abre S1 y se cierra S2 * Determinar la carga en C1 y C2. * Determinar las energías almacenadas en C1 y C2. b) Manteniendo abierto S1 y cerrado S2, se cierra S3 * Determinar la carga en C1, C2 y C3. * Determinar la energía total almacenada en los tres condensadores. S1 S2 C1 3uF S3 C2 6uF C3 9uF 10. Un condensador aislado de 30 µf se encuentra cargado con 240 µc. Que voltaje existe entre los terminales del condensador si este se llena con un dieléctrico de constante k=4.. Rpta. 2 voltios 11. Dos condensadores de 4 µf y 6 µf están conectados en paralelo permanentemente a una batería de 50 voltios. Si se introduce en el condensador de 6 µf un dieléctrico de constante K = 3, que cantidad de carga adicional debe entregar la batería al sistema de condensadores. Rpta. 600 µc 12. Se tienen dos condensadores de 3 µf y 6µF en serie cargados por una batería de 50 voltios la cual es luego retirada. Que voltaje aparecería a través de cada uno si el condensador de 3µf se llena completamente con un dieléctrico de constante K = 4. Rpta. 8,33 y 16,66 V 13. Un capacitor C 1 = 3 µf tiene una diferencia de potencial inicial de 12 v, y un segundo capacitor C 2 = 5nf tiene una diferencia de potencial inicial de 10 voltios. Encuentre las cargas finales y las diferencias de potencial para cada uno, si se conectan las placas con las siguientes polaridades

3 a) Con signos iguales b) Con signos opuestos. RESPUESTAS: (a) µc, µc, 10,75 voltios. (b) 5,25 µc, 8,75 µc, 1,75 voltios. 14. Un capacitor de placas paralelas, cuya separación entre las placas es d, se conecta a una batería de diferencia de potencial V. Las placas se separan hasta que su distancia es 2 d. Cuál es el cambio en cada una de las siguientes cantidades: a) la diferencia de potencial; b) la carga sobre cada placa; y c) la energía almacenada en el capacitor? 15. Se tiene dos capacitores idénticos con C=150µF, uno de ellos con aire entre sus placas y al otro se le inserta un dieléctrico de constante K, conectados a una fuente como se muestra en la figura. Si la capacitancia equivalente del sistema es de 600µF y la energía almacenada 25x10-3 J, determine: a) la constante K b) la carga de cada capacitor c) la energía almacenada en el sistema d) Si se extrae el dieléctrico manteniendo conectada la batería, halle la nueva energía del sistema. 16. Se tiene un condensador constituido por dos cascarones esféricos conductores concéntricos muy delgados, siendo los radios de las esferas r 1 = 1cm y r 2 = 3cm. Calcule: a) La capacidad del condensador. b) El campo eléctrico a 2cm del centro de las esferas cuando la esfera interior es cargada con +50mC y la exterior con -50mC. 17. En el circuito de la figura todos los condensadores tienen la misma capacidad: 10mF. Hallar a) La capacidad equivalente entre los puntos x y. b) Si entre los puntos x y aplicamos una diferencia de potencial de 10V, calcule la carga almacenada en el condensador C Los extremos libres A y B del sistema de condensadores mostrados en la figura han sido conectados previamente a una fuente (batería) para ser cargados eléctricamente. Se ha logrado determinar que el condensador C 1 tiene una diferencia de potencial V 1 = 1,5V. Los valores de la capacitancias respectivas son C 1 = 1800 µf, C 2 =1000 µf, C 3 = 500 µf, C 4 = 400 µf. a) Calcule la carga (en µc) de cada condensador b) En el condensador C 4 se introduce completamente un dieléctrico de constante =1,6, calcule su energía antes y X C3 Y

4 después de haber introducido el dieléctrico. Rpta. a) 3780 µc, 3780 µc, 2100 µc, 1680 µc. b) µj, µj 19. La figura muestra un circuito con condensadores. Si entre los terminales A y B aplicamos una batería de 10V, hallar: a) La capacidad equivalente entre A y B así como también la energía electrostática total almacenada en los condensadores. b) Si introducimos un dieléctrico (k = 5) en todo el volumen entre las placas del condensador de ½ uf, sin retirar la batería, calcule el voltaje en cada condensador y la nueva energía total almacenada en los condensadores. A 3/2 µf 3/4 µf 1/2 µf B 20. Un condensador C = 12 µf es cargado completamente mediante un potencial V 1 = 12 V, a continuación se desconecta de la batería y se conecta a un condensador C x que originalmente fue cargado con una diferencia de potencial de V 2 = 12 V. Si el voltaje de la asociación es de V 3 = 3 v. Halle: a) Indique la polaridad de los condensadores al conectarse b) La capacidad del condensador C x c) La carga y la energía almacenada finalmente en el condensador C x 21. En el sistema de condensadores que se muestra en la figura, valores de los condensadores son C 1 = 400 µf, C 2 = 40 µf, C 3 = 60 µf, C 4 = 200 µf y la diferencia de potencial entre A y B es V AB = 12 V. Se pide: a) Calcular las cargas (en µc) y voltajes (en V) en cada uno de los condensadores. b) Si se introduce un dieléctrico de constante к = 2 en el condensador C 4 manteniendo conectada la fuente, calcúlela energía en dicho condensador antes y después de haber introducido el dieléctrico

5 22. Dos condensadores de igual capacidad C 1 = C 2 = C = 4µF, están conectados en paralelo y se cargan mediante una fuente de voltaje V 1 = 5 V, luego se desconecta la fuente y se introduce un dieléctrico de constante K = 3, en uno de los condensadores de modo que llena completamente el espacio entre sus placas. Halle: a) El nuevo voltaje de cada condensador, b) La cantidad de carga que pasa de un condensador al otro. 23. En el circuito mostrado todos los condensadores están inicialmente descargados, luego: a) Se cierra y se abre S 1, quedando cargados C 1 y C 2.. Hallar las cargas de C 1 y C 2 y la energía total de estos condensadores. b) Estando S 1 abierto, se cierra S 2, hallar las cargas de todos los condensadores y la energía total almacenada en ellos. c) A que se debe la diferencia de las dos energías totales? V = 20volt, C 1 = 4µF, C 2 = 6µF, C 3 = 3µF C 4 = 6µF. 24. La figura muestra una asociación de condensadores con capacitancias C 1 = 4µF, C 2 =5µF y C 3 =2µF. Inicialmente en condensador C 1 tiene una energía de 0,8mJ, estando desconectados los condensadores C 2 y C 3. Posteriormente se cierra el interruptor S. Determinar: a) La diferencia de potencial y la carga del condensador C 1 antes de cerrar el interruptor. (2 ptos) b) Las cargas finales de cada condensador. (2ptos) c) La energía final del sistema si se introduce un dieléctrico de constante k=2 en C 1, (1 pto) 25. En la figura se muestra un sistema de condensadores que ha sido cargado completamente por medio de una batería con una diferencia de voltaje, entre los puntos a y b, de 20V. Los valores de las capacitancias están dadas por C 1 = 24 µf, C 2 = 12 µf y C 3 = 10 µf. Se pide: a) Calcular la capacidad equivalente del circuito, la carga (en µc) que ha recibido el circuito y la energ ía del sistema. b) Estando el circuito desconectado de la batería, se introduce completamente un dieléctrico con κ = 1,2 en el condensador C 3. Determine el nuevo voltaje entre a y b y la energía final del sistema?

6 26. En la figura mostrada, C 1 = 2µF, C 2 = 4µF y la carga eléctrica en C 1 es 12 µ C. Hallar:.(05 P) a) La carga eléctrica en C 2 b) El voltaje de los condensadores y de la batería. c) Si la distancia entre las placas en C 2 es de 0.01 mm. calcule el campo eléctrico entre ellas.(05 P) 27. Dos condensadores de capacidades iguales C = 3uf, están conectados a una batería de voltaje V 1 = 6v.Determinar: a) La carga en cada condensador. (1p) V 1 C C b) La energía total almacenada en los condensadores. (1p) A continuación se desconecta la batería de los condensadores y entre las placas de uno de ellos se inserta un dieléctrico de constante K = 4. En estas condiciones determinar: c) El voltaje en los condensadores. (1p) d) La carga en los condensadores. (1p) e) La energía total almacenada en los condensadores. (1p) C C K 28. En el circuito de capacitores, se sabe que el capacitor de 9µf esta a una diferencia de potencial de 5 voltios. El voltaje de la batería es desconocido. Hallar a.-) La Capacitancia Equivalente del Circuito ( 1 punto ) b.-) Las cargas eléctricas en los condensadores de 6 µf y de 3µf ( 2 puntos ) c.-) El voltaje en los capacitores de 7µf y de 5µf ( 2 puntos ) Ver figura 29. Las placas de un condensador plano son cuadrados de 3 cm de lado separados una distancia de 1 mm.: (05 P.) a) Calcule la capacidad del condensador b) Se conecta el condensador a una batería de 12 V. Calcule la carga depositada en sus placas y el campo eléctrico entre placas. c) Se coloca papel de constante dieléctrica 3 entre las placas. Vuelva a calcular la carga en sus placas y la energía del condensador. 30. Dos placas conductoras paralelas con densidades de carga +σ y σ (σ = 26,55 x 10-9 c/m 2 ), están separadas una distancia de 10cm. Una bola de masa 1,0 g y carga q está

7 suspendida, en el punto medio entre las placas, por hilos aisladores como se muestra en la figura. Determinar : a) El campo eléctrico entre las placas (1p) b) El diagrama de cuerpo libre de la carga q, cuál es el signo de q? (1p) c) La magnitud de q para que la tensión en cada hilo tenga un valor de 1,00x10-2 N.(1p) q σ d) El tiempo que demora la carga en alcanzar una de las placas, cuando ambas cuerdas se rompen simultáneamente.considerar que para romper los hilos el campo debe aumentar 100 veces su valor encontrado en a) (2p) σ 31. Halle la carga eléctrica en cada condensador. (03P) 32. Las Capacidades de los capacitores representados en la figura son C 1 = 7µF; C 2 = 5µF, C 3 = 4µF, C 4 = 3µF, C 5 = 4µ, C 6 = 2µF (5P) a) Cuál es la capacidad equivalente entre los puntos x e y, b) Si la carga en el capacitor C 3 es q 3 = 288 µc. Halle la diferencia de potencial entre los puntos xy c) Cual es la energía almacenada en el capacitor C 2? 33. En el circuito de de la figura, se sabe que el condensador de 3µf esta a una diferencia de potencial de (8/3) voltios. El voltaje de la batería es desconocido. Hallar: a) La capacidad equivalente del circuito. (1p) b) Las cargas eléctricas en los condensadores de µf 1 y 5µf. (2p) c) El voltaje en los condensadores de 4µf y 6µf. (2p)

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES

GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES GUÍA DE EJERCICIOS-6 ELECTRICIDAD-1 CONEXIÓN SERIE PARALELO DE CONDENSADORES Área de EET Página 1 de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual

Más detalles

TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA

TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA TERCER TALLER DE REPASO EJERCICIOS DE CAPACITANCIA 1. Un conductor esférico de radio a y carga Q es concéntrico con un cascaron esférico más grande de radio b y carga Q, como se muestra en la figura. Encuentre

Más detalles

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto

32. Se conecta un condensador de 10 µf y otro de 20 µf en paralelo y se aplica al conjunto 2. Conductores y dieléctricos. Capacidad, condensadores. Energía electrostática. 24. Cargamos un condensador de 100 pf hasta que adquiere una ddp de 50 V. En ese momento desconectamos la batería. Conectamos

Más detalles

CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. 1. Determinar su capacidad. 2. La expresión de la energía almacenada entre sus placas.

CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. 1. Determinar su capacidad. 2. La expresión de la energía almacenada entre sus placas. CONDENSADOR CILÍNDRICO Y ESFÉRICO. ASOCIACIÓN DE CONDENSADORES. P1.- Un condensador esférico está compuesto por dos esferas concéntricas, la interior de radio r y la exterior (hueca) de radio interior

Más detalles

FUERZA Y CAMPO ELÉCTRICO

FUERZA Y CAMPO ELÉCTRICO FUERZA Y CAMPO ELÉCTRICO PREGUNTAS 1. Se tienen tres esferas conductoras A, B y C idénticas y aisladas. La esfera A se encuentra cargada con 60 µc y B y C totalmente descargadas. Si seguimos el siguiente

Más detalles

10. La figura muestra un circuito para el que se conoce que:

10. La figura muestra un circuito para el que se conoce que: CORRIENTE ELÉCTRICA 1. Un alambre de Aluminio de 10m de longitud tiene un diámetro de 1.5 mm. El alambre lleva una corriente de 12 Amperios. Encuentre a) La Densidad de corriente b) La velocidad de deriva,

Más detalles

Introducción. Condensadores

Introducción. Condensadores . Introducción Un condensador es un dispositivo que sirve para almacenar carga y energía. Está constituido por dos conductores aislados uno de otro, que poseen cargas iguales y opuestas. Los condensadores

Más detalles

POTENCIAL ELÉCTRICO +Q A B -Q

POTENCIAL ELÉCTRICO +Q A B -Q POTENCIAL ELÉCTRICO 1. La figura muestra una región del espacio donde existe un campo eléctrico uniforme E 0 y las líneas equipotenciales son paralelas y separadas entre si 10 cm. a) Que trabajo realiza

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón?

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón? ANEXO 1. FÍSICA. 1- Compara la fuerza eléctrica y la fuerza gravitacional entre: a- Dos electrones. b- Un protón y un electrón. Carga del electrón: e = 1,6x10-19 C Masa del protón: 1,67x10-27 Kg Masa del

Más detalles

FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III

FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III UAP FACULTAD DE INGENIERIAS Y ARQUITECTURA ESCUELA PROFESIONAL INGENIERÍA A AMBIENTAL ASIGNATURA: FÍSICA III CÓDIGO: 24211, I CICLO, 2HR. TEÓRICAS Y 2HR. PRÁCTICAS SESIÓN : 5 Y 6 (SEMANA 6) TEMA: CONDENSADORES

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 4: CAPACITANCIA Determinar, a partir de su geometría, la capacitancia

Más detalles

Ejercicios Propuestos Campos en la materia.

Ejercicios Propuestos Campos en la materia. Ejercicios Propuestos Campos en la materia. 1. Un dipolo eléctrico es un par de cargas de la misma magnitud y signos opuestos, situadas en puntos diferentes. Así, la carga total del dipolo es cero. (a)

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

CAPACITANCIA ELÉCTRICA Y DIELÉCTRICOS

CAPACITANCIA ELÉCTRICA Y DIELÉCTRICOS CAPACITANCIA ELÉCTRICA Y DIELÉCTRICOS Objetivo: Verificar la relación que existe entre la carga eléctrica, el voltaje eléctrico y la capacitancia eléctrica de un capacitor de placas paralelas. Material:

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

Módulo 1: Electrostática Fuerza eléctrica

Módulo 1: Electrostática Fuerza eléctrica Módulo 1: Electrostática Fuerza eléctrica 1 Cargas eléctricas y fuerzas Hay dos tipos de cargas cargas positivas y cargas negativas REPELEN REPELEN ATRAEN Fuerzas del mismo signo se repelen, mientras que

Más detalles

/Ejercicios de Campo Eléctrico

/Ejercicios de Campo Eléctrico /Ejercicios de Campo Eléctrico 1-Determine la fuerza total actuante sobre q2 en el sistema de la figura. q 1 = 12 µ C q 2 = 2.0 µ C q 3 = 12 µ C a= 8,0 cm b= 6,0 cm 2-Determine la fuerza total actuante

Más detalles

EJERCICIOS DE POTENCIAL ELECTRICO

EJERCICIOS DE POTENCIAL ELECTRICO EJERCICIOS DE POTENCIAL ELECTRICO 1. Determinar el valor del potencial eléctrico creado por una carga puntual q 1 =12 x 10-9 C en un punto ubicado a 10 cm. del mismo como indica la figura 2. Dos cargas

Más detalles

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse.

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse. CONDENSADOR ELÉCTRICO Un capacitor es un dispositivo formado por dos conductores, en forma de placas o láminas, separados por un material que actúa como aislante o por el vacío. Este dispositivo al ser

Más detalles

Electrostática. Procedimientos

Electrostática. Procedimientos Electrostática. Procedimientos 1. Calcula a qué distancia tendrían que situarse un electrón y un protón de manera que su fuerza de atracción eléctrica igualase al peso del protón. 0,12 m 2. Recuerdas la

Más detalles

Tema 7 Condensadores

Tema 7 Condensadores Tema 7 Condensadores 7.1.-EL CONDENSADOR Es un componente electrónico formado por dos placas metálicas paralelas, denominadas armaduras, separadas entre sí por aíre o por cualquier otro material aislante,

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 9. Capacitancia. i. Limitaciones al cargar un capacitor. ii. El capacitor. iii. Calculo

Más detalles

TALLER UNIFICADO DE ELECTROMAGNETISMO SEGUNDO CORTE

TALLER UNIFICADO DE ELECTROMAGNETISMO SEGUNDO CORTE TALLER UNIFICADO DE ELECTROMAGNETISMO SEGUNDO CORTE Departamento De F ısica y Geolog ıa, Universidad De Pamplona 1. Dos cargas puntuales de 2C y 3C est an separadas por una distancia 1m. Calcular el campo

Más detalles

1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una

1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una 1. INTENSIDAD DE CORRIENTE Y CORRIENTE ELÉCTRICA 1. Por un conductor circula una corriente eléctrica de 6 ma Qué cantidad de carga atraviesa una sección transversal cualquiera del conductor cada minuto?

Más detalles

CAPACITORES QUE ES UN CAPACITOR?

CAPACITORES QUE ES UN CAPACITOR? QUE ES UN CAPACITOR? 14 CAPACITORES Sin entrar en grandes detalles, un capacitor está formado de 2 placas una enfrente de la otra. Las placas se cargan con cargas eléctricas. Una placa es positiva y la

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

APUNTE: ELECTRICIDAD-1 CONDENSADORES

APUNTE: ELECTRICIDAD-1 CONDENSADORES APUNTE: ELECTRICIDAD-1 CONDENSADORES Área de EET Página 1 de 16 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 2002. Página

Más detalles

Capítulo 27 Corriente y Resistencia

Capítulo 27 Corriente y Resistencia Capítulo 27 Corriente y Resistencia Es como movimiento a Través de un Fluido La fuerza original (en este ejemplo, gravedad) causa movimiento pero eventualmente es cancelada por la fuerza de fricción. Cuando

Más detalles

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala

Más detalles

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato EL CAMPO ELÉCTRICO Física de 2º de Bachillerato Los efectos eléctricos y magnéticos son producidos por la misma propiedad de la materia: la carga. Interacción electrostática: Ley de Coulomb Concepto de

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

III A - CAMPO ELÉCTRICO

III A - CAMPO ELÉCTRICO 1.- Una carga puntual de 4 µc se encuentra localizada en el origen de coordenadas y otra, de 2 µc en el punto (0,4) m. Suponiendo que se encuentren en el vacío, calcula la intensidad de campo eléctrico

Más detalles

3. Determina el valor del campo eléctrico en el punto B del esquema de la siguiente figura:

3. Determina el valor del campo eléctrico en el punto B del esquema de la siguiente figura: ampo eléctrico 1 Se tienen dos cargas eléctricas puntuales, una de 3 µ y la otra de - 3 µ, separadas una distancia de 0 cm alcula la intensidad del campo eléctrico y el potencial eléctrico en los siguientes

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

1. Los conductores eléctricos. Las resistencias fijas y variables.

1. Los conductores eléctricos. Las resistencias fijas y variables. 1. Los conductores eléctricos. Las resistencias fijas y variables. La corriente eléctrica continua (DC), se puede explicar como el flujo de electrones por un conductor. Para definir este transporte, se

Más detalles

B Acumuladores de corriente eléctrica

B Acumuladores de corriente eléctrica 1 B Acumuladores de corriente eléctrica Condensadores Distintos tipos de condensadores. 2 3 Configuraciones para acoplar condensadores. Pilas y baterías a) Características de las pilas y baterías: Resistencia

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

EJERCICIOS TEMA 12: CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA

EJERCICIOS TEMA 12: CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA EJERCICIOS TEMA 12: CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA 1. Qué cantidad de electrones habrán atravesado un cable si la intensidad ha sido de 5 A durante 30 minutos? I = Q = I. t = 5. 30. 60 = 9000

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

Fuerza Eléctrica y Ley de Coulomb

Fuerza Eléctrica y Ley de Coulomb Fuerza Eléctrica y Ley de Coulomb Junto con fuerza magnética (a la cuál está intimamente relacionada) es una de las cuatro fuerzas fundamentales de la naturaleza y la única que actua en nuestra vida diaria

Más detalles

Tema 2. Condensadores en vacío. Ley de Gauss.

Tema 2. Condensadores en vacío. Ley de Gauss. 1º E.U.I.T.I.Z. urso 006-007. Electricidad y Electrometría. Problemas Tema 1/7 Tema. ondensadores en vacío. Ley de Gauss. - Transferencia de carga entre condensadores. 1.- Para cargar dos conductores aislados,

Más detalles

Efecto del dieléctrico en un capacitor

Efecto del dieléctrico en un capacitor Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor

Más detalles

CAPACITORES (parte 1)

CAPACITORES (parte 1) CAPACTORES (parte 1) Un dispositivo que sea capaz de almacenar cargas eléctricas es llamado capacitor. Cuando se aplica una tensión de corriente continua a un capacitor, la corriente empieza a circular

Más detalles

positiva que realizan cargas eléctricas al mover una carga de prueba desde el punto A al B. En símbolos:

positiva que realizan cargas eléctricas al mover una carga de prueba desde el punto A al B. En símbolos: DIFERENCI DE POTENCIL (TENSIÓN O VOLTJE) En términos prácticos, no es tan importante conocer el potencial eléctrico existente en determinado punto de un campo, sino cuál es la diferencia de éste entre

Más detalles

IES RIBERA DE CASTILLA LA CORRIENTE ELÉCTRICA

IES RIBERA DE CASTILLA LA CORRIENTE ELÉCTRICA UNIDAD 9 LA CORRIENTE ELÉCTRICA La intensidad de la corriente. Corriente eléctrica. Conductores. Tipos. Intensidad. Unidades. Sentido de la corriente. Corriente continua y alterna. Resistencia. Resistencia

Más detalles

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año: (Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial

Más detalles

Guía de seguridad eléctrica en el laboratorio

Guía de seguridad eléctrica en el laboratorio Guía de seguridad eléctrica en el laboratorio La presente guía de seguridad pretende establecer unas normas mínimas de comportamiento durante la realización de las prácticas para evitar accidentes derivados

Más detalles

LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN

LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN Objetivos. Estudiar y familiarizarse con el tablero de conexiones (Protoboard ) y la circuitería experimental. Aprender a construir circuitos

Más detalles

Ejercicios corriente alterna

Ejercicios corriente alterna Ejercicios corriente alterna 1. EJERCICIO 2. (2.5 puntos) A una resistencia de 15Ω en serie con una bobina de 200 mh y un condensador de 100µF se aplica una tensión alterna de 127 V, 50 Hz. Hallar: a)

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

2. Calcula el voltaje al que hay que conectar una resistencia de 27 Ω para que pase por ella una intensidad de 3 A. Resultado: V = 81 V

2. Calcula el voltaje al que hay que conectar una resistencia de 27 Ω para que pase por ella una intensidad de 3 A. Resultado: V = 81 V .- CONCEPTOS BÁSCOS. Calcula la intensidad que circula por una resistencia de 0 Ω conectada a un generador de 5 V. Resultado: = 0,5 A. Calcula el voltaje al que hay que conectar una resistencia de 7 Ω

Más detalles

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO 1. Una carga eléctrica, q = 3,2.10-19 C,

Más detalles

TEOREMA DE THEVENIN. 1 P ágina SOLEC MEXICO

TEOREMA DE THEVENIN. 1 P ágina SOLEC MEXICO 1 P ágina SOLEC MEXICO TEOREMA DE THEVENIN Un circuito lineal con resistencias que contenga una o más fuentes de voltaje o corriente puede reemplazarse por una fuente única de voltaje y una resistencia

Más detalles

DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO

DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO CAMPO ELÉCTRICO El espacio que rodea a un objeto cargado se altera en presencia de la carga. Podemos postular la existencia

Más detalles

LEY DE COULOMB. Demostrar experimentalmente la Ley de Coulomb.

LEY DE COULOMB. Demostrar experimentalmente la Ley de Coulomb. LEY DE COULOMB Objetivo: Demostrar experimentalmente la Ley de Coulomb. Material: 1.- Balanza de Coulomb..- Fuente de voltaje (0-6 KV). 3.- Jaula de Faraday. 4.- Electrómetro. Introducción: La balanza

Más detalles

EJERCICIOS DE ELECTRICIDAD

EJERCICIOS DE ELECTRICIDAD EJERCICIOS DE ELECTRICIDAD Intensidad por un conductor 1. Qué intensidad de corriente ha atravesado una lámpara por la que han pasado 280.000 electrones en 10 segundos? 2. Cuántos electrones han atravesado

Más detalles

Ley de Coulomb. Introducción

Ley de Coulomb. Introducción Ley de Coulomb Introducción En este tema comenzaremos el estudio de la electricidad con una pequeña discusión sobre el concepto de carga eléctrica, seguida de una breve introducción al concepto de conductores

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática (II) 1 m 2 m

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática (II) 1 m 2 m 1(7) jercicio nº 1 Calcula la fuerza sobre la carga q 3 Datos: q 1 = 12 µc, q 2 = 4 µc y q 3 = 5 µc 1 m 2 m jercicio nº 2 Calcula la fuerza sobre la carga q 3 Datos: q 1 = 6 µc, q 2 = 4 µc y q 3 = 9 µc

Más detalles

CARGA Y DESCARGA DE UN CAPACITOR

CARGA Y DESCARGA DE UN CAPACITOR CARGA Y DESCARGA DE UN CAPACITOR Objetivos del Trabajo: Observar el proceso de carga y descarga de un capacitor a través de una resistencia. Realizar mediciones y tabular los valores registrados. Trazar

Más detalles

R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios.

R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios. I FUNDAMENTO TEÓRICO. LEY DE OHM Cuando aplicamos una tensión a un conductor, circula por él una intensidad, de tal forma que si multiplicamos (o dividimos) la tensión aplicada, la intensidad también se

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

Unidad didáctica ELECTRICIDAD 2º ESO

Unidad didáctica ELECTRICIDAD 2º ESO Unidad didáctica ELECTRICIDAD 2º ESO TIPOS DE CONEXIONES conexión mixta EFECTOS DE LA CORRIENTE ELÉCTRICA SIMBOLOGÍA NORMALIZADA A la hora de dibujar los circuitos eléctricos en un plano, no se utiliza

Más detalles

M A Y O A C T U A L I Z A D A

M A Y O A C T U A L I Z A D A U N I V E R S I D A D N A C I O N A L E X P E R I M E N T A L F R A N C I S C O D E M I R A N D A C O M P L E J O A C A D É M I C O E L S A B I N O Á R E A D E T E C N O L O G Í A D E P A R T A M E N T

Más detalles

PRACTICA 4: CAPACITORES

PRACTICA 4: CAPACITORES 1 PRACTICA 4: CAPACITORES 1.1 OBJETIVO GENERAL Determinar qué factores influyen en la capacitancia de un condensador y las formas de hallar dicha capacitancia 1.2 Específicos: Determinar la influencia

Más detalles

CUESTIONARIO 1 DE FISICA 3

CUESTIONARIO 1 DE FISICA 3 CUESTIONARIO 1 DE FISICA 3 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de carga eléctrica y porqué se llaman así? 2.- Menciona los procedimientos para obtener

Más detalles

Circuito Serie-Paralelo

Circuito Serie-Paralelo Circuito Serie-Paralelo Un circuito Series-Paralelo combina circuitos en serie y en paralelo, con sus respectivas características. El primer paso al analizar un circuito Serie-Paralelo es transformar el

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

CORRIENTE ELECTRICA. Diferencia de Potencial Eléctrico. Conductores y aislantes

CORRIENTE ELECTRICA. Diferencia de Potencial Eléctrico. Conductores y aislantes CORRENTE ELECTRCA Diferencia de Potencial Eléctrico. Un objeto de masa m siempre caerá desde mayor altura hasta menor altura. Donde está a mayor altura el objeto posee mayor energía potencial gravitatoria

Más detalles

CAMPO MAGNÉTICO Y FUERZAS MAGNÉTICAS

CAMPO MAGNÉTICO Y FUERZAS MAGNÉTICAS CAMPO MAGNÉTICO Y FUERZAS MAGNÉTICAS 1. Responda en forma breve y justifique: (CIV-ExFinal-2003-1) a) Si un condensador está descargado, su capacitancia es cero? b) Una plancha doméstica de resistencia

Más detalles

(Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara

(Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Física 3 (Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Ultima actualización: Julio de 2004 Julio de 2004 Física-3 (Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Departamento de Física

Más detalles

Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm.

Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm. Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm. Objetivos: 1.- Conocer y utilizar el protoboard para implementar circuitos sencillos.

Más detalles

Ejercicios de Sistemas Trifásicos Ingeniería Eléctrica propuestos. Curso 2004/05

Ejercicios de Sistemas Trifásicos Ingeniería Eléctrica propuestos. Curso 2004/05 Ejercicios de Sistemas Trifásicos Ingeniería Eléctrica propuestos. Curso 2004/05 1.- Una carga equilibrada conectada en estrella de valor 8+6j por fase, se alimenta a través de una red trifásica a cuatro

Más detalles

C E = C 1 + C 2 ; F = F + C 2

C E = C 1 + C 2 ; F = F + C 2 Ejercicio resuelto Nº 1 La capacidad total de dos condensadores conectados en paralelo es de 40 μf, sabiendo que uno de ellos tiene 10 μf. Que valor tendrá el otro condensador? Resolución C E = 40 μf =

Más detalles

Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA

Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA Práctica 19. CIRCUITOS DE CORRIENTE CONTINUA OBJETIVOS Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones en serie y en paralelo. Comprobar experimentalmente las

Más detalles

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la

Más detalles

E 4.0. EJERCICIOS DE EXAMEN

E 4.0. EJERCICIOS DE EXAMEN E 4.0. EJERCICIOS DE EXAMEN E 4.0.01. El campo eléctrico producido por un anillo circular uniformemente cargado, en un punto cualquiera sobre su eje es (ver figura 1 Qz izquierda) E = k [N/C]. A 2 2 3

Más detalles

CAPÍTULO IV Dieléctricos

CAPÍTULO IV Dieléctricos Fundamento teórico CAPÍTULO IV Dieléctricos I.- l dipolo Ia.- Momento dipolar Un sistema formado por dos cargas iguales en módulo y de signo opuesto, +q y q, con vectores posición r + y r respectivamente,

Más detalles

Simbología General Electrolítico CONSTITUCIÓN DEL CONDENSADOR

Simbología General Electrolítico CONSTITUCIÓN DEL CONDENSADOR ONDENSADOES Los condensadores, al igual que las resistencias, son componentes normalmente utilizados en electricidad y electrónica. Básicamente, la función que realiza un condensador es almacenar una carga

Más detalles

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año: (Ejercicios resueltos) Alumno: Curso: Año: Magnitudes eléctricas básicas. La Ley de Ohm Las magnitudes fundamentales de los circuitos eléctricos son: Tensión o voltaje: Indica la diferencia de energía

Más detalles

EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA

EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA C6. 1 Calcular el campo eléctrico E en el centro del cuadrado, así como la diferencia de potencial entre los puntos A y B. Resp.: E = ; V A -V B = 0 C6. 2 En

Más detalles

SIFEIS CONCAYNT SIFeIS CONCAYNT

SIFEIS CONCAYNT SIFeIS CONCAYNT SIFeIS UNIDAD 1 CONCEPTOS BÁSICOS 1. ESTRUCTURA ATOMICA. 2. CONCEPTO DE ELECTRICIDAD Y SU CLASIFICACION. 3. MATERIALES CONDUCTORES Y AISLADORES. 4. EL SISTEMA INTERNACIONAL DE UNIDADES Y SUS CONVERSIONES.

Más detalles

Guía N 4: Campo Magnético, Ley de Ampere y Faraday e Inductancia

Guía N 4: Campo Magnético, Ley de Ampere y Faraday e Inductancia Física II Electromagnetismo-Física B C/014 Guía N 4: Problema 1. Un electrón se mueve en un campo magnético B con una velocidad: experimenta una fuerza de 5 5 v (4 10 i 7.1 10 j) [ m / s] F (.7 10 13i

Más detalles

ELECTRICIDAD. Es la que resulta de unir el extremo de una resistencia con el principio de la siguiente. R1 R2 R3 Rt. Resistencias asociadas en serie

ELECTRICIDAD. Es la que resulta de unir el extremo de una resistencia con el principio de la siguiente. R1 R2 R3 Rt. Resistencias asociadas en serie ELECTRICIDAD 6. Asociación de resistencias. 7. El circuito eléctrico. Ejemplos de cálculo. 6. ASOCIACION DE RESISTENCIAS Las resistencias se pueden conectar entre si de manera que el valor de la resistencia

Más detalles

TEMA ELECTRICIDAD 3º ESO TECNOLOGÍA

TEMA ELECTRICIDAD 3º ESO TECNOLOGÍA 3º ESO Tecnologías Tema Electricidad página 1 de 6 TEMA ELECTRICIDAD 3º ESO TECNOLOGÍA 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3 3.1.Circuito EN SERIE...3 3.2.Circuito EN PARALELO...4

Más detalles

EJERCICIOS CONCEPTUALES

EJERCICIOS CONCEPTUALES ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: CAMPOS ELÉCTRICOS GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: 2 EJERCICIOS CONCEPTUALES 1. Suponiendo que el valor de la carga del protón fuera un poco diferente de la

Más detalles

LABORATORIO DE ELECTROTECNIA PRÁCTICA NÚMERO 1 INSTRUMENTOS BÁSICOS DE MEDIDA Y NORMAS DE SEGURIDAD

LABORATORIO DE ELECTROTECNIA PRÁCTICA NÚMERO 1 INSTRUMENTOS BÁSICOS DE MEDIDA Y NORMAS DE SEGURIDAD LABORATORIO DE ELECTROTECNIA PRÁCTICA NÚMERO 1 INSTRUMENTOS BÁSICOS DE MEDIDA Y NORMAS DE SEGURIDAD 1. OBJETIVO Conocer los elementos que se utilizarán en las prácticas durante el semestre y las normas

Más detalles

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.

Más detalles

[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA]

[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 2013 [PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 3º E.S.O. PRACTICA Nº 1. RESISTENCIAS VARIABLES POTENCIÓMETRO Monta los circuitos de la figura y observa que ocurre cuando el potenciómetro es de 100Ω, de 1kΩ

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

CURSO 4º ESO CENTRO I.E.S. ALONSO DE COVARRUBIAS MATERIA: TECNOLOGÍA. UNIDAD DIDÁCTICA Nº 0 (Tema 0) REPASO DE ELECTRICIDAD

CURSO 4º ESO CENTRO I.E.S. ALONSO DE COVARRUBIAS MATERIA: TECNOLOGÍA. UNIDAD DIDÁCTICA Nº 0 (Tema 0) REPASO DE ELECTRICIDAD TECNOLOGÍA CUSO 4º ESO CENTO.E.S. ALONSO DE COAUBAS MATEA: TECNOLOGÍA UNDAD DDÁCTCA Nº 0 (Tema 0) EPASO DE ELECTCDAD TECNOLOGÍA CUSO: 4º ESO CENTO:.E.S. ALONSO DE COAUBAS ÁEA DE: TECNOLOGÍA. UNDAD DDÁCTCA:

Más detalles

Elementos almacenadotes de energía

Elementos almacenadotes de energía V Elementos almacenadotes de energía Objetivos: o Describir uno de los elementos importantes almacenadores de energía muy comúnmente utilizado en los circuitos eléctricos como es el Capacitor o Calcular

Más detalles

Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo:

Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo: Montaje en placa protoboard de un circuito detector de oscuridad. Miembros del grupo: 1) 2) 3) 4) 5) 1 PRÁCTICAS DE ELECTRÓNICA ANALÓGICA. PRÁCTICA 1. Montajes en placa protoboard. Medida de magnitudes

Más detalles

INDICE SECCION PAGINA. Indice Introducción Que es un condensador y. como funciona? Tipos de Condensadores... 6

INDICE SECCION PAGINA. Indice Introducción Que es un condensador y. como funciona? Tipos de Condensadores... 6 INDICE SECCION PAGINA Indice........ 1 Introducción....... 2 Que es un condensador y como funciona?...... 3 Tipos de Condensadores.... 6 Condensadores en serie.... 7 Ejemplares de Condensadores... 8 Conclusión.......

Más detalles

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS LEYES DE LOS CIRCUITOS ELECTRICOS CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS Con estas leyes podemos hallar las corrientes y voltajes en cada una de las resistencias de los diferentes circuitos de CD.

Más detalles

I N S T I T U T O P O L I T É C N I C O N A C I O N A L GUÍA DE ESTUDIO FÍSICA III

I N S T I T U T O P O L I T É C N I C O N A C I O N A L GUÍA DE ESTUDIO FÍSICA III I N S T I T U T O P O L I T É C N I C O N A C I O N A L Centro de Estudios Científicos y Tecnológicos No. 11 Wilfrido Massieu Pérez GUÍA DE ESTUDIO FÍSICA III PROF. ING. JOSÉ ANTONIO SAN MARTÍN 1 Competencia

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles