Tema 2. Divisibilidad. Múltiplos y submúltiplos.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 2. Divisibilidad. Múltiplos y submúltiplos."

Transcripción

1 Tema 2. Divisibilidad. Múltiplos y submúltiplos. En el tema 1, se ha mostrado como realizar cuentas con números naturales y enteros. Antes de conocer otras clases de números, los racionales, irracionales y reales, es conveniente saber si un número es múltiplo o divisor de otro y conocer los criterios de divisibilidad. Además estudiaremos, en este tema, cómo calcular el máximo común divisor (MCD), y el mínimo común múltiplo (mcm) de varios números. DIVISIBILIDAD MÚLTIPLOS Y DIVISORES Un número es múltiplo de otro cuando contiene a ese número un número exacto de veces. Un número es divisor de otro cuando lo divide exactamente, es decir, cuando es contenido por este otro un número exacto de veces. 15:3= 5 3 es divisor de 15 5 * 3 = es múltiplo de 3 PROPIEDADES DE LOS MÚLTIPLOS Y DIVISORES. A continuación verás las propiedades más importantes de los múltiplos y divisores Si un número es divisor de otros, también lo es de su suma. 1

2 Si 3 es divisor de 6, 9 y de 12, también lo es de su suma = : 3 = 9 Si un número divide a dos, divide también a su diferencia. Si 4 es divisor de 12 y de 40, entonces también lo es de su diferencia = : 4 = 7 El número 1 es divisor de todos los números. CRITERIOS DE DIVISIBILIDAD. A través de los criterios de divisibilidad podremos saber si un número es o no es divisible por otro, sin necesidad de hacer la división. Divisibilidad por 0. El número cero, solamente tiene un múltiplo, que es el 0 Divisibilidad por 1. Todos los números son múltiplos de 1. Divisibilidad por 2. Un número es divisible por 2 cuando acaba en cero o en cifra par. 2

3 40 es divisible por 2 por acabar en cero. 24 es divisible por 2 por acabar en cifra par. Divisibilidad por 3. Un número es divisible por 3 cuando la suma de sus cifras es múltiplo de es divisible porque la suma de sus cifras es múltiplo de = 6 6 es múltiplo de 3 Divisibilidad por 4. Un número es divisible por 4 cuando sus dos últimas cifras son 4 o múltiplo de es divisible por 3 porque sus dos últimas cifras son múltiplo de = 4 * 4 Divisibilidad por 5. Un número es divisible por 5 cuando acaba en cero o en es divisible por 5 porque acaba en es divisible por 5 porque acaba en 0. Divisibilidad por 6. Un número es divisible por 6 cuando lo es por 2 y por 3. Estos números deben cumplir lo anterior, y son candidatos los acabados en 0, 2, 4, 6, es divisible por 6 porque lo es por 2 al acabar en 0, y lo es por 3, porque la suma de sus cifras = 9, y 9 es múltiplo de 3. 3

4 Divisibilidad por 9. Un número es divisible por 9 cuando la suma de sus cifras es 9 o múltiplo de 9. Ejercicio: Prueba si el número 324, es divisible por 9. Divisibilidad por 10. Un número es divisible por 10 cuando termina en 0. Ejercicio: Pon un ejemplo de un número divisible por 10. Divisibilidad por 11. Un número es divisible por 11 cuando la diferencia entre la suma de los dígitos de lugar par y la suma de los dígitos de lugar impar es 0 o múltiplo de 11. NÚMEROS PRIMOS Y COMPUESTOS. Un número es primo cuando es entero positivo, distinto de 0 y 1 y que únicamente se puede dividir por sí mismo y por 1 para dar una solución exacta (por tanto, para todos los otros números por los que intentemos dividir el número primo no dará solución exacta) 5 es un número primo porque sólo es divisible por 5 o por 1. Cómo averiguar si un número es primo? Debemos ir probando si tiene algún divisor propio. Para ello vamos dividiendo el número n entre 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 y 97. n-1. Si alguna de las divisiones es exacta (da resto cero) podemos asegurar que el número n es compuesto. Si ninguna de estas divisiones es exacta, el número n es primo. Esto se puede afirmar cuando se llegue a un cociente menor o igual que el divisor. 4

5 NÚMEROS COMPUESTOS Un número compuesto se puede dividir exactamente entre otros números además de 1 y él mismo. 8 es un número compuesto porque tiene como divisores 1, 2, 4 y 8 9 es un número compuesto porque tiene como divisores 1, 3 y 9. DESCOMPOSICIÓN DE UN NÚMERO EN FACTORES PRIMOS. Descomponer un número en factores primos es hallar un producto de números primos que sea igual a dicho número. Para descomponer un número es sus factores primos debes seguir los siguientes pasos: 1. Se divide el número por su menor divisor primo distinto a Se realiza la misma operación con el cociente resultante y así sucesivamente hasta llegar al cociente 1. El número que se quiere descomponer en factores primos es igual al producto de los divisores obtenidos. Descomponer 360 en sus factores primos, y expresa el número como producto de sus factores. Escribimos el número a descomponer y a su derecha trazamos una recta vertical y detrás de ésta, vamos colocando los factores primos comenzando por el menor. Ahora tienes que recordar muy bien cuándo un número es divisible por 2, 3, 5, 7, 11, 13,. 360= 2 3 x 3 2 x 5 5

6 MÁXIMO COMÚN DIVISOR (M.C.D). El máximo común divisor (m.c.d. o mcd) de dos o más números es el mayor número que divide a todos exactamente. PROCEDIMIENTO DE CÁLCULO. 1 Se descomponen los números en factores primos. 2 Se toman los factores comunes con menor exponente. 3 Se multiplican dichos factores y el resultado obtenido es el mcd. MÍNIMO COMÚN MÚLTIPLO (m.c.m) El mínimo común múltiplo, de varios números, es el menor de todos los múltiplos comunes de varios números, excluido el cero. PROCEDIMIENTO DE CÁLCULO. 1 Se descomponen los números en factores primos. 2 Se toman los factores comunes y no comunes con mayor exponente. 6

7 Ejercicios: 1) Descomponer en factores primos los siguientes números: a) 240 b) 45 c) 470 2) Halla el máximo común divisor de los siguientes grupos de números: a) 24 y 30 b) 266 y 123 c) 65, 30 y 45 d) 52, 80, 10 y 65 3) Halla el mínimo común múltiplo de los siguientes grupos de números: a) 38 y 8 b) 13 y 30 c) 86, 64 y 20 d) 75, 45, 20 y 25 7

8 4) Clasificar los siguientes números en primos y compuestos: a) 7 b) 24 c) 5 d) 80 8

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Tema 2 Divisibilidad

Tema 2 Divisibilidad 1. Relación de Divisibilidad Tema 2 Divisibilidad Entre dos números a y b existe la relación de divisibilidad si al dividir a : b la división es exacta. Existe la relación de divisibilidad entre estos

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural.

MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. MÚLTIPLOS Y DIVISORES DIVISIBILIDAD M.C.D. y M.C.M. Múltiplos de un número Un número es múltiplo de otro si se obtiene multiplicando este último por un número natural. Por ejemplo, si multiplicamos 9x2

Más detalles

Tema 4: Múltiplos y Divisores

Tema 4: Múltiplos y Divisores Tema 4: Múltiplos y Divisores Índice 1. Introducción. 2. Múltiplos de un número. 3. Divisores de un número. 4. Criterios de divisibilidad. 5. Números primos y números compuestos. 6. Descomposición de un

Más detalles

CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores.

CEIP Mediterráneo. 1º relación de divisibilidad: múltiplos y divisores. Melilla DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente entre el mayor y el menor es exacto. El mayor

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES 1. MÚLTIPLOS DE UN NÚMERO. 1.1. CONCEPTO DE MÚLTIPLO. Un número es múltiplo de otro cuando lo contiene un número exacto de veces, es decir, cuando la división del primero entre el

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

LA DIVISIBILIDAD. Luego, 24 es divisible entre 3. CÓMO SABER SI UN NÚMERO ES DIVISIBLE ENTRE OTRO, SIN HACER LA DIVISIÓN?

LA DIVISIBILIDAD. Luego, 24 es divisible entre 3. CÓMO SABER SI UN NÚMERO ES DIVISIBLE ENTRE OTRO, SIN HACER LA DIVISIÓN? LA DIVISIBILIDAD Qué entendemos por divisibilidad? Es la propiedad de que un número pueda ser dividido por otro un número exacto de veces o que el resto sea cero. Luego, 24 es divisible entre 3. CÓMO SABER

Más detalles

MATEMÁTICAS 2º ESO. TEMA 1

MATEMÁTICAS 2º ESO. TEMA 1 MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si

Más detalles

Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c.

Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. DIVISIBILIDAD Múltiplos Un número a es múltiplo de otro b cuando es el resultado de multiplicar este último por otro número c. 18 = 2 9 18 es múltiplo de 2, ya que resulta de multiplicar 2 por 9. Tabla

Más detalles

MÚLTIPLOS Y DIVISORES

MÚLTIPLOS Y DIVISORES MÚLTIPLOS Y DIVISORES MÚLTIPLOS DE UN NÚMERO Los múltiplos de un número son los que lo contienen un número exacto de veces. El 2 es múltiplo de 3 porque lo contiene 4 veces. El 30 es múltiplo de 5 porque

Más detalles

DIVISIBILIDAD. 1º relación de divisibilidad: múltiplos y divisores.

DIVISIBILIDAD. 1º relación de divisibilidad: múltiplos y divisores. CEPA Carmen Conde Abellán Matemáticas IyII Divisibilidad DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente

Más detalles

GUIA DE TRABAJO Materia: Matemáticas Guía # 26A. Tema: Máximo común divisor. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno:

GUIA DE TRABAJO Materia: Matemáticas Guía # 26A. Tema: Máximo común divisor. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: GUIA DE TRABAJO Materia: Matemáticas Guía # 26A. Tema: Máximo común. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos, ni

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

Ampliación Tema 3: Múltiplo y divisores

Ampliación Tema 3: Múltiplo y divisores - Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos

Más detalles

Números primos y compuestos

Números primos y compuestos Divisibilidad -Números primos y compuestos. -Múltiplos. Mínimo común múltiplo. -Divisores. Máximo común divisor. -Criterios de divisibilidad. -Descomposición factorial. -Aplicaciones. 1 Números primos

Más detalles

U.E. Colegio Los Arcos Matemáticas Guía #26B Sexto grado Máximo común divisor. Problemas.

U.E. Colegio Los Arcos Matemáticas Guía #26B Sexto grado Máximo común divisor. Problemas. GUIA DE TRABAJO Materia: Matemáticas Guía # 6B. Tema: Máximo común Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos, ni notas.

Más detalles

MÁXIMO COMÚN DIVISOR

MÁXIMO COMÚN DIVISOR MÁXIMO COMÚN DIVISOR El máximo común divisor (m.c.d.) de dos o más números es el mayor número que divide a todos exactamente. Cálculo del máximo común divisor 1) Se descomponen los números en factores

Más detalles

Múltiplos y divisores

Múltiplos y divisores Divisibilidad 1. Múltiplos y divisores. 2. Propiedades de los múltiplos. 3. Criterios de divisibilidad. 4. Números primos y compuestos. 5. Descomposición en factores primos. 6. Máximo común divisor y mínimo

Más detalles

IDENTIFICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO

IDENTIFICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO OBJETIVO IDENTIICAR LOS MÚLTIPLOS Y DIVISORES DE UN NÚMERO NOMBRE: CURSO: ECHA: Los múltiplos de un número son aquellos que se obtienen multiplicando dicho número por,,,, es decir, por los números naturales.

Más detalles

Continuación Números Naturales:

Continuación Números Naturales: Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:

Más detalles

UNIDAD IV CONTENIDO TEMÁTICO

UNIDAD IV CONTENIDO TEMÁTICO UNIDAD IV CONTENIDO TEMÁTICO OPERACIONES CON FRACCIONES ALGEBRAICAS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD IV Conceptos Mínimo común múltiplo OPERACIONES CON FRACCIONES

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS NÚMEROS NATURALES: Son los que utilizamos para contar Ejemplo: Contar el número de alumnos de la clase, escribir el número de la matrícula de un coche Se representan N{0,1,2, } Ejercicio:

Más detalles

Tema 1 Conjuntos numéricos

Tema 1 Conjuntos numéricos Tema 1 Conjuntos numéricos En este tema: 1.1 Números naturales. Divisibilidad 1.2 Números enteros 1.3 Números racionales 1.4 Números reales 1.5 Potencias y radicales 1.7 Logaritmos decimales 1.1 NÚMEROS

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles

TEMA 1 Números enteros y racionales *

TEMA 1 Números enteros y racionales * TEMA Números enteros y racionales * Números enteros: Se denominan números naturales (también llamados enteros positivos) a los números que nos sirven para contar objetos:,2,3,4,5,... El conjunto de los

Más detalles

1.1 Números naturales

1.1 Números naturales 1.1 1.1.1 El concepto de número natural Posiblemente en la edad de las cavernas los hombres no conocieran los números ni los sistemas de numeración. Sin embargo, eran capaces de contar. Un pastor primitivo

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

Números Naturales (N)

Números Naturales (N) Teoría de Conjuntos Números Naturales (N) Recuerda que: Un conjunto es una colección o agrupación de personas, animales o cosas. Los conjuntos generalmente se simbolizan con letras mayúsculas y sus elementos

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO Pág. 1 ENUNCIADOS 1 a) Busca tres múltiplos de 15. b) Busca tres divisores de 15. c) Los tres múltiplos de 15 que encontraste en el apartado a), son múltiplos de los tres divisores de 15 que buscaste en

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales.

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. 1. LA FRACCIÓN Y SUS TÉRMINOS TEMA 6. LAS FRACCIONES Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. Fracción es una o varias partes iguales

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Números Naturales (N)

Números Naturales (N) Teoría de Conjuntos Números Naturales (N) Recuerda que: Un conjunto es una colección o agrupación de personas, animales o cosas. Los conjuntos generalmente se simbolizan con letras mayúsculas y sus elementos

Más detalles

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural.

DIVISIBILIDAD 2 3 = 8. Es decir, el resultado de multiplicar 2 por cualquier número natural. DIVISIBILIDAD I. Múltiplos y Divisores 1. MULTIPLOS Los múltiplos de 2 son = 2 2 1 = 4 2 2 = 6 2 3 = 8 2 4 etc Es decir, el resultado de multiplicar 2 por cualquier número natural. Múltiplo de un número

Más detalles

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad.

Un número natural distinto de 1 es un número primo si sólo tiene dos divisores, él mismo y la unidad. Números primos NÚMEROS PRIMOS Un número natural distinto de es un número primo si sólo tiene dos divisores, él mismo y la unidad. Un número natural es un número compuesto si tiene otros divisores además

Más detalles

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados. Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,

Más detalles

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad.

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad. Teoría er Ciclo Primaria Página 9 FRACCIONES FRACCIÓN es una o varias partes iguales en que se divide la unidad. La fracción está formada por dos números naturales a y b colocado uno encima del otro y

Más detalles

Ejercicios resueltos de aritmética

Ejercicios resueltos de aritmética Ejercicios resueltos de aritmética 1) Calcula: a) 5 3 7 + 1 + 8 b) 2 3 + 4 + 1 8 + 2 c) 1 3 + 5 7 + 9 11 d) 2 + 4 6 8 + 10 12 + 14 2) Quita paréntesis: a) a + (b + c) b) a (b + c) c) a + (b c) d) a (b

Más detalles

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores:

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores: IDENTIDADES NOTABLES TEMA : POLINOMIOS a b a b ab a b a b ab a ba b a b Ejercicios:. Desarrolla las siguientes identidades: a y 5 b 5 4y c 5 5. Epresa como producto de factores: 4 a 9 0 0 b 9 6 c 5 9y

Más detalles

TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS

TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS TEMA 1: NÚMEROS NATURALES, DIVISIBILIDAD 1º ESO. MATEMÁTICAS Los números naturales De forma intuitiva podemos definir los números naturales de la siguiente forma: DEFINICIÓN Los números naturales son aquellos

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

2 Divisibilidad. 1. Múltiplos y divisores

2 Divisibilidad. 1. Múltiplos y divisores 2 Divisibilidad 1. Múltiplos y divisores Calcula mentalmente e indica, de las siguientes divisiones, cuáles son exactas o enteras: a) 125 : 5 b) 28 : 6 c) 140 : 7 d) 23 400 : 100 P I E N S A Y C A L C

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

Operaciones básicas con números enteros y con fracciones

Operaciones básicas con números enteros y con fracciones Curso de Acceso CFGS Operaciones básicas con números enteros y con fracciones OPEACIONES CON NÚMEOS ENTEOS Suma de números enteros Cuando tienen el mismo signo Se suman los valores y se deja el signo que

Más detalles

1) Indique los primeros elementos de los siguientes conjuntos numéricos: Números Naturales: IN = { Números Cardinales: IN o = { 0,1,2,3,4,5,6,7,...

1) Indique los primeros elementos de los siguientes conjuntos numéricos: Números Naturales: IN = { Números Cardinales: IN o = { 0,1,2,3,4,5,6,7,... Clase-04 Temas: Operatoria entre números naturales (IN) y enteros (Z), múltiplos, divisores, mínimo común múltiplo (M.C.M.) y máximo común divisor (M.C.D.). 1) Indique los primeros elementos de los siguientes

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. I Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. I Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números I Nivel I Eliminatoria Marzo, 2016 Índice 1. Presentación. 2 2. Contenidos de Teoría de Números. 3 3. Concepto

Más detalles

TEMA 2 DIVISIBILIDAD 1º ESO

TEMA 2 DIVISIBILIDAD 1º ESO Alumno Fecha TEMA 2 DIVISIBILIDAD 1º ESO Si la división de un número A entre otro número B, es exacta, entonces decimos que: - El número A es divisible por el número B. Ej.: 12 : 4 = 3 12 divisible por

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

NÚMEROS NÚMEROS REALES

NÚMEROS NÚMEROS REALES NÚMEROS NÚMEROS REALES A los números que utilizamos para contar la cantidad de elementos de un conjunto no vacío se los denomina números naturales. Designamos con N al conjunto de dichos números. N = {,,,,,...

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 72 EJERCICIOS Múltiplos y divisores 1 Calcula mentalmente para indicar si existe relación de divisibilidad entre estos números: a) 50 y 200 b) 35 y 100 c) 88 y 22 d) 15 y 35 e) 15 y 60 f

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

U.E. Colegio Los Arcos Matemáticas Guía #27B Sexto grado Mínimo común múltiplo

U.E. Colegio Los Arcos Matemáticas Guía #27B Sexto grado Mínimo común múltiplo GUIA DE TRABAJO Materia: Matemáticas Guía # 27B. Tema: Mínimo común. Problemas. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,

Más detalles

MATEMÁTICAS - 6º curso

MATEMÁTICAS - 6º curso MATEMÁTICAS 6º curso TEMA 1. OPERACIONES CON NÚMEROS NATURALES 1. Realizar sumas y restas dadas. 2. Efectuar multiplicaciones dadas. 3. Realizar divisiones dadas. 4. Clasificar las divisiones en exactas

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 58 REFLEXIONA Óscar y Mónica colaboran como voluntarios en el empaquetado de medicinas. En qué contenedor embalará Óscar los analgésicos? Qué ocurriría si eligiera el que tiene forma de cubo?

Más detalles

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero.

DIVISIBILIDAD. 2º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. MULTIPLOS Y DIVISORES DIVISIBILIDAD. NÚMEROS ENTEROS. º E.S.O. Un número es múltiplo de otro si se puede obtener multiplicando el segundo por otro número entero. 8 es múltiplo de porque 8 = 9 75 es múltiplo

Más detalles

Capítulo 1. El Conjunto de los números Reales

Capítulo 1. El Conjunto de los números Reales Capítulo El Conjunto de los números Reales Contenido. El conjunto de los números Naturales................................. 4. El conjunto de los números Enteros................................... 4. El

Más detalles

Recordar las principales operaciones con expresiones algebraicas.

Recordar las principales operaciones con expresiones algebraicas. Capítulo 1 Álgebra Objetivos Recordar las principales operaciones con expresiones algebraicas. 1.1. Números Los números naturales se denotarán por N y están constituidos por 0, 1, 2, 3... Con estos números

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra Los números naturales Los números naturales Los números naturales se definen como: N = { 0,1, 2, 3, 4, 5,...,64, 65, 66,...,1639,1640,1641,1642,... } El sistema de numeración

Más detalles

Factorización prima (páginas 197 200)

Factorización prima (páginas 197 200) A NOMRE FECHA PERÍODO Factorización prima (páginas 9 00) Un número primo es un número entero mayor que que tiene exactamente dos factores, y sí mismo. Un número compuesto es un número entero mayor que

Más detalles

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio. Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones

Más detalles

Criterios de divisibilidad

Criterios de divisibilidad ENCUENTRO # 2 TEMA: Criterios de Divisibilidad. CONTENIDOS: 1. Criterios de divisibilidad, múltiplos y divisores de un número dado. 2. Principios Fundamentales de la Divisibilidad. DESARROLLO Criterios

Más detalles

83 ESO. 6x 4. «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.»

83 ESO. 6x 4. «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.» 83 ESO «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.» 6 4 10 ÍNDICE: 1. DIVISIÓN DE POLINOMIOS POR MONOMIOS. DIVISIÓN ENTERA DE POLINOMIOS 3. REGLA DE RUFFINI

Más detalles

Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos

Objetivos. Criterios de evaluación. Contenidos. Actitudes. Conceptos. Procedimientos P R O G R A M A C I Ó N D E L A U N I D A D Objetivos 1 Identificar relaciones de divisibilidad entre números naturales y reconocer si un número es múltiplo o divisor de otro número dado. 2 Utilizar los

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2014 Olalla (Universidad de Sevilla) El anillo de

Más detalles

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

5. Producto de dos binomios de la forma: ( ax + c)( bx d ) PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,

Más detalles

2. Subraya los múltiplos de 4: Subraya los múltiplos de 2:

2. Subraya los múltiplos de 4: Subraya los múltiplos de 2: TEMA 2. DIVISIBILIDAD Se dice que entre dos números hay una relación de divisibilidad cuando al dividir el mayor de ellos entre el menor la división es exacta. Se dice entonces que el número mayor es múltiplo

Más detalles

1 números naturales. ejercicios

1 números naturales. ejercicios 1 números naturales ejercicios 1 Di cuáles de estos números son números naturales: 4 1 6 5 3 7 18 55,5 4, 18, 55, 6 y 7. Representa en una recta los siguientes números naturales. 0 1 4 1 8 0 1 4 8 1 3

Más detalles

Múltiplos y divisores.

Múltiplos y divisores. Múltiplos y divisores. 1.- Completa las siguientes tablas: x 1 2 3 4 5 6 7 8 9 10 1 4 3 5 35 7 14 70 9 x 1 2 3 4 5 6 7 8 9 10 2 4 32 6 24 8 16 10 90 2.- Explica que son los múltiplos de un número y como

Más detalles

1 Números racionales

1 Números racionales 8 _ 0-0.qxd //0 : Página Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que

Más detalles

Divisibilidad y congruencias

Divisibilidad y congruencias Divisibilidad y congruencias Ana Rechtman Bulajich y Carlos Jacob Rubio Barrios Revista Tzaloa, año 1, número 2 Empecemos por explicar el significado de la palabra divisibilidad. En este texto vamos a

Más detalles

Seminario de Aritmética I - Problemas para estudiar (tercera cohorte)

Seminario de Aritmética I - Problemas para estudiar (tercera cohorte) Postítulo Docente Especialización Superior en Enseñanza de la Matemática para el Nivel Primario Seminario de Aritmética I - Problemas para estudiar (tercera cohorte) Problema 1 a) Analizar la validez de

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: RADICACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Hoja de problemas. nº 2 2003, 2011, 2017,

Hoja de problemas. nº 2 2003, 2011, 2017, Hoja de problemas nº 2 2, 3, 5, 7, 11, 13,11, 2003, 2011, 2017, Hojas de Problemas La Divisibilidad Hoja nº 2 Divisibilidad A. Ariza/A. Sánchez/R. Trigueros 1. Calcular todos los divisores de 60. 2. Calcular

Más detalles

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid

XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid 9 de noviembre de 0 PRUE POR EQUIPOS º y º de E.S.O. (45 minutos). ntonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de ntonio y le añade un a la derecha y obtiene un número

Más detalles

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio. 1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar

Más detalles

3º ESO GUÍA DEL BLOQUE ARITMÉTICA

3º ESO GUÍA DEL BLOQUE ARITMÉTICA Números Porcentajes Sucesiones C ontenidos E jercicios C ompetencias Números enteros. Múltiplos y divisores. Fracciones. Comparación de fracciones. Representación de fracciones en la recta. Operaciones

Más detalles

CAPÍTULO 4: DIVISIBILIDAD 1. DIVISIBILIDAD

CAPÍTULO 4: DIVISIBILIDAD 1. DIVISIBILIDAD 30 CAPÍTULO 4: DIVISIBILIDAD 1. DIVISIBILIDAD 1.1. Múltiplos y divisores de un número entero Múltiplos de un número Recuerdas muy bien las tablas de multiplicar de todos los números? Escribe en tu cuaderno

Más detalles

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros

Ejercicios Pendientes Matemáticas 2º ESO Curso Números Enteros Los Números Enteros Los 1) 2) 1 3) 4) 5) 9) ) 2 11) 12) 16) 3 17) 18) 19) 4 20) 21) En qué orden se realizan las operaciones con números enteros Para resolver varias operaciones combinadas con números enteros, se debe seguir

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #3: jueves, 2 de junio de 2016. 3 Decimales 3.1 Sistema de numeración

Más detalles

MINI ENSAYO DE MATEMÁTICA Nº 1

MINI ENSAYO DE MATEMÁTICA Nº 1 MINI ENSAYO DE MATEMÁTICA Nº 1 1. Si 25 = k, entonces 2k = A) 5 B) 10 C) 50 D) 625 E) 1.250 2. El número 3, puede obtenerse operando solamente el dígito 3. La opción correcta es A) (3 3) : 3 3 : 3 B) (3

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PROPUESTOS 5.1 Divide los siguientes monomios. a) 54x 5 9x 2 b) 63x 12 3x 5 c) 35xy 6 7y 3 d) 121x 2 y 6 11yx 4 a) 54x 5 9x 2 5 5 4x 2 5 4 x 5 9x 9 x 2 6x 3 c) 35xy 6 7y 3 3 6 5xy 3 3 5 x y

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4

Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4 Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4 25. El número 2 x es la mayor potencia entera de 2 entre las que tienen nueve dígitos en base 10, y sus nueve dígitos son distintos. Usando que

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles