La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan."

Transcripción

1 CINEMATICA La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan. SISTEMA DE REFERENCIA Lo primero que hacemos para saber que un cuerpo se mueve es referirlo instintivamente a un objeto que consideramos en reposo. Es decir, elegimos un sistema de referencia que consideramos fijo. El SR lo elegimos arbitrariamente, y puede ser cualquier cosa. Si el cuerpo, a medida que pasa el tiempo, cambia de posición respecto al SR decimos que se está moviendo. Sin embargo, en el universo nada está en reposo y por tanto es imposible disponer de un sistema de referencia fijo, es por eso que todos los movimientos son relativos. VECTOR DE POSICIÓN Una vez elegido el sistema de referencia (SR), lo siguiente que nos interesa es conocer la posición del móvil en cada momento respecto de él. Para ello utilizaremos el vector de posición. El vector de posición ( r r ) va a ser un vector que siempre está centrado en el origen del SR y cuyo extremo esté allí donde lo está el móvil. De esa manera conociendo las coordenadas del extremo, exactamente igual que cuando jugamos a los barquitos, podemos saber donde se encuentra muestro móvil. Evidentemente, si el extremo del vector de posición está siempre donde el móvil debe ser un r r r vector que varíe con el tiempo, por ejemplo r(t) = 3t i + 4t j Dando valores al tiempo sabremos la posición del móvil en cada instante, así por ejemplo, el r r r móvil anterior cuando t=1seg estaría en r(t) = 3 i + 4 j, es decir en la posición (3,4). En el r r r momento t=seg estará en r(t) = 6 i + 8 j, o lo que es igual, estará en el punto (6,8). TRAYECTORIA Puesto que el vector de posición tiene siempre su extremo donde está el móvil, es evidente que la curva que describen los extremos de dicho vector coincidirá con la trayectoria del móvil, es decir: La trayectoria es la curva que describen los extremos del vector de posición

2 VELOCIDAD Imagina un cuerpo que está moviéndose e inicialmente (t o =0) se encuentra en la posición s 0 y que al cabo de un tiempo t se encuentra en la posición s. En primer lugar, observa que el coche se mueve porque, como ya hemos dicho, cambia de posición, respecto al SR, a medida que pasa el tiempo. La siguiente pregunta es: cómo medimos la variación de la posición Obviamente el cambio de posición lo obtenemos restando la posición final menos la inicial: s s o. A esa operación le llamamos variación o incremento y se representa como s, aunque es aplicable a cualquier magnitud, como el tiempo, la altura, la energía, etc Coloquialmente decimos que un coche tiene mucha velocidad cuando en muy poco tiempo recorre mucho espacio, por tanto en nuestra idea cotidiana de velocidad combinados dos magnitudes: el cambio de posición y el tiempo que tarda. Así diremos: La velocidad es una magnitud vectorial que mide como varía la posición de un cuerpo en función del tiempo. Esa frase matemáticamente se expresa como: v = s t módulo de la velocidad (Realmente, la traducción literal de la definición se corresponde con la derivada del vector r r de posición respecto al tiempo y se expresa como v = dr / dt) Con la expresión anterior podemos calcular el módulo de la velocidad: v = s / t (en realidad de lo que se llama velocidad media, ya que si queremos conocer la velocidad instantánea debemos hacerlo con la derivada y lo dejaremos para otro curso). Al tratarse de un vector, nos falta indicar su dirección y sentido. De la definición de derivada, se deduce que el vector velocidad es un vector tangente a la trayectoria en cualquier momento.

3 ACELERACIÓN La aceleración es una magnitud vectorial que nos mide como cambia el vector velocidad en función del tiempo. Ahora bien, como la velocidad es un vector, y por tanto, puede variar en módulo o en dirección (o en ambas cosas a la vez) La aceleración tangencial, que tiene la dirección de la velocidad, nos mide las variaciones del MÓDULO del vector velocidad. Por tanto, si a t =0 eso quiere decir que el módulo de la velocidad no varía, es decir que el movimiento es uniforme. a t = v t La aceleración tangencial siempre tiene la misma dirección que la velocidad, pero qué pasa con su sentido? Puede tener el mismo o el contrario: Cuando la a t tiene el mismo sentido de la velocidad el móvil cada vez tendrá mayor velocidad. Cuando la a t tiene sentido contrario a la velocidad el móvil irá disminuyendo su velocidad hasta pararse. La aceleración normal, que es normal a la velocidad, nos mide las variaciones en DIRECCIÓN del vector velocidad. Por tanto si a n =0 eso quiere decir que el vector velocidad no varia en dirección, es decir que se trata de un movimiento rectilíneo ( r = ). a n = v r Hay que darse cuenta de que al ser el vector aceleración suma de dos vectores, uno tangente a la trayectoria y otro normal, en general la aceleración no tiene la dirección de la velocidad. Solamente cuando a n =0

4 CASOS PARTICULARES DE MOVIMIENTOS 1. Movimiento rectilíneo y uniforme (MRU) Es aquel en el que la trayectoria es rectilínea y la velocidad constante, por tanto la aceleración normal debe ser cero (para que no cambie en dirección) y la aceleración tangencial nula (para que la velocidad no cambie en módulo) a n = 0 rectilíneo a t = 0 uniforme v = cte Partiendo de lo anterior puede deducirse que las ecuaciones del MRU son: a = 0 v = cte. s = s o + v t La representación gráfica de cada una de las magnitudes en función del tiempo es:. Movimiento rectilíneo y uniformemente acelerado (MRUA) Es aquel en el que la trayectoria es rectilínea y la velocidad varía uniformemente, por tanto la aceleración normal debe ser cero (para que no cambie en dirección) y la aceleración tangencial igual a una constante no nula (para que la velocidad varíe en módulo de manera constante, es decir uniformemente) a n = 0 rectilíneo a t 0 acelerado uniformemente Partiendo de lo anterior puede deducirse que las ecuaciones del MRU son: a = cte v = v o + a t s = s + v t + o o 1 a t

5 3. Movimiento circular y uniforme (MCU) Es el que describe un móvil con velocidad constante sobre una trayectoria circular. Eso quiere decir que la aceleración tangencial debe ser nula porque la velocidad no varía en módulo, pero la aceleración normal debe ser una constante distinta de cero, ya que describe una circunferencia y por tanto el vector velocidad varía constantemente en dirección: v a = n R circular a t = 0 uniforme Observa que en el MCU aunque la velocidad es constante en módulo, no es constante del todo, puesto que varía en dirección, de ahí que exista aceleración normal. Las ecuaciones del MCU son exactamente las mismas que las del rectilíneo, ya que son independientes de la forma de la trayectoria. La única diferencia de que en el primero hay aceleración normal. a t = 0 v = cte. s = s o + v t El problema es que cuando un sólido gira, cada punto tiene una velocidad distinta dependiendo del radio de giro. Los puntos más alejados del eje de giro tienen mayor velocidad porque recorren mayor espacio en el mismo tiempo, como puedes ver en la figura de la izquierda. Sin embargo, todos los puntos giran el mismo ángulo en el mismo tiempo, por eso nos interesa definir otras magnitudes más apropiadas al tipo de movimiento. En la figura de la derecha tenemos un punto, que inicialmente (t o =0) está en la posición s o respecto del origen (o lo que es igual, su ángulo inicial es φ o ). Después de un tiempo t, el punto se encuentra en la posición s (o lo que es igual, en un ángulo φ respecto al origen). Cuánto ha variado la posición en ese intervalo de tiempo? s s o. Pero también podíamos decir que su posición ha variado φ φ o. Y la segunda respuesta es incluso mejor, porque sería válida para todos los puntos, con independencia del radio con que giren.

6 Por tanto, de forma parecida a como se definió la velocidad lineal vamos a definir velocidad angular: La velocidad angular (ω) es una magnitud vectorial que mide como varía el ángulo girado en función del tiempo. Esa frase matemáticamente se expresa como: ϕ ω = t módulo de la velocidad angular El vector velocidad angular es perpendicular al plano del movimiento, tiene su origen en el centro de la circunferencia y el sentido viene dado por la regla del tornillo o de la mano derecha que gire como lo hace el cuerpo: Relación de las magnitudes lineales y angulares Recordando que, por definición el ángulo es la relación entre el arco y el radio, tenemos que: s = ϕ R Si dividimos la expresión anterior por el tiempo y teniendo en cuenta que s/t=v y que φ/t=ω nos queda que: v = ω R El movimiento circular uniforme es periódico Un movimiento periódico es aquel que se repite a intervalos regulares de tiempo, por ejemplo el movimiento de un péndulo, el de una varilla que vibra o el circular uniforme. Periodo (T) es el tiempo que tarda en repetirse el movimiento, es decir, el tiempo que tarda en dar una vuelta completa. Naturalmente se mide en segundos. Frecuencia (f) es el número de vueltas completas que da en 1 segundo. Es la inversa del periodo y se mide en seg 1 que recibe el nombre de Hercio (Hz) f = 1/T Teniendo en cuenta que ω=φ/t y que para girar un ángulo igual a una vuelta completa (π radianes) el tiempo que tarda, por definición, es igual al periodo, podemos poner que: ω = π T = π f

7 Cuestión La velocidad es una magnitud vectorial que mide como varía la posición de un cuerpo en función del tiempo. De acuerdo con ello, su módulo se expresa como v= s/ t. Sin embargo, cuando se trata de un movimiento uniforme, en muchas ocasiones escribimos el módulo de la velocidad como v=s/t. Razona que ambas expresiones son equivalentes. Primero diremos lo que NO es. Muchos alumnos responden que como se trata de un cociente, simplificando nos queda que v=s/t. Eso sería un disparate y conlleva no entender el significado de incremento. La respuesta correcta pasa por entender que un incremento, o variación, es una diferencia entre dos valores: el final menos el inicial, por tanto si inicialmente (t o ) el móvil está en la posición s o y al final, después de un tiempo t está en la posición s, podemos poner que: v = s t s s = t t 0 0 Ahora bien, si como es muy habitual, en el momento inicial t o =0 el móvil se encuentra en el origen del sistema de referencia s o =0 en este caso nos quedaría que: s v = t Cuestión Razona si un coche que toma una curva con velocidad constante de 100 Km/h tiene aceleración. La aceleración mide los cambios de la velocidad. Como la velocidad siempre es tangente a la trayectoria, al describir una curva, la velocidad continuamente debe cambiar de dirección que debe haber una aceleración que mida esos cambios en dirección (se llama aceleración normal)

8 Ejemplo El movimiento de un coche puede representarse mediante la siguiente gráfica. a) Razonar el tipo de movimiento en cada tramo. b) Deducir las ecuaciones del movimiento el móvil para cada uno de los tramos. c) Calcular el espacio recorrido por el móvil en cada uno de los tramos dibujados. a) Podemos responder a la primera pregunta de dos maneras: (1) Por la simple observación de la gráfica, o bien, () Obteniendo las ecuaciones correspondientes a cada tramo y comparándolas con las que ya conocemos, que es lo que haremos en el apartado b). En el primer tramo (t=0 a t=4s) podemos ver como a medida que aumenta el tiempo va aumentando la velocidad la velocidad varía hay aceleración que provoque esos cambios el tramo corresponde a un movimiento acelerado. Además podemos ver como en el momento t=0, v=0, es decir parte del reposo, y que al final del tramo t=4, v=1m/s. En el segundo tramo (t=4s a t=8s) podemos ver que la velocidad siempre es la misma (v=1m/s) por tanto se trata de un movimiento uniforme. En el tercer tramo (t=8s a t=10s) vemos como inicialmente la velocidad es de 1m/s y que a medida que pasa el tiempo la velocidad disminuye hasta hacerse nula la velocidad varía hay aceleración que provoque esos cambios el tramo corresponde a un movimiento acelerado. b) La ecuación general de una recta es y = mx + n, donde n representa la ordenada en el origen (punto de corte con el eje Y). La m representa la pendiente de la recta (tangente del ángulo que forma con el eje X ). En este caso las rectas tienen de ecuación v = mt + n La recta corta al eje de ordenadas en el punto 0 n=0 La pendiente se obtiene a partir de un triángulo rectángulo cualquiera, por ejemplo el que está en naranja, dividiendo el cateto opuesto al ángulo entre el cateto contiguo: m= 1/4 =3 La ecuación de la recta es: v = 3 t Comparando la ecuación obtenida con la ecuación general de la velocidad de un movimiento uniformemente acelerado: v = v o +a t podemos concluir que en este tramo v o =0 y que a = 3 m/s. Con esto, las ecuaciones durante el primer tramo son: a = 3 v = 3 t s = 3 1 t

9 En el segundo tramo la recta es una paralela al eje, que lo corta en v = 1, que por tanto es su ecuación. Puesto que la velocidad durante este tramo no depende del tiempo, el movimiento es uniforme y sus ecuaciones son: a = 0 v = 1 s = 1 t En el tercer tramo la recta corta al eje de ordenadas en el punto 1, por tanto n=1. La pendiente de la recta es m = 1/( ) = 6 La ecuación de la recta es: v = 1 6 t Comparando la ecuación obtenida con la ecuación general de la velocidad de un movimiento uniformemente acelerado: v = v o +a t podemos concluir que en este tramo v o =1m/s y que a = 6 m/s. Con esto las ecuaciones durante el tercer tramo son: a = 6 v = 1 6 t s = 1 t 6 1 t c) El espacio recorrido en cada uno de los tramos puede obtenerse de las ecuaciones correspondientes o bien calculando el área que la gráfica v/t forma con eje de abscisas Tramo 1 Tramo Tramo 3 1 s = 1 3t = 3 4 = 4 s = 1 t 1 s = 1 t 6 t 1 s = 3 4 = 4 m s = 1 4 = 48 m 1 t = 4 s = t = 4 t = m = base * altura s = Área = s = Área = base * altura base * altura cuadrado triángulo s = Área = triángulo 4 1 s = Área triángulo = = 4 s = Área cuadrado = 4 1 = 48 1 s = Área triángulo = = 1 s =48 m s = 4 m s = 1 m El espacio total recorrido es la suma: s Total = = 84 m

10 Ejemplo Se dispara verticalmente hacia arriba un objeto, de forma que a los segundos lleva una velocidad de 60m/seg. Hallar: a) La velocidad con la cual se disparó el objeto, b) A qué altura se encuentra a los segundos. a) Ya sabes que lo primero es elegir el sistema de referencia y que puedes elegir el que quieras, pero siempre el más sencillo es uno que tenga el centro en el lugar del disparo y que tenga uno de los ejes en la dirección del movimiento, por ejemplo como el siguiente: en ese sistema de referencia lo que va hacia arriba lo tomaremos como positivo y lo que va hacia abajo negativo, así que la velocidad inicial nos saldrá con valor positivo y la aceleración será 10 m/s. Las ecuaciones de un movimiento uniformemente acelerado son: v = v o + a. t v = v o 10*t s = v t + o 1 a t 1 s + = v o * t * (-10)* t Ecuaciones del objeto a) En la ecuación de la velocidad podemos darle valores al tiempo y obtener la velocidad en esos momentos, y al contrario, podemos darle valores a la velocidad y obtener el tiempo que tarda en alcanzar esa velocidad, por tanto, sabiendo que v=60m cuando t=s: 60 = v o 10* v o = 80 m/s b) En la ecuación del espacio ocurre igual que con la velocidad. Si damos valores al tiempo obtenemos el valor del espacio en ese momento, así que: 1 = * (-10)* t s 80 * t + s = 80 * + t= 1 * (-10)* = 140 m

11 Ejemplo Un niño tiene un tren con una pista circular de 0,5m de radio que gira con velocidad constante dando 8,7 vueltas en un minuto. Calcular: a) La velocidad angular en unidades internacionales. b) La velocidad lineal del tren. c) El periodo d) La frecuencia e) Espacio que recorre en 10 segundos. f) El ángulo que habrá girado en 10 segundos. f) La aceleración tangencial y la aceleración normal del tren. a) La velocidad angular es uno de los datos. 8,7 vueltas/minuto. Algunas veces se expresa como r.p.m. (revoluciones por minuto). Teniendo en cuenta que 1 vuelta = π radianes, y que 1 minutos = 60 segundos: vueltas π rad ω = 8,7 = 8,7 = min. 60 seg 3rad / seg b) Teniendo en cuenta la relación entre la velocidad lineal y la velocidad angular: v = ω R v = 3 0,5 = 1,5 m/s c) Teniendo en cuenta que la velocidad angular es ω=φ/t y que para girar un ángulo φ =π rad tarda un tiempo igual al periodo, podemos poner que: ϕ π ω = = t T π 3 = T = π/3 = seg. T También podríamos calcular el periodo a partir de la velocidad lineal, ya que v = s/t. Teniendo en cuenta la definición de periodo (tiempo en dar una vuelta completa) y que el espacio que recorre al dar una vuelta es la longitud de la circunferencia = πr s πr v = = t T d) La frecuencia es la inversa del periodo: π 0,5 1,5 = T = π 0,5/1,5 = seg T f = 1 T 1 f = = 0,5 Hz e) El espacio recorrido por un móvil que tiene una velocidad lineal constante de 1,5 m/s, independientemente de que la trayectoria sea lineal o circular viene dado por: s = s o + v t s = 1,5 10 = 15 m f) El ángulo que ha girado en 10 segundos podemos calcularlo de dos maneras: (1) utilizando la ecuación que nos da el ángulo en función de la velocidad angular (similar a la del espacio): φ = φ o + ω t φ = 3 10 = 30 rad Podemos preguntarnos qué significado tiene que haya girado 30 radianes. Teniendo en cuenta que 1 vuelta es igual a π rad 30 rad = 4,8 vueltas.

12 g) Puesto que se trata de un movimiento uniforme el módulo de la velocidad no varía a t = 0 Puesto que es circular la velocidad cambia continuamente de dirección porque debe ser tangente a la circunferencia en cada punto existe aceleración normal para provocar esos cambios: v a = n R 1,5 a n = = 4,5m / s 0,5 La velocidad angular, ω, es un vector perpendicular al plano del movimiento del movimiento. La velocidad lineal es un vector tangente a la trayectoria La aceleración normal es un vector normal (perpendicular) a la tangente y hacia el centro.

EL MOVIMIENTO Y SU DESCRIPCIÓN

EL MOVIMIENTO Y SU DESCRIPCIÓN 1. EL VECTOR VELOCIDAD EL MOVIMIENTO Y SU DESCRIPCIÓN Se van a tener dos tipos de magnitudes: Magnitudes escalares Magnitudes vectoriales Las magnitudes escalares son aquellas que quedan perfectamente

Más detalles

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) :

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) : Movimiento circular uniforme (MCU) : Es el movimiento de un cuerpo cuya trayectoria es una circunferencia y describe arcos iguales en tiempos iguales. Al mismo tiempo que recorremos un espacio sobre la

Más detalles

MOVIMIENTOS EN UNA Y DOS DIMENSIONES

MOVIMIENTOS EN UNA Y DOS DIMENSIONES MOVIMIENTOS EN UNA Y DOS DIMENSIONES 1. Cómo se describen los movimientos? La descripción física de un fenómeno, como por ejemplo los movimientos, se hace en términos de la constancia de determinada magnitud.

Más detalles

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Descripción del movimiento 1.- Enumera todos aquellos factores que te parezcan relevantes para describir un movimiento. 2.- Es verdadera

Más detalles

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado. Movimiento Circular. Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos rodeados

Más detalles

Cinemática en 2D: Movimiento Circular.

Cinemática en 2D: Movimiento Circular. Cinemática en 2D: Movimiento Circular. Movimiento circular uniforme Otro caso particular de movimiento en dos dimensiones es el de una partícula que se mueve describiendo una trayectoria circular, con

Más detalles

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador.

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador. UD6 FUERZAS Y MOVIMIENTO EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si cambia de posición con respecto al sistema de referencia; en caso contrario, está en reposo. Sistema de referencia

Más detalles

GEOMETRÍA ANALÍTICA EN EL PLANO

GEOMETRÍA ANALÍTICA EN EL PLANO GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

Cinemática de la partícula

Cinemática de la partícula Cinemática de la partícula Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

Guía de Repaso 1: Introducción

Guía de Repaso 1: Introducción Guía de Repaso 1: Introducción 1- La distancia de la Tierra al Sol es casi 104 veces mayor que el diámetro de la Tierra. Al estudiar el movimiento de ésta alrededor del Sol, diría usted que la podemos

Más detalles

Ejercicios de Dinámica

Ejercicios de Dinámica Ejercicios de Dinámica 1. Una fuerza de 14 N que forma 35 con la horizontal se quiere descomponer en dos fuerzas perpendiculares, una horizontal y otra vertical. Calcula el módulo de las dos fuerzas perpendiculares

Más detalles

Movimiento armónico conceptos básicos

Movimiento armónico conceptos básicos Movimiento armónico conceptos básicos Llamamos movimiento oscilatorio cuando un móvil realiza un recorrido que se repite periódicamente, y que tiene un máximo y un mínimo respecto a un punto. Por ejemplo,

Más detalles

CINEMÁTICA. Es la línea imaginaria que describe el móvil durante o su movimiento.

CINEMÁTICA. Es la línea imaginaria que describe el móvil durante o su movimiento. CINEMÁTICA DEFINICIONES BÁSICAS MOVIMIENTO Se dice que un cuerpo está en movimiento si cambia su posición con el tiempo con respecto a un punto que consideramos fijo (sistema de referencia). La parte de

Más detalles

TEMA II: CINEMÁTICA I

TEMA II: CINEMÁTICA I 1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de

Más detalles

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES 1.- Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 105 m/s, se encuentra a 50

Más detalles

MOVIMIENTO UNIFORMEMENTE ACELERADO

MOVIMIENTO UNIFORMEMENTE ACELERADO MOVIMIENTO UNIFORMEMENTE ACELERADO El movimiento rectilíneo uniformemente aceleradoes un tipo de movimiento frecuente en la naturaleza. Una bola que rueda por un plano inclinado o una piedra que cae en

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.

PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. Matemáticas º ESO Federico Arregui PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en es igual a su cuadrado?. Qué número multiplicado por 3 es 0

Más detalles

Movimiento circular. Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

Movimiento circular. Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado. Movimiento circular Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos rodeados

Más detalles

UNIVERSIDAD LOS ANGELES DE CHIMBOTE

UNIVERSIDAD LOS ANGELES DE CHIMBOTE UNIVERSIDAD LOS ANGELES DE CHIMBOTE PROFESOR: EDWAR HERRERA FARFAN ALUMNO: MARTIN GUEVARA GRANDA 1.- UNIDAD II: I. CINEMATICA II. Objetivos y Conceptos III. Elementos IV. Leyes M.R.U V. Tipos de Movimiento

Más detalles

CINEMATICA CAPITULO 1 CINEMATICA

CINEMATICA CAPITULO 1 CINEMATICA CINEMATICA CAPITULO 1 CINEMATICA Llamamos cinemática a la parte de la Física que estudia el movimiento de los cuerpos, sin considerar las causas que lo producen o lo modifican. MOIMIENTO Se dice que un

Más detalles

1.- EL MOVIMIENTO. Ejercicios

1.- EL MOVIMIENTO. Ejercicios Ejercicios 1.- EL MOVIMIENTO 1.- En la siguiente figura se representa la posición de un móvil en distintos instantes. Recoge en una tabla la posición y el tiempo y determina en cada caso el espacio recorrido

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Cinemática con Calculadora Gráfica

Cinemática con Calculadora Gráfica Página Nº5 Mª Oliva San Martín Fernández. Profesora de Matemáticas IES Mata-Jove (Gijón-Asturias) Abel Martín. Profesor de Matemáticas del IES Pérez de Ayala (Oviedo-Asturias) y colaboradores del Departamento

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU)

Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU) Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU) 1. Cuál de los siguientes movimientos es más rápido, el del sonido que viaja a 340 m/s o el de un avión comercial que viaja a 1.080

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

Trayectoria: forma que tiene el camino por donde se mueve un objeto. La más simple es la rectilínea (camino recto).

Trayectoria: forma que tiene el camino por donde se mueve un objeto. La más simple es la rectilínea (camino recto). Movimiento Rectilíneo Uniforme (MRU) Veamos: Movimiento: Un cuerpo tiene movimiento si cambia de posición a través del tiempo. Rectilíneo: Un movimiento tiene una trayectoria rectilínea si se mueve a lo

Más detalles

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.

Más detalles

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A)

MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A) MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A) Cinemática La cinemática es la parte de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo

Más detalles

EJERCICIOS DE FÍSICA

EJERCICIOS DE FÍSICA EJERCICIOS DE FÍSICA 1. El vector posición de un punto, en función del tiempo, viene dado por: r(t)= t i + (t 2 +2) j (S.I.) Calcular: a) La posición, velocidad y aceleración en el instante t= 2 s.; b)

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

PROBLEMAS DE INDUCCIÓN MAGNÉTICA

PROBLEMAS DE INDUCCIÓN MAGNÉTICA PROBLEMAS DE INDUCCIÓN MAGNÉTICA 1.- Una varilla conductora, de 20 cm de longitud se desliza paralelamente a sí misma con una velocidad de 0,4 m/s, sobre un conductor en forma de U y de 8 Ω de resistencia.el

Más detalles

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la T.7: TRIGONOMETRÍA 7.1 Medidas de ángulos. El radián. Ángulo reducido. Las unidades más comunes que se utilizan para medir los ángulos son el grado sexagesimal y el radián: Grado sexageximal: es cada una

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.

Más detalles

TEMA 3: El movimiento rectilíneo. T_m[ 3: El movimi_nto r_]tilín_o 1

TEMA 3: El movimiento rectilíneo. T_m[ 3: El movimi_nto r_]tilín_o 1 TEMA 3: El movimiento rectilíneo T_m[ 3: El movimi_nto r_]tilín_o ESQUEMA DE LA UNIDAD.- Movimiento rectilíneo uniorme...- Características del movimiento rectilíneo uniorme...- Ecuación del m.r.u..3.-

Más detalles

Capítulo 18. Biomagnetismo

Capítulo 18. Biomagnetismo Capítulo 18 Biomagnetismo 1 Fuerza magnética sobre una carga La fuerza que un campo magnético B ejerce sobre una partícula con velocidad v y carga Q es: F = Q v B El campo magnético se mide en teslas,

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:

GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha: I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA DEPARTAMENTO DE FÍSICA PROF.: Nelly Troncoso Rojas. GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN

Más detalles

Se usó el subíndice m para indicar que se trata de la velocidad media. La rapidez media se define como la distancia recorrida en la unidad de tiempo:

Se usó el subíndice m para indicar que se trata de la velocidad media. La rapidez media se define como la distancia recorrida en la unidad de tiempo: 1 Unidad I: Cinemática de la partícula. Cinemática. Es la rama de la mecánica que trata de la descripción del movimiento sin tomar en cuenta las causas que pudieron haberlo originado. Partícula o punto

Más detalles

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares

Más detalles

PROBLEMAS DE CINEMÁTICA. 4º ESO

PROBLEMAS DE CINEMÁTICA. 4º ESO Velocidad (km/h) Espacio(km) PROBLEMAS DE CINEMÁTICA. 4º ESO 1. Ordena de mayor a menor las siguientes cantidades: 12 km/h; 3 5 m/s; 0 19 km/min 3 5 m/s 1km/1000 m 3600 s/1h = 12 6 m/s 0 19 km/min 60 min/1h

Más detalles

Movimiento circular. Las varillas de un reloj análogo se mueven en forma circular.

Movimiento circular. Las varillas de un reloj análogo se mueven en forma circular. Movimiento circular La Luna se mueve casi en forma circular alrededor de la Tierra. La Tierra se mueve casi circularmente alrededor del Sol, a ese movimiento le llamamos de traslación. Y, además, la Tierra

Más detalles

Movimiento Circular Movimiento Armónico

Movimiento Circular Movimiento Armónico REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento

Más detalles

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO 1.- Por un plano inclinado de ángulo y sin rozamiento, se lanza hacia arriba una masa m con una velocidad v o. Se pide: a) Fuerza o fuerzas que actúan sobre

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

EXPRESION MATEMATICA

EXPRESION MATEMATICA TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales

Más detalles

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas...

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas... En el estudio de los conjuntos y las funciones es fundamental el sistema que se utilize para representar los puntos. Estamos acostumbrados a utilizar la estructura de afín o de vectorial de R n, utilizando

Más detalles

CAPÍTULO. La derivada. espacio recorrido tiempo empleado

CAPÍTULO. La derivada. espacio recorrido tiempo empleado 1 CAPÍTULO 5 La derivada 5.3 Velocidad instantánea 1 Si un móvil recorre 150 km en 2 oras, su velocidad promedio es v v media def espacio recorrido tiempo empleado 150 km 2 75 km/ : Pero no conocemos la

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco.

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco. Trigonometría Radianes Los grados sexagesimales, que son los más frecuentes, se utilizan para dividir a la circunferencia en 360 partes iguales. Si colocamos el eje de coordenadas en la circunferencia

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

Unidad: Movimiento Circular

Unidad: Movimiento Circular Unidad: Movimiento Circular En esta clase estudiaremos el movimiento de un auto que se mueve con rapidez constante en línea recta y que entra a una órbita circular. El objetivo de la guía es entender de

Más detalles

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR CONTENIDOS REPASO DEL ÁLGEBRA VECTORIAL Proyección, componentes y módulo de un vector Operaciones: suma, resta, producto escalar y producto

Más detalles

1. El movimiento de un coche puede representarse mediante la siguiente gráfica.

1. El movimiento de un coche puede representarse mediante la siguiente gráfica. CINEMÁTICA. 4ºESO.. El movimiento de un coche puede representarse mediante la siguiente gráfica. a) Razonar el tipo de movimiento en cada tramo. b) Deducir las ecuaciones del movimiento el móvil para cada

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética A) Interacción Magnética sobre cargas puntuales. 1.- Determina la fuerza que actúa sobre un electrón situado en un campo de inducción magnética B = -2 10-2 k T cuando su velocidad v = 2 10 7 i m/s. Datos:

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

GUÍA ESCOLAR DE APRENDIZAJE

GUÍA ESCOLAR DE APRENDIZAJE GUÍA ESCOLAR DE APRENDIZAJE Asignatura: FÍSICA_ DESEMPEÑOS COGNITIVO a. Relaciona las diferentes fuerzas que actúan sobre los cuerpos en reposo o en movimiento, con las ecuaciones del movimiento rectilíneo

Más detalles

By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo:

By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo: GEOMETRÍA-EUAIÓN DE LA RETA Y POSIIONES Prof: F. López- D. Legal: M-0006/009 0. SEGMENTARIA Esta forma se obtiene a partir de la forma general. 0 B Y A B A B A B A Ejemplo: 0 Los denominadores son los

Más detalles

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple.

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1.1. Movimiento oscilatorio características. 4.1.2. Movimiento periódico: período. 4.1.3. Movimiento armónico simple: características

Más detalles

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS 1. Un automóvil circula con una velocidad media de 72 km/h. Calcula qué distancia recorre cada minuto. 2. Un ciclista recorre una distancia de 10 km

Más detalles

b 11 cm y la hipotenusa

b 11 cm y la hipotenusa . RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,

Más detalles

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj. Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

Tema: Movimiento rectilíneo uniformemente variado.

Tema: Movimiento rectilíneo uniformemente variado. LABORATORIO DE FÍSICA Tema: Movimiento rectilíneo uniformemente variado. 1. Objetivo: Establecer las leyes y ecuaciones para una partícula que tiene una trayectoria rectilínea con M.R.U.V. 2. Introducción

Más detalles

Guía realizada por: Pimentel Yender.

Guía realizada por: Pimentel Yender. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR

Más detalles

FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación

FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación FÍSICA Y QUÍMICA 4º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN. 1ª Evaluación Unidad 1: El movimiento de los cuerpos i. Objetivos Observar las distintas magnitudes físicas que se ponen de manifiesto

Más detalles

Una gráfica de puntos está constituida por 2 ejes perpendiculares de aproximadamente la misma

Una gráfica de puntos está constituida por 2 ejes perpendiculares de aproximadamente la misma GRÁFICAS Y PROPORCIONALIDAD. Una gráfica de puntos está constituida por ejes perpendiculares de aproximadamente la misma longitud. En sus extremos se indican con flechas, el sentido en que crecen las magnitudes.

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares

Más detalles

MOVIMIENTO CIRCULAR UNIFORME

MOVIMIENTO CIRCULAR UNIFORME MOVIMIENTO CIRCULAR UNIFORME OBJETIVOS El movimiento circular está presente en multitud de artilugios que giran a nuestro alrededor; los motores, las manecillas de los relojes y las ruedas son algunos

Más detalles

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES 2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES INDICE 2.1. Curvas planas y ecuaciones paramétricas...2 2.2. Ecuaciones paramétricas de algunas curvas y su representación grafica 3 2.3.

Más detalles

2 CINEMÁTICA DE LA PARTÍCULA

2 CINEMÁTICA DE LA PARTÍCULA 2 CINEMÁTICA DE LA PARTÍCULA 2.1 INTRODUCCIÓN Una de las ramas más antiguas de la Física es la Mecánica, a la cual concierne el estudio del movimiento y las causas que lo producen. En un campo más restringido,

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS APELLIDOS, NOMBRE: n o Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.008 Sea Oxyz un sistema de referencia ligado a un sólido S

Más detalles

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP = GUIA FISICA MOVIMIENO CICULA UNIFOME NOMBE: FECHA: FÓMULAS PAA MOVIMIENO CICULA UNIFOME El periodo y la frecuencia son recíprocos Velocidad Lineal o angencial( V ) Velocidad Angular( ) elación entre Velocidad

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL:

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: Si junto con la fuerza de Van der Waals atractiva, que varía proporcionalmente a r 7, dos atómos idénticos de masa M eperimentan una fuerza repulsiva proporcional

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

GEOMETRÍA ANALÍTICA DEL PLANO

GEOMETRÍA ANALÍTICA DEL PLANO GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del

Más detalles

Funciones y gráficas. 3º de ESO

Funciones y gráficas. 3º de ESO Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

Problemas de Física I CINEMÁTICA DE LA PARTÍCULA

Problemas de Física I CINEMÁTICA DE LA PARTÍCULA Problemas de Física I CINEMÁTICA DE LA PARTÍCULA (1 er Q.:prob impares, 2 do Q.:prob pares) 1. Una partícula se mueve sobre el eje x de modo que su velocidad es v = 2 + 3t 2 + 4t 3 (m/s). En el instante

Más detalles

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles