ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación"

Transcripción

1 LÍMITES Cálculo y rprsntación ( + ) ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +. y = + +. y = + +. y = + +. y =

2

3 REPRESENTACIÓN DE FUNCIONES. ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocints : D = R {puntos qu anulan l dnominador} - Raícs d índic par : D = {Lo d dntro d la raíz } - Raícs d índic impar : D = R - Logaritmos : D = {Lo d dntro dl logaritmo > } - Eponncials : D = R - Trigonométricas : Sno y cosno D = R ; El rsto s studia como un cocint - Arcosno y arcocosno : D = {- Lo d dntro dl arco } PUNTOS DE CORTE - Con l j OX : y = = P(,) - Con l j OY : = y = y P(,y ) SIMETRÍA - Simétrica rspcto dl OY o par: f(-) = f() - Simétrica rspcto dl Orign o impar : -f(-) = f() - No simétrica SIGNO DE LA FUNCIÓN - S calculan los puntos qu no prtncn al dominio = a,... - S rsulv la cuación f() = =, =,... - Estos puntos dividn la rcta ral n parts, tomando un punto n cada intrvalo y sustituyndo n y = f() s obtin l signo d la función ASÍNTOTAS - Asíntotas vrticals: Puntos dond la función s va al infinito: y, = a - Cocints: Puntos qu anulan l dnominador - Logaritmos : Puntos qu anulan lo d dntro dl logaritmo - Aproimación a la asíntota : Calcular its latrals - Asíntotas horizontals : Puntos dond la s va al infinito :, y = b - Cálculo : f () = b y = b - Aproimación f(±) - Asíntotas oblicuas - Cálculo : y = m + n; m = > b La función por ncima d la asíntota < b La función por dbajo d la asíntota f () - Aproimación f(±) Asínt(±) ; n = [ f () m] > La función por ncima d la asíntota < La función por dbajo d la asíntota

4 MONOTONIA Y PUNTOS CRÍTICOS - S calculan los puntos qu no prtncn al dominio = a,... - S rsulv la cuación f () = =, =,... - Estos puntos dividn la rcta ral n parts, tomando un punto n cada intrvalo y sustituyndo n y = f () s obtin l signo d la función - Si f (a) > la función s crcint n dicho intrvalo, y si s < s dcrcint. - Máimo rlativo : P(a,f(a)) : = a s l punto dl dominio dond la función pasa d crcint a dcrcint. - Mínimo rlativo : P(a,f(a)) : = a s l punto dl dominio dond la función pasa d dcrcint a crcint. CURVATURA Y PUNTOS DE INFLEXIÓN - S calculan los puntos qu no prtncn al dominio = a,... - S rsulv la cuación f () = =, =,... - Estos puntos dividn la rcta ral n parts, tomando un punto n cada intrvalo y sustituyndo n y = f () s obtin l signo d la función - Si f (a) > la función s conva n dicho intrvalo, y si s < s concava. - Puntos d inflión : P(a,f(a)) : = a s l punto dl dominio dond la función cambia la curvatura. TABLA DE VALORES Dando valors a la s calculan los corrspondints d la y sustituyndo n la función REPRESENTACIÓN GRÁFICA. REPRESENTACIÓN DE FUNCIONES POLINÓMICAS F() = P() DOMINIO: D(f) = R PUNTOS DE CORTE CON LOS EJES: OX: y = = P(,) OY: = y = y Q(,y ) RAMAS INFINITAS DE LA FUNCIÓN (No hay asíntotas) f () = ± f () = ± + MONOTONÍA Y EXTREMOS CURVATURA Y PUNTOS DE INFLEXIÓN REPRESENTACIÓN GRÁFICA (Y tabla d valors)

5 . REPRESENTACIÓN DE FUNCIONES RACIONALES F() = g() / h() DOMINIO: D(f) = R { / h() = } PUNTOS DE CORTE CON LOS EJES: OX: y = = P(,) OY: = y = y Q(,y ) ASÍNTOTAS O RAMAS INFINITAS DE LA FUNCIÓN MONOTONÍA Y EXTREMOS CURVATURA Y PUNTOS DE INFLEXIÓN REPRESENTACIÓN GRÁFICA (Y tabla d valors). REPRESENTACIÓN DE OTRO TIPO DE FUNCIONES RAÍCES DOMINIO: Tnrlo n cunta n l rsto d apartados ASÍNTOTAS OBLICUAS: Hacr por sparado n l más infinito y n l mnos infinito. LOGARITMOS y = log (f()) DOMINIO: Tnrlo n cunta n l rsto d apartados ASÍNTOTAS HORIZANTALES: f() = EXPONENCIALES y = a f() ASÍNTOTAS: hacr por sparado n l más infinito y n l mnos infinito. TRIGONOMÉTRICAS DOMINIO: Tnrlo n cunta n l rsto d apartados PERIODICIDAD: - sno y cosno: π ó º - tangnt: π ó 8º

6 Calcular los dominios d las siguints funcions: a) f = b) f = + c) f = + d) f = ) g = + + f) = g) k = + + h) f = sin i) f = j) f = + tan k) g =

7 DEFINICIÓN DE FUNCIÓN Ejrcicio : Indica cuáls d las siguints rprsntacions corrspondn a la gráfica d una función. Razona tu rspusta: a) b) c) d) DOMINIO Ejrcicio : Calcular l dominio d dfinición d las siguints funcions: a) y = b) y = c) y = d) y = ) y = f) y = g) y = h) y = i) y = j) y = k) y = ( ) l) y = m) y = n) y = log ( ) ñ) y = tag PROPIEDADES DE LAS FUNCIONES DADAS GRÁFICAMENTE Ejrcicio : Obsrvando la gráfica d stas funcions, studia sus propidads a) b) c) d) Ejrcicio : La siguint gráfica mustra la altura qu alcanza una plota n función dl timpo, dsd qu s lanza vrticalmnt hasta qu ca por primra vz al sulo. a Cuál s l dominio? b Indica la altura máima qu alcanza y n qué momnto. c Durant cuánto timpo la altura s suprior a m? d Dscrib l crciminto y l dcrciminto d la función y plica su significado dntro dl contto dl problma.

8 LÍMITES, CONTINUIDAD, ASÍNTOTAS. LÍMITE DE UNA FUNCIÓN.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa: l s l valor al qu s aproima f() cuando s aproima a c Notas: - Qu s aproima a c significa qu toma valors muy crca d c (S pud acrcar por la izquirda o por la drcha). - l pud sr + ó - y ntoncs = c s una asíntota vrtical. Límits latrals d una función n un punto Límit por la drcha: f () = l S l: El it cuando tind a c por la drcha d f() s l c + Significa: l s l valor al qu s aproima f() cuando s aproima a c por la drcha. Límit por la izquirda: f () = l S l: El it cuando tind a c por la izquirda d f() s l c Significa: l s l valor al qu s aproima f() cuando s aproima a c por la izquirda. Eistn dl it Para qu ista l it d una función n un punto s ncsario qu istan los dos its latrals y san iguals.

9 .. LÍMITES EN EL INFINITO f () + f () + = + = S l: El it cuando tind a más infinito d f() s más infinito Significa: la función toma valors grands positivos cuando la toma valors grands positivos. (º cuadrant) S l: El it cuando tind a más infinito d f() s mnos infinito. Significa: la función toma valors grands ngativos cuando la toma valors grands positivos. (º cuadrant) f () = l S l: El it cuando tind a más infinito d f() s l + Significa: l s l valor al qu s aproima f() cuando toma valors muy grands positivos: y = l s una asíntota vrtical. f () f () = + = S l: El it cuando tind a mnos infinito d f() s más infinito Significa: la función toma valors grands positivos cuando la toma valors grands ngativos. (º cuadrant) S l: El it cuando tind a mnos infinito d f() s mnos infinito. Significa: la función toma valors grands ngativos cuando la toma valors grands ngativos. (º cuadrant) f () = l S l: El it cuando tind a mnos infinito d f() s l Significa: l s l valor al qu s aproima f() cuando toma valors muy grands ngativos: y = l s una asíntota vrtical.

10 .. CÁLCULO DE LÍMITES S sustituy la por l valor al qu tind a) b) d) (sn + ) ) log π g) j) + + m) Indtrminacions:, h) + 7 c) 7 f) i) k) + l) + n) ñ) + k Hallar its latrals a) b) d) ) a) Factorizar y simplificar + + b) ( ) c) c) f) ( ) ± a b a) Si grado dl numrador > grado dl dnominado r (El signo dpnd coficint s + + c) Si grado dl numrador d la d mayor grado dl numrador y dl dnominado r) = grado dl dnominado r (a y b son los coficint s d la d mayor grado dl numrador y dl dnominado r) Si grado dl numrador < grado dl dnominado r b) + + d) - S hacn opracions. Cuando aparcn radicals, multiplicamos y dividimos por la prsión conjugada. a) b) + d los

11 f () : Tipo númro : Aplicar : = a + f() f () a g() = ó g().[f () ] a - En funcions dfinidas a trozos, n los puntos dond sté dfinida d distinta forma si m aproimo por valors más pquños, qu por valors más grands, habrá qu hacr its latrals. a) Dada la función f() = si < si. ASÍNTOTAS Y RAMAS INFINITAS - Asíntotas vrticals: = c y Cálculo: Puntos qu anulan l dnominador Puntos qu anulan lo qu stá dntro dl logaritmo Por abajo Aproimación: Calcular los its latrals + Por arriba Calcular su it n los puntos,, 7 - Asíntotas horizontals: y = b (Grado numrador Grado dnominador) Cálculo: f () = b Aproimación: f(± ) Asíntota < > Por dbajo Por ncima - Asíntotas oblicuas: y = m + n (Grado Numrador Grado dnominador = ) Cálculo: m = f () Aproimación: f(± ) Asíntota(± ) ; n = (f () m) < > Por dbajo Por ncima RAMAS INFINITAS (Grado Numrador Grado dnominador ) Cálculo: f () = ± ± a) y = d) y = b) y = ) y = + + c) y = f) y = + +

12 . - CONTINUIDAD La ida d función continua s la d qu pud sr construida con un solo trazo. Una función f() s continua n l punto = a si f() f(a) a = Todas las funcions dfinidas por prsions analíticas lmntals (s dcir, todas las qu conocmos hasta ahora, cptuando las funcions a trozos), son continuas n todos los puntos d su dominio. Las funcions a trozos habrá qu studiarlas n los trmos d sus trozos qu prtnzcan al dominio. Tipos d discontinuidads - Discontinua invitabl d salto infinito: Si alguno d los its latrals s infinito o no ist. - Discontinua invitabl d salto finito: Si los dos its latrals son finitos pro distintos. El salto s la difrncia, n valor absoluto, d los its latrals. - Discontinua vitabl: Si los dos its latrals son finitos iguals, pro su valor no coincid con f(a) o no ist f(a) a) y = + b) y = c) y = d) log si < si ) y = + f) y = g) y = + si si = + si h) Calcular l valor d n para qu la función f() = sa + n si > continua n todo R. + k si i) Calcular k para qu y = sa continua n R 7 si =

13 CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f(), halla : Y X a) f b) f c) f d) f ) f a) f b) f c) f d) f ) f EJERCICIO : A partir d la gráfica d f(), calcula: 8 Y 8 8 X a) f b) f c) d) f f ) f a) f b) f c) f d) f ) f EJERCICIO : Rprsnta gráficamnt los siguints rsultados: a) b) a) f b) g EJERCICIO : Rprsnta los siguints its: f f EJERCICIO : Rprsnta n cada caso los siguints rsultados: a) f b) g a) b) o bin

14 EJERCICIO : Rprsnta gráficamnt: a) f b) g a) b) Por jmplo: o bin Rprsnta gráficamnt stos dos its. EJERCICIO 7 : Para la función f, sabmos qu : y CÁLCULO DE LÍMITES INMEDIATOS EJERCICIO 8 : Calcula los siguints its: a) b) 9 c) cos d) ) a) b) c) cos cos d) ) 7 9 EJERCICIO 9 : Calcula l it d la función f n y n. 7 EJERCICIO : Calcula los siguints its y rprsnta los rsultados qu obtngas: a) b) c) a) b) c) Hallmos los its latrals: ;

15 EJERCICIO : Rsulv los siguints its y rprsnta gráficamnt los rsultados obtnidos: a) b) c) a) 8 8 b) 8 c) 8 Hallamos los its latrals: ; EJERCICIO : Halla los its siguints y rprsnta gráficamnt la información qu obtngas: a) b) c) a) 9 b) c) Hallamos los its latrals: ; EJERCICIO : Halla los siguints its y rprsnta los rsultados qu obtngas: a) b) c) a) 7 9 b) c) Hallamos los its latrals: ; EJERCICIO : Calcula los its siguints y rprsnta gráficamnt los rsultados qu obtngas: a) b) c)

16 a) b) c) Hallamos los its latrals: ; CÁLCULO DE LÍMITES EJERCICIO : Calcula los siguints its y rprsnta los rsultados qu obtngas: a) b) c) d) ) f) g) h) i) j) k) a) b) c) d) Hallamos los its latrals: ) f) g) h)

17 i) j) k) EJERCICIO : Halla l it cuando d las siguints funcions y rprsnta gráficamnt la información qu obtngas: a) f b) f a) b) EJERCICIO 7 : Calcula l it cuando y rprsnta la información qu obtngas: f y cuando dla siguint función EJERCICIO 8 : Halla los siguints its y rprsnta gráficamnt los rsultados obtnidos: a) b) a) b) EJERCICIO 9 : Calcula los siguints its y rprsnta l rsultado qu obtngas: a) b) a) b)

18 CÁLCULO DE LÍMITES EJERCICIO : Calcula: a) b) log ) f) log i) log j) a) c) 9 d) g) ln h) Porqu una ponncial d bas mayor qu s un infinito d ordn suprior a una potncia. b) log log Porqu una potncia s un infinito d ordn suprior a un logaritmo. 9 9 c) d) ) log Porqu las potncias son infinitos d ordn suprior a los logaritmos. f) g) Porqu una ponncial d bas mayor qu s un infinito d ordn suprior a una potncia. ln ln h) Porqu las potncias son infinitos d ordn suprior a los logaritmos. i) log Porqu las potncias son infinitos d ordn suprior a los logaritmos. j) EJERCICIO : Halla los its: a) b) c) ) f) g) i) j) d) h)

19 7 a) 9 b) c) ) ( ) ( ) ( ) ) ( ( d) ) f) g) h) ) ( ) ( ) ( ) ( i) j) EJERCICIO : Calcula: a) 7 8 b) c) d) 9 ) a) 7 8 b) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

20 8 ) ( ) ( ) ( c) ) ( Hallamos los its latrals: ; No ist d) 9 ) ( 8 Hallamos los its latrals: ; No ist ) ) ( 9 Hallamos los its latrals: ; No ist EJERCICIO : Calcula los its: a) b) c) d) ) a) ) ( ) ( () ) ( ) ( ) ( ) ( ) ( ) ( b) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( c) 8 d) )

21 9 EJERCICIO : Calcula stos its: a) b) c) d) ) f) g) 9 7 h) i) j) a) b) 8 c) d) ) f) g) h) i) j) EJERCICIO : Halla los its: a) 9 b) c) d) ) f) g) h) i) j)

22 a) () ) ( ) ( ) ( ) ( 9 b) Hallamos los its latrals: ) ( ) ( ; ) ( ) ( Como son distintos No ist l it () ) ( c) Hallamos los its latrals: ; Como son distintos No ist l it d) ) f) () Hallamos los its latrals: ; No ist l it ) ( ) ( ) ( ) ( g). h) i) ) )( ( j)

23 CONTINUIDAD EJERCICIO : La siguint gráfica corrspond a la función f : Y X Di si s continua o no n y n. Si n alguno d los puntos no s continua, indica cuál s la causa d la discontinuidad. En no s continua porqu prsnta un salto n s punto. Obsrvamos qu f f En sí s continua. EJERCICIO 7 : A partir d la gráfica d f( ) sñala si s continua o no n y n. En l caso d no sr continua, indica la causa d la discontinuidad.. Y X En =, sí s continua. En = s discontinua porqu no stá dfinida, ni tin it finito. Tin una rama infinita n s punto (una asíntota vrtical). EJERCICIO 8 : Dada la gráfica d f : Y X a) Es continua n? b) Y n? Si no s continua n alguno d los puntos, indica cuál s la razón d la discontinuidad. a) Sí s continua n. b) No, n s discontinua porqu no stá dfinida n s punto. Como sí tin it n s punto, s una discontinuidad vitabl. EJERCICIO 9 : Avrigua si la siguint función s continua n : f f f Es continua n porqu f f. f si si

24 EJERCICIO : Compruba si la siguint función s continua n. f f Es continua n f porqu f f. EJERCICIO : Halla l valor d k para qu f sa continua n : f f f. En : f k k = f (). f continua n = si k = f si si k si si EJERCICIO : Estudia la continuidad d las siguints funcions y rprséntalas gráficamnt: a) si f b) si f si si c) si f si si d) f ) f si si f) f si g) f h) f i) f si si si si si j) f si a) Continuidad: f continua n R {} si si si si f f. En : f f discontinua invitabl d salto finito() n = f () Rprsntación: f si si Si, s un trozod parábola. (V = ) Si, s un trozo d rcta. X Y Y X

25 b) Continuidad f continua n R {} f f. En : f f continua n = f (). f continua n todo R. Rprsntación Si, s un trozod parábola. (V = ) Si, s un trozo d rcta. Y 8 X Y X c) Continuidad f continua n R {-} f f. En -: f f continua n = - f ( ) f continua n todo R. Rprsntación: Si, s un trozod rcta. Si, s un trozo d parábola. (V = ) Y X Y X d) Continuidad f continua n R {} f f. En : f f continua n = f () f continua n todo R Rprsntación: Si, s un trozod rcta horizontal. Si, s un trozo d parábola. (V = ) Y X Y - - X

26 ) Continuidad: f continua n R {} f f. En : f f discontinua invitabl d salto finito() n = f () Rprsntación: Y Si, s un trozod parábola. (V = ) 8 Si, s un trozo d rcta. f) Continuidad: f continua n R {} f f. En : f f continua n = f () f continua n todo R. Rprsntación: Si, s un trozo d parábola. (V = ) Si >, s un trozo d rcta horizontal. X Y X g) Continuidad f continua n R {} f f. En : f f continua n = f () f continua n todo R. Rprsntación: Si, s un trozo d parábola. (V = ) Si >, s un trozo d rcta. X Y + / + h) Continuidad f continua n R {} f f. En : f f discontinua invitabl d salto finito() n = f ()

27 Rprsntación: Si, s un trozo d parábola.(v = ) Si >, s un trozo d rcta horizontal. X Y - - i) Continuidad f continua n R {-} f f. En -: f f discontinua invitabl d salto finito() n f ( ).( ) =- Rprsntación Si s un trozo d rcta. Si > s un trozo d parábola. (V = ) X Y j) Continuidad f continua n R {} f f. En : f f continua n = f () f continua n todo R Rprsntación: Si, s un trozo d parábola.(v = ) Si >, s un trozo d rcta. X Y ASÍNTOTAS EJERCICIO : Calcula l it d la siguint función n l punto y studia su comportaminto por la izquirda y por la drcha: f Calculamos los its latrals:

28 EJERCICIO : Calcula l siguint it y studia l comportaminto d la función a la izquirda y a la drcha d : 9 9 Calculamos los its latrals: 9 9 EJERCICIO : Calcula l siguint it y studia l comportaminto d la función por la izquirda y por la drcha d : Calculamos los its latrals: EJERCICIO : Calcula l siguint it y studia l comportaminto d la función por la izquirda y por la drcha d : EJERCICIO 7 : Dada la función f la información qu obtngas., calcula l it d f ( ) n. Rprsnta Calculamos los its latrals: EJERCICIO 8 : Halla las asíntotas vrticals d las siguints funcions y sitúa las curvas rspcto a llas: a) f b) f a) ;. Las asíntotas vrticals son y. Posición d la curva rspcto a llas:

29 7 b) Solo tin una asíntota vrtical: Posición d la curva rspcto a la asíntota: EJERCICIO 9 : Halla las ramas infinitas d las siguints funcions y rprsnta los rsultados obtnidos: a) f b) f c) f d) f a) b) c) d) EJERCICIO : Halla las ramas infinitas, cuando, d las siguints funcions la información qu obtngas: a) f b) f y rprsnta a) b) EJERCICIO : Halla las ramas infinitas, cuando, d las siguints funcions y rprsnta los rsultados qu obtngas: a) f b) f a) b)

30 8 EJERCICIO : Calcular las asíntotas horizontals d stas funcions y rprsnta los rsultados qu obtngas: a) f b) f f () a) A.V.y f ( ) b) f () A.V.y f ( ) EJERCICIO : Las siguints funcions tinn una asíntota oblicua. Hállala y sitúa las curvas rspcto a llas: a) f b) f y = m + n f () m a) y n f () m. Asíntota oblicua : f () A sin t() y f ( ) A sin t( ) y= + b) f () m n f () m. y Asíntota oblicua: y f () A sin t() f ( ) A sin t( ) y=

31 EJERCICIO : Halla las asíntotas d las siguints funcions y sitúa las curvas rspcto a llas: a) f b) f a) Asíntotas vrticals: Puntos qu anulan l dnominador: = = ; ; = = Asíntota horizontal: Rprsntación: f () y = f ( ) 9 b) Asíntota vrtical: Puntos qu anulan l dnominador = f () Asíntota horizontal: y = f ( ) Rprsntación:

32 LÍMITES Cálculo y rprsntación ( + ) ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +. y = + +. y = + +. y = + +. y =

33

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

12 Representación de funciones

12 Representación de funciones Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )

Más detalles

LÍMITES DE FUNCIONES. CONTINUDAD

LÍMITES DE FUNCIONES. CONTINUDAD LÍMITES DE FUNCIONES. CONTINUDAD Signiicado dl it Ejrcicio nº.- Rprsnta gráicamnt y plica l gniicado d la prón: Ejrcicio nº.- Eplica l gniicado d la guint prón y rprséntalo gráicamnt: 9 Ejrcicio nº.- Escrib

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8 Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula

Más detalles

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando -PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 ANÁLISIS (Slctividad 5) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 5 Andalucía, junio 5 Sa f la función dfinida por f( ) para a) [ punto] Estudia y calcula las asíntotas

Más detalles

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

TEMA 4. APLICACIONES DE LA DERIVADA.

TEMA 4. APLICACIONES DE LA DERIVADA. 7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

APUNTES DE FUNCIONES PARA 4º ESO

APUNTES DE FUNCIONES PARA 4º ESO APUNTES DE FUNCIONES PARA 4º ESO - DEFINICIÓN: Una función es una relación entre dos magnitudes, X e Y, de forma que a cada valor de la magnitud X corresponde un único valor y de la magnitud Y. : variable

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):

DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): FUNCIONES ELEMENTALES 0. CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, Dom, le hace corresponder un único número real, f(): Lo denotamos por : f : Dom -----> R ----->

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto.

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto. http://matmaticas-tic.wikispacs.com Lambrto Cortázar Vinusa 06 DERIVADAS EJERCICIOS WIKI Ida La drivada d una unción, (), n un punto P s intrprta gométricamnt con la pndint d la rcta tangnt a la curva

Más detalles

Tipos de funciones. Clasificación de funciones. Funciones algebraicas

Tipos de funciones. Clasificación de funciones. Funciones algebraicas Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

Límites y continuidad

Límites y continuidad Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Ejercicio nº.- Estudia y representa la siguiente unción: ( ) + 6 Ejercicio nº.- Dibuja la gráica de la unción: ( + ) ( ) Ejercicio nº.- Dada la unción: y sen sen, [0, ] a) Halla

Más detalles

Problemas de 4 o ESO. Isaac Musat Hervás

Problemas de 4 o ESO. Isaac Musat Hervás Problemas de 4 o ESO Isaac Musat Hervás 5 de febrero de 01 Índice general 1. Problemas de Álgebra 7 1.1. Números Reales.......................... 7 1.1.1. Los números....................... 7 1.1.. Intervalos.........................

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados:

Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados: Tema. Límites y continuidad. HOJA ASÍNTOTAS º Bachillerato de CCSS Determina las asíntotas de las siguientes funciones e interpreta gráficamente los resultados: ) f ( ) 4 f ( ) es una función polinómica

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

Continuidad, límites y asíntotas. Funciones

Continuidad, límites y asíntotas. Funciones 9 Continuidad, ites y asíntotas Funciones Introducción El estudio de la continuidad de una función se inicia desde el análisis de la gráfica de la función. Este análisis, intuitivo y fácil, pero insuficiente

Más detalles

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

TEMA 2: CONTINUIDAD DE FUNCIONES

TEMA 2: CONTINUIDAD DE FUNCIONES TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011 1. CÁLCULO DE DERIVADAS Ejercicio 1. (001) Calcule las funciones derivadas de las siguientes: Lx a) (1 punto) f ( x) = (Lx indica logaritmo neperiano de x) x 3 b) (1 punto) g( x) = (1 x ) cos x 3 1 c)

Más detalles

1. NÚMEROS REALES. LOGARITMOS Y EXPONENCIALES. (Pendientes de Matemáticas I)

1. NÚMEROS REALES. LOGARITMOS Y EXPONENCIALES. (Pendientes de Matemáticas I) . NÚMEROS REALES. LOGARITMOS Y EXPONENCIALES. (Pendientes de ). Calcula las potencias: a) -, (-), (-) -, - - (/) -, (-/), -(-/) - - (/) - 0 ( ) d) e) 0 0 + + 8 [sol] a) ; 7 ; ( 7; ; 7 d) e) 0 7 7 7. Simplifica

Más detalles

Solución. - Verticales: En los puntos excluidos del dominio donde el límite quede de la forma k. 3( ) = Asíntota vertical. = + x 2.

Solución. - Verticales: En los puntos excluidos del dominio donde el límite quede de la forma k. 3( ) = Asíntota vertical. = + x 2. Estudiar sus asíntotas y ramas ininitas valorando la posición de la unción respecto de ellas.. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma D[ ( ) ] R { } 6 : Se

Más detalles

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0 Funciones continuas Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

Tipos de Funciones. 40 Ejercicios para practicar con soluciones. 1 Representa en los mismos ejes las siguientes funciones: 1 x

Tipos de Funciones. 40 Ejercicios para practicar con soluciones. 1 Representa en los mismos ejes las siguientes funciones: 1 x Tipos de Funciones. 40 Ejercicios para practicar con soluciones Representa en los mismos ejes las siguientes funciones: a) y = ; b) y = ; c) y = y= y= y= Representa las siguientes funciones: a) y = b)

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x

ANÁLISIS. Junio 94. cosx si x Dada la función. f(x) a 2x si 0 x 1. b si x 1 x ANÁLISIS Junio 9.. Dada la función cos si 0 b si f() a si 0 a) [ punto] Calcular los valors d a y b para qu la función f() sa continua n b) [ punto] Es drivabl la función obtnida n = 0?. En =?. Razona

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

ANÁLISIS (Selectividad 2014) 1

ANÁLISIS (Selectividad 2014) 1 ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San

Más detalles

FUNCIONES RACIONALES. HIPÉRBOLAS

FUNCIONES RACIONALES. HIPÉRBOLAS www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN Crecimiento y decrecimiento. Extremos absolutos y relativos. Concavidad y convexidad. Asíntotas.

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

TEMAS 10 LAS FUNCIONES ELEMENTALES 1º BACH MATE I

TEMAS 10 LAS FUNCIONES ELEMENTALES 1º BACH MATE I TEMA 0 FUNCIONES ELEMENTALES MATEMÁTICAS I º Bach. TEMAS 0 LAS FUNCIONES ELEMENTALES º BACH MATE I Son funciones? Ejercicio : Indica cuáles de las siguientes representaciones corresponden a la gráfica

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 55 REFLEXIONA Y RESUELVE Tangentes a una curva y f ( 5 5 Halla, mirando la gráfica y las rectas trazadas, f'(, f'( y f'(. f'( 0; f'( ; f'( Di otros tres puntos

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x)

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x) UAH Actualización de Conocimientos de Matemáticas para Tema 6 Funciones Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento de A uno

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

Tema 3 La elasticidad y sus aplicaciones

Tema 3 La elasticidad y sus aplicaciones Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas

Más detalles

Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo

Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo página 1/9 Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo Índice de contenido Dominio de una función...2 Rango o recorrido de una función...3 Simetría...4 Periodicidad...5

Más detalles

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre:

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre: EXAMEN DE MATEMATICAS II ª ENSAYO () Apellidos: Nombre: Curso: º Grupo: A Día: CURSO 05 Instrucciones: a) Duración: HORA y 0 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

ANDREA CALVO GARCÍA Nº 6 2º C

ANDREA CALVO GARCÍA Nº 6 2º C FUNCIONES ANDREA CALVO GARCÍA Nº 6 2º C Bach. INDICE FUNCIONES... 3 1. Funciones reales de variable real.... 4 2. Clasificación de funciones.... 6 3. Puntos de corte con los ejes.... 9 4. Signo de una

Más detalles