TEMA 2: EL INTERÉS SIMPLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 2: EL INTERÉS SIMPLE"

Transcripción

1 TEMA 2: EL INTERÉS SIMPLE 1.- CAPITALIZACIÓN SIMPLE CÁLCULO DEL INTERÉS: Recibe el nombre de capitalización simple la ley financiera según la cual los intereses de cada periodo de capitalización NO se agregan al capital inicial para hallar los intereses del periodo siguiente, sino que se calculan sobre el capital inicial C 0 Vamos a usar la siguiente nomenclatura: C 0 : Capital inicial I: los intereses del periodo I T : los intereses totales, siendo su valor la suma de los intereses de cada periodo i: tipo de interés anual en tanto por uno, que representa la cantidad de dinero que obtiene por cada euro invertido en un año C n : capital final o montante, que es la suma del capital inicial más los intereses totales. Vamos a comenzar aprendiendo a calcular los INTERESES TOTALES de una operación, cuyo capital es C 0, y está impuesta a un tipo de interés i durante n periodos: Intereses del primer periodo Intereses del segundo periodo. Intereses del periodo n.... EJEMPLO: Calcula el interés de 600 al 10% anual en 3 años: Intereses totales En definitiva podemos decir que: TOTAL INTERESES: =180 Gestión Financiera 1 Reyes F.F.

2 1.2.- VARIABLES QUE INTERVIENEN EN CAPITALIZACIÓN SIMPLE, A PARTIR DE LA FÓRMULA DEL INTERÉS: CAPITAL TIEMPO TIPO DE INTERÉS REPRESENTACIÓN GRÁFICA DE LA FORMA DE OPERAR EN INTERÉS SIMPLE: En interés simple los intereses se calculan siempre sobre el capital inicial, NO acumulándose al mismo para producir nuevos intereses: C 0 I 1 I 2 I n INTERESES TOTALES: I 1 + I I n 1 2 n-1 n EL MONTANTE: Definimos montante o capital final C n obtenido en una operación de capitalización a la suma del capital inicial más los intereses, por tanto: C 0 C n A la expresión (1+n.i) se le denomina FACTOR DE CAPITALIZACIÓN y como resultado de aplicar dicha expresión a un capital inicial, convierte a éste en un capital final. Gestión Financiera 2 Reyes F.F.

3 EJEMPLO: Cuál será el montante obtenido por un capital de al 5% de interés simple durante 5 años?: Capital inicial Intereses A partir de la fórmula del montante también podemos calcular cualquiera de sus elementos tal y como se hizo a partir de la fórmula del interés total. Veamos cuál sería el valor del capital inicial, conocidos el montante, el tiempo y el tanto de colocación, para lo cual sólo hemos de despejar C 0: Que es lo mismo que: C 0 C n Pues bien a la expresión (1+n.i) -1 se le denomina FACTOR DE ACTUALIZACIÓN y como resultado de aplicar dicha expresión a un capital final, convierte a éste en un capital inicial o anterior. EJEMPLO: Sabemos que tras 5 años de colocación de un capital al 5% de interés simple, éste se convirtió en Cuál fue el capital que se impuso? 2.- TANTOS EQUIVALENTES Hasta ahora hemos dado por hecho que los periodos de tiempo considerados eran años y que el tipo de interés era anual, pero lógicamente nos podemos encontrar con que el tiempo no se mida en años, sino en cualquier otra fracción del mismo (meses, semestres,..). Lo primero que debemos tener en cuenta para trabajar de esta forma es que el tiempo y el tanto deben estar referidos a periodos de tiempo homogéneos, si no es así, podemos hacer cualquiera de estas dos cosas: Gestión Financiera 3 Reyes F.F.

4 Transformar el tiempo en la unidad temporal que mida el tipo de interés. Transformar el tipo de interés en su equivalente de la unidad temporal en que estemos trabajando. Antes de seguir debes recordar, cuántos subperiodos (m) contiene el año de cada una de las posibles fracciones en que podemos dividirlo: PERIODO Son periodos de: Frecuencia de fraccionamiento m Año 1 Semestre 6 meses 2 Cuatrimestres 4 meses 3 Trimestres 3 meses 4 Bimestres 2 meses 6 Meses 30 días 12 Teniendo en cuenta este nuevo parámetro, debemos completar la nomenclatura vista anteriormente, de la siguiente forma: i: tanto anual i (m) : tanto fraccionado equivalente m:frecuencia de capitalización Semanas 7 días 52 Días 360/365 Llamaremos TANTOS EQUIVALENTES a aquellos que aplicados a un mismo capital inicial C 0 durante el mismo periodo de tiempo n producen los mismos intereses I o generan el mismo montante C n. Imaginemos que tenemos un capital C 0, en capitalización simple durante un periodo de tiempo a un tipo de interés anual i y queremos calcular el tanto equivalente i m, éste en una unidad temporal inferior. Pues teniendo en cuenta el concepto de tantos equivalentes, i e i m lo serán si sucede que los intereses o los montantes producidos por los mismos son iguales, nosotros vamos a aplicar igualdad de intereses que simplifica más la demostración: Si tenemos en cuenta el tiempo y el tanto en años: Si tenemos en cuenta el tiempo expresado en m fracciones de año Igualamos ambas expresiones y despejamos i en función de i m : Y también podemos decir: Gestión Financiera 4 Reyes F.F.

5 De lo que podemos deducir que: En capitalización simple los tantos equivalentes son, además, proporcionales cosa que, como ya veremos, no ocurre con los tantos equivalentes en capitalización compuesta. Así si el tanto anual de una operación fuera el 12%, podemos decir que su tanto equivalente: Mensual, será: 1% Semestral: 6% Bimensual 2% Y así sucesivamente. EJEMPLO: Calcular el interés que produjo un capital de invertidos al 0,09 simple anual durante 13 cuatrimestres. Co = i= 0,09 n= 13 cuatrimestres I:? Como vemos i y n están referidos a distintas unidades temporales, podemos resolver este problema de las siguientes formas: 1) Transformando n en la unidad temporal de i: 13 cuatrimestres son 13/3 =4,33333 años De forma que: 2) Transformando i en la unidad temporal de n: De forma que: Se puede decir por tanto que i (3) =0,03 trimestral es equivalente al i=0,09 anual pues aplicados al mismo capital inicial durante el mismo periodo de tiempo producen los mismos intereses. Gestión Financiera 5 Reyes F.F.

6 El tiempo y el tanto siempre deben estar referidos a la misma unidad temporal, cuando eso no sucede, podemos: Transformar n, en la unidad de tiempo a que se refiere i Transformar i, en la unidad de tiempo a que se refiere n TANTOS EQUIVALENTES, son aquellos aplicados al mismo capital inicial durante el mismo tiempo generan los mismos intereses o el mismo montante Siendo m el número de partes en que se divide el año 3.- AÑO CIVIL Y COMERCIAL Cuando el fraccionamiento del tiempo es diario, surge la siguiente cuestión: tomar el año civil (365 días) o el año comercial (360 días, con meses de 30 días cada uno)?. Así pues tendremos dos posibilidades para calcular los intereses: En ambos casos n está expresada en días Si se observan ambas expresiones, es fácil apreciar que RELACIÓN POR DIFERENCIA ENTRE INTERÉS COMERCIAL E INTERÉS CIVIL Hay pues dos posibles resultados: Gestión Financiera 6 Reyes F.F.

7 3.2.- RELACIÓN POR COCIENTE ENTRE INTERÉS COMERCIAL E INTERÉS CIVIL Por tanto, podemos decir: 4.- MÉTODOS DE CÁLCULO ABREVIADO Esta práctica es muy útil para el cálculo de intereses, cuando el tipo de interés que se aplica es constante y son muchos los capitales con los que trabajar, esto ocurre cuando se liquidan cuentas corrientes, por ejemplo. Supongamos que tenemos varios capitales: C 1, C 2,., C n, colocados a un mismo tanto unitario anual de interés simple i, durante n 1, n 2,., n n (meses, días, semanas,.) respectivamente y que deseamos saber el interés total que nos producen Para ello, tenemos que calcular el interés de cada uno de los capitales y sumarlos después, es decir: (1) MÉTODO DEL MULTIPLICADOR FIJO: Si al producto de capital por tiempo lo llamamos NÚMERO COMERCIAL (NC) Al cociente i/m lo llamamos lo llamamos MULTIPLICADOR FIJO (M) Podemos decir que: En definitiva que el interés total es el sumatorio de los números comerciales por el multiplicador fijo (M), siendo éste i/m Gestión Financiera 7 Reyes F.F.

8 4.1.- MÉTODO DEL DIVISOR FIJO: Si volvemos a la expresión (1), podemos decir: Si al producto de capital por tiempo lo llamamos NÚMERO COMERCIAL (NC) Al cociente m/i lo llamamos lo llamamos DIVISOR FIJO (D f ) En definitiva que el interés total es el sumatorio de los números comerciales divido entre el divisor fijo D f, siendo éste m/i EJEMPLO Calcula los intereses totales de 2.500, y durante 13, 25 y 56 días, a un interés simple del 5%. Teniendo en cuenta el año comercial C 0 n NC DIVISOR FIJO: MULTIPLICADOR FIJO: TOTAL TANTO MEDIO DE COLOCACIÓN DE VARIOS CAPITALES Sean los capitales C 1, C 2,.., C t, invertidos a los tantos de interés simple anual i 1, i 2,, i t, durante n periodos. Llamamos TANTO MEDIO ( ) a aquel que aplicado sobre ese conjunto de capitales durante esos n periodos produce el mismo montante o el mismo interés. Si trasladamos este concepto teórico a una expresión matemática lo que debemos hacer es igualar los montantes o los intereses de ese conjunto de capitales y, puesto podemos elegir, vamos a hacer la demostración igualando los intereses que hace todo el proceso más simple. Gestión Financiera 8 Reyes F.F.

9 Dado que n está en todos los sumandos, podemos simplificar y queda: Que podemos expresar de la siguiente forma: O también: Ya podemos decir que: EJEMPLO Tengo unos ahorros colocados del siguiente modo: al 7% anual simple en el Banco A al 10% anual simple en el Banco B 500 al 6,5% anual simple en el Banco C Cuál es el tanto medio de interés que me producen mis ahorros si todas las inversiones están a un plazo de 1,5 años? Sería el tanto medio de colocación de los tres capitales Gestión Financiera 9 Reyes F.F.

10 6.- INTERÉS ANTICIPADO E INTERÉS VENCIDO. RELACIÓN Hasta ahora, sólo hemos visto operaciones a interés vencido, es decir, cuando el prestamista cedía un capital C 0 y en el momento n el prestatario devolvía C 0 más los intereses devengados, es decir C n Pero en algunas operaciones financieras el prestamista cobra los intereses por adelantado, es decir, en el momento en que se concierta la operación que ha de producirlos. Para ello aplica un tipo i a que se aplica sobre el nominal C n para obtener el efectivo C 0 de la operación. CON INTERÉS VENCIDO: Se presta C 0 y se devuelve C n Se puede ver fácilmente que la cantidad que se prestó fue: Podemos averigua el i a que equivale al interés vencido i y viceversa? Para que exista equivalencia deberá haber igualdad entre los C 0 en ambos casos, es decir entre (1) y (2) (1) CON INTERÉS ANTICIPADO: Se presta C n pero se entrega C 0 y me cobran intereses sobre C n Por tanto los intereses se calculan: De donde podemos deducir la cantidad que se prestó: (2) Si pasamos el 1 del segundo miembro al primero, en el primero queda 0 y también podemos simplificar dividiendo entre n, con lo cual nos queda: (3) De todo lo cual se puede deducir que: Cuando i a = i Y dado que C n > C 0 El I a > I Desde la expresión (3), podemos operar para obtener i a en función de i: Gestión Financiera 10 Reyes F.F.

11 EJEMPLO Vamos a comprobar todo lo dicho anteriormente. Qué tipo de interés anticipado i a equivale al 10% anual de interés vencido i, teniendo en cuenta que la operación dura 6 meses? Efectivamente, si tomamos como cantidad presta 10, en interés vencido, podremos comprobar: INTERÉS VENCIDO INTERÉS ANTICIPADO Si pretendemos prestar 10,5 al 9,52% anual de interés anticipado, Qué cantidad entregaremos? Sucedería lo mismo para 20 meses? Si presto 11,67 al i a anual del 9,52%, qué cantidad debo entregar? Esto sucede porque: Para cada interés vencido hay un anticipado equivalente en cada momento, de manera que no será equivalente en otro distinto PODEMOS CALCULAR EL MOMENTO DEL TIEMPO EN QUE OCURRE QUE ia Y i SON EQUIVALENTES? Si partimos de podemos despejar el tiempo: En nuestro ejemplo: años Es decir, 6 meses Gestión Financiera 11 Reyes F.F.

Unidad 4. Capitalización compuesta y descuento compuesto

Unidad 4. Capitalización compuesta y descuento compuesto Unidad 4. Capitalización compuesta y descuento compuesto 0. ÍNDICE. 1. CAPITALIZACIÓN COMPUESTA. 1.1. Concepto. 1.2. Cálculo de los intereses totales y del interés de un período s. 1.3. Cálculo del capital

Más detalles

Unidad 2. Interés simple

Unidad 2. Interés simple Unidad 2. Interés simple 0. ÍNDICE. 1. CONCEPTO DE CAPITALIZACIÓN SIMPLE. 2. EL MONTANTE. 3. TANTOS EQUIVALENTES. 10. MÉTODOS ABREVIADOS PARA EL CÁLCULO DE LOS INTERESES. 11. INTERESES ANTICIPADOS. ACTIVIDADES

Más detalles

TEMA 12: OPERACIONES FINANCIERAS

TEMA 12: OPERACIONES FINANCIERAS TEMA 12: OPERACIONES FINANCIERAS 1. OPERACIONES FINANCIERAS Son aquellas operaciones en las que inversores y ahorradores se ponen de acuerdo y pactan un tipo de interés y un plazo que cubran sus necesidades

Más detalles

El interés y el dinero

El interés y el dinero El interés y el dinero El concepto de interés tiene que ver con el precio del dinero. Si alguien pide un préstamo debe pagar un cierto interés por ese dinero. Y si alguien deposita dinero en un banco,

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras Notas de Clase -2011 Carlos Mario Morales C 2 Unidad de Aprendizaje Interés Compuesto Contenido Introducción 1. Concepto de interés compuesto 2. Modelo de Interés compuesto 3. Tasa

Más detalles

... 8. INTERES SIMPLE

... 8. INTERES SIMPLE 1 8. INTERES SIMPLE 8.1 Conceptos Básicos Interés El interés es el rédito o excedente generado, por una colocación de dinero, a una tasa de interés y un determinado periodo de tiempo y este puede ser simple

Más detalles

TEMA 1: EL INTERÉS SIMPLE

TEMA 1: EL INTERÉS SIMPLE TEMA 1: EL INTERÉS SIMPLE 1. OPERACIONES FINANCIERAS Son aquellas operaciones en las que inversores y ahorradores se ponen de acuerdo y pactan un tipo de interés y un plazo que cubran sus necesidades de

Más detalles

TEMA N 1. INTERES SIMPLE Y COMPUESTO. Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos:

TEMA N 1. INTERES SIMPLE Y COMPUESTO. Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos: TEMA N 1. INTERES SIMPLE Y COMPUESTO Conceptos Básicos: Antes de iniciar el tema es necesario conocer los siguientes términos: Capitalización: Es aquella entidad financiera mediante la cual los intereses

Más detalles

EJERCICIOS DE REPASO BLOQUE INTERÉS SIMPLE

EJERCICIOS DE REPASO BLOQUE INTERÉS SIMPLE 1.- Un contribuyente es requerido por Hacienda para pagar una deuda de 1.800. Si han transcurrido 7 meses desde que debía pagar y le exigen un interés de demora del 5% simple anual, averigua el importe

Más detalles

LECCIÓN Nº 05 y 06 COMPÀRACION DE TASAS: EL EFECTO DE LOS PERIODO DE COMPOSICION.

LECCIÓN Nº 05 y 06 COMPÀRACION DE TASAS: EL EFECTO DE LOS PERIODO DE COMPOSICION. LECCIÓN Nº 05 y 06 COMPÀRACION DE TASAS: EL EFECTO DE LOS PERIODO DE COMPOSICION. OBJETIVO: Definir el periodo de capitalización, la tasa de interés nominal, tasa de interés efectiva y el periodo de pago.

Más detalles

GUIA DE TRABAJO Materia: Matemáticas Guía #2. Tema: Regla de interés simple. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno:

GUIA DE TRABAJO Materia: Matemáticas Guía #2. Tema: Regla de interés simple. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: GUA DE TRABAJO Materia: Matemáticas Guía #2. Tema: Regla de interés Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDCONES: Trabajo individual. Sin libros, ni cuadernos, ni notas.

Más detalles

UNIDAD 5. FRACCIONES Y OPERACIONES

UNIDAD 5. FRACCIONES Y OPERACIONES UNIDAD. FRACCIONES Y OPERACIONES. FRACCIONES.. LA FRACCIÓN COMO OPERADOR Y COMO NÚMERO.. FRACCIONES EQUIVALENTES.. REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR.. OPERACIONES CON FRACCIONES.. FRACCIONES

Más detalles

Descuento MATEMÁTICA FINANCIERA. Descuento. Descuento

Descuento MATEMÁTICA FINANCIERA. Descuento. Descuento Descuento MATEMÁTICA FIACIERA DESCUETO SIMPLE Luis Alcalá USL Segundo Cuatrimeste 2016 En las operaciones comerciales, en general no se utiliza actualización para calcular el valor actual de un capital

Más detalles

El interés simple es el que se calcula sobre el capital inicial, el cual permanecerá invariable durante todo el tiempo que dure la inversión:

El interés simple es el que se calcula sobre el capital inicial, el cual permanecerá invariable durante todo el tiempo que dure la inversión: El interés es la cantidad que se paga o se cobra (según sea el caso) por el uso del dinero; cuando se calcula el interés se deben considerar tres factores: Capital, tasa de interés y tiempo. El capital

Más detalles

MATEMATICA COMERCIAL

MATEMATICA COMERCIAL Profesor: Ezequiel Roque David Ramírez MATEMATICA COMERCIAL Descripción y objetivos del curso Este tema está dedicado al estudio de conceptos que, con formulación matemática y carácter marcadamente económico,

Más detalles

MATEMÁTICAS I SUCESIONES Y SERIES

MATEMÁTICAS I SUCESIONES Y SERIES MATEMÁTICAS I SUCESIONES Y SERIES. Sucesiones En casi cualquier situación de la vida real es muy frecuente encontrar magnitudes que varían cada cierto tiempo. Por ejemplo, el saldo de una cuenta bancaria

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 05/06 PRIMERA SEMANA Día 2/01/06 a las 9 horas MATERIAL AUXILIAR: Calculadora financiera DURACIÓN: 2 horas 1. a) Comparación de capitales: Equivalencia

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

Colegio Franciscano del Virrey Solís Bogotá D.C. Educar para la Justicia, la Paz y las Nuevas Relaciones

Colegio Franciscano del Virrey Solís Bogotá D.C. Educar para la Justicia, la Paz y las Nuevas Relaciones PORCENTAJE El concepto de porcentaje se aplica en diversas situaciones de economía, estadística, medicina entre otros, el porcentaje o el tanto por ciento es la razón que indica la cantidad que se toma

Más detalles

MATEMATICAS FINANCIERAS LECCION 1

MATEMATICAS FINANCIERAS LECCION 1 MATEMATICAS FINANCIERAS LECCION 1 1. EL INTERES El diccionario de la Real Academia Española, define el interés como lucro producido por el capital. Algunos autores lo definen de diversas maneras como:

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

1 Números racionales

1 Números racionales 8 _ 0-0.qxd //0 : Página Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que

Más detalles

ECUACIONES DE VALOR $2.00 $2.50 $3.00 $3.50 DIC.98 ABRIL 99 OCT. 99 MAR.2000

ECUACIONES DE VALOR $2.00 $2.50 $3.00 $3.50 DIC.98 ABRIL 99 OCT. 99 MAR.2000 5. INTERÉS COMPUESTO 5.1. Ecuación del monto 5.2. Fecha de vencimiento promedio o equivalente ECUACIONES DE VALOR Para poder entender lo que son las ecuaciones de valor, para que nos sirven y cómo entenderlas,

Más detalles

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.

Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio. Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones

Más detalles

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves INTERES SIMPLE OBJETIVOS: Al finalizar el estudio del presente capítulo, el estudiante será capaz de: 1. Explicar los conceptos de interés simple, monto o valor futuro, valor presente o valor actual, tiempo.

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas Funciones exponenciales y logarítmicas - Funciones exponenciales y sus gráficas Un terremoto de 85 grados en la escala de Richter es 00 veces más potente que uno de 65, por qué?, cómo es la escala de Richter?

Más detalles

PROCESO PARA EL CÁLCULO DE INTERESES, COMISIONES Y GASTOS DE LOS PRODUCTOS PASIVOS DE CREDICHAVÍN

PROCESO PARA EL CÁLCULO DE INTERESES, COMISIONES Y GASTOS DE LOS PRODUCTOS PASIVOS DE CREDICHAVÍN PROCESO PARA EL CÁLCULO DE INTERESES, COMISIONES Y GASTOS DE LOS PRODUCTOS PASIVOS DE CREDICHAVÍN El presente documento detalla el procedimiento a seguir para el cálculo de intereses, comisiones y gastos

Más detalles

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales.

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales. ESCUELA SECUNDARIA No. 264 MIGUEL SERVET GUÍA PARA EL EXAMEN DE MATEMÁTICAS DE 1 A, 1 B, 1 C, 1 D, CORRESPONDIENTE AL PRIMER BIMESTRE. La siguiente información te servirá para que estudies, sólo deberás

Más detalles

Curso Completo de Electrónica Digital. 3.7. Simplificación de funciones booleanas

Curso Completo de Electrónica Digital. 3.7. Simplificación de funciones booleanas CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez Capítulo 3 ALGEBRA DE BOOLE Continuación...

Más detalles

Glosario de términos. Introducción a las Matemáticas Financieras

Glosario de términos. Introducción a las Matemáticas Financieras Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Anualidades y gradientes UNIDAD 3: ANUALIDADES Y GRADIENTES OBJETIVO Al finalizar la unidad los estudiantes estarán en capacidad

Más detalles

En efecto, todo natural, todo número entero, acepta una escritura en forma de fracción:

En efecto, todo natural, todo número entero, acepta una escritura en forma de fracción: Conjuntos Numerícos página 1 Números Racionales domingo, 21 de febrero de 2016 05:33 p.m. En líneas generales, el Conjunto de los Números Racionales, son todos los números que aceptan una escritura en

Más detalles

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación.

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación. FRACCIONES TEMA 2 INTRODUCCIÓN Para aplicar esta unidad didáctica es conveniente que ya se hayan estudiado las fracciones en clase de forma tradicional, es decir, empleando la pizarra, el papel y el lápiz.

Más detalles

EJERCICIOS INTERES COMPUESTO

EJERCICIOS INTERES COMPUESTO EJERCICIOS INTERES COMPUESTO Nº1.- Una persona pide prestada la cantidad de $800. Cinco años después devuelve $1.020. Determine la tasa de interés nominal anual que se le aplicó, si el interés es: a) Simple

Más detalles

33 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático

33 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático «Es imposible aprender matemáticas sin resolver ejercicios» ESO Godement. Matemático ÍNDICE: MI QUESITO DIARIO 1. FRACCIONES QUÉ SON?. EQUIVALENCIA Y SIMPLIFICACIÓN. LA FRACCION COMO OPERADOR 4. OPERACIONES

Más detalles

Lección 13: Resolución algebraica de sistemas de ecuaciones

Lección 13: Resolución algebraica de sistemas de ecuaciones GUÍA DE MATEMÁTICAS III Lección 1: Resolución algebraica de sistemas de ecuaciones En la lección anterior hemos visto cómo resolver gráficamente un sistema de ecuaciones. Si bien ese método es relativamente

Más detalles

MATEMATICAS APLICADAS CLASE 4

MATEMATICAS APLICADAS CLASE 4 MATEMATICAS APLICADAS CLASE 4 DISCUSIÓN DEL CASO PREGUNTA Si fueras un alto ejecutivo de una empresa en la cual existen evidencias que la relacionan a otra compañía o persona para que esta última obtenga

Más detalles

El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero

El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero Anualidades Vencidas, Anticipadas y Diferidas. El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero Neil Simon. Objetivo de la sesión: Conocer

Más detalles

Múltiplos y divisores

Múltiplos y divisores Divisibilidad 1. Múltiplos y divisores. 2. Propiedades de los múltiplos. 3. Criterios de divisibilidad. 4. Números primos y compuestos. 5. Descomposición en factores primos. 6. Máximo común divisor y mínimo

Más detalles

TEMA 6 ECUACIONES DE PRIMER GRADO

TEMA 6 ECUACIONES DE PRIMER GRADO Nueva del Carmen,. 0 Valladolid. Tel 98 9 6 9 Fa 98 89 96 Matemáticas º ESO TEMA 6 NOMBRE Y APELLIDOS... HOJA - FECHA... Comenzamos en este tema a resolver ecuaciones. Primero de Primer grado. Luego vendrán

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras 1 Sesión No. 5 Nombre: Interés Compuesto Contextualización En las estrategias del ahorro o solicitud de crédito, cada cliente puede decidir entre hacer un trato con interés simple

Más detalles

Trabajo Práctico N 1: Números enteros y racionales

Trabajo Práctico N 1: Números enteros y racionales Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0

Más detalles

Matemáticas Financieras. Conceptos básicos

Matemáticas Financieras. Conceptos básicos Matemáticas Financieras Lección 2 Conceptos básicos Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 14 Capital Financiero Capital financiero: Medida

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

1 Unidad de Aprendizaje Interés Simple

1 Unidad de Aprendizaje Interés Simple 1 Unidad de Aprendizaje Interés Simple Contenido Introducción 1. Concepto del interés simple 2. Formula de interés simple 3. Clases de interés simple 4. Capital Final Valor futuro 5. Capital inicial Valor

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES 1.- ECUACIONES DE PRIMER GRADO CON DOS INCÓGNITAS Una ecuación como 2x + 3y = 7 es una ecuación de primer grado con dos incógnitas. Es de primer grado porque las letras

Más detalles

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos

Más detalles

La función cuadrática

La función cuadrática La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola

Más detalles

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro)

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro) UNIDAD 4. INECUACIONES Y SISTEMAS (tema 4 del libro) 1. INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Definición: Se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por

Más detalles

( )( ) UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos. Periodo de capitalización

( )( ) UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos. Periodo de capitalización UNIDAD III. INTERÉS COMPUESTO 3.1. Introducción y conceptos básicos Si un capital C al terminar un periodo de inversión (por ejemplo un año) genera un monto M; no se retira entonces al segundo periodo

Más detalles

MATEMATICAS APLICADAS CLASE 6

MATEMATICAS APLICADAS CLASE 6 MATEMATICAS APLICADAS CLASE 6 COMENTARIOS DE AMENAZA DE GUERRA EUA NORCOREA IMPACTOS FINANCIEROS ANUALIDADES VENCIDAS VALOR PRESENTE Ejemplo: Una empresa desea construir una fábrica, por lo cual adquiere

Más detalles

VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como:

VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como: VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del al origen

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

PRACTICA DE INTERES COMPUESTO. 1) Se tiene un capital de Bs sometido a una tasa de interés del 28% anual.

PRACTICA DE INTERES COMPUESTO. 1) Se tiene un capital de Bs sometido a una tasa de interés del 28% anual. CAPITALIZACIÓN ANUAL: PRACTICA DE INTERES COMPUESTO 1) Se tiene un capital de Bs. 6.000 sometido a una tasa de interés del 28% anual. a) El monto al cabo de 12 años. b) Los intereses del 1ro., 4to. y 9vo.

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46

UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46 UNIVERSIDAD POLITÉCNICA SALESIANA CARRERA DE INGENIERÍA EN GERENCIA Y LIDERAZGO PRUEBA 1 DE MATEMÁTICA FINANCIERA PRIMER INTERCICLO PERIODO 46 NOMBRE:... FECHA: NIVEL:... PROF. René Quezada C. INSTRUCCIONES

Más detalles

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario: Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

Más detalles

Límites e indeterminaciones

Límites e indeterminaciones Límites e indeterminaciones La idea de límite de una función no es en sí complicada, pero hubo que esperar hasta el siglo XVII a que los matemáticos Newton 1 y Leibniz 2 le dieran forma y la convirtiesen

Más detalles

, y efectuar la multiplicación 10000

, y efectuar la multiplicación 10000 1.5 Figura 1.10: Las ecuaciones representan un cierto equilibrio entre los dos miembros separados por el signo igual. 1.5.1 La idea de ecuación Muchos problemas que se plantean en la vida real consisten

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

UNIDAD DIDÁCTICA 2: SISTEMAS DE ECUACIONES LINEALES

UNIDAD DIDÁCTICA 2: SISTEMAS DE ECUACIONES LINEALES CURSO PAU 5 UNIDAD DIDÁCTICA : SISTEMAS DE ECUACIONES LINEALES. ÍNDICE. Introducción: descripción. Resolución de sistemas sistemas equivalentes. Clasificación de sistemas. Métodos de resolución de sistemas

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #3: jueves, 2 de junio de 2016. 3 Decimales 3.1 Sistema de numeración

Más detalles

PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino

PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino Los problemas fueron extraídos de B. Zolkower: Handbook of Mathematical-Didactical Activities. 2004 (con autorización de la autora). 1. Cuál es mayor? Consideremos

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

CRÉDITO MI VIVIENDA. d. Número de Cuotas: Plazo otorgado del crédito expresado en meses. e. Fecha de Desembolso: Fecha en que se otorga el crédito.

CRÉDITO MI VIVIENDA. d. Número de Cuotas: Plazo otorgado del crédito expresado en meses. e. Fecha de Desembolso: Fecha en que se otorga el crédito. CRÉDITO MI VIVIENDA I.- Definiciones a. Tasa Efectiva Anual (TEA): Es la transformación de las condiciones financieras a su equivalente anual, teniendo en cuenta los gastos y las comisiones. En los préstamos

Más detalles

Matemáticas Propedéutico para Bachillerato. Introducción

Matemáticas Propedéutico para Bachillerato. Introducción Actividad 9. Razones y Proporciones. Introducción En ocasiones requerimos realizar operaciones empleando proporciones. Imagina que necesitas preparar el desayuno en tu casa, donde se quedaron a dormir

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de

Más detalles

Teoría de errores. Departamento de Análisis Matemático Universidad de La Laguna

Teoría de errores. Departamento de Análisis Matemático Universidad de La Laguna Teoría de errores BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es) ALEJANDRO SANABRIA

Más detalles

Cálculo mental. Cálculo Mental I. DATOS REFERENCIALES. ESTUDIANTE : Levi Gerson Yapura Llanos. GUIA : Calixto. INSTITUCIÓN : Cognnos

Cálculo mental. Cálculo Mental I. DATOS REFERENCIALES. ESTUDIANTE : Levi Gerson Yapura Llanos. GUIA : Calixto. INSTITUCIÓN : Cognnos Cálculo mental I. DATOS REFERENCIALES. ESTUDIANTE : Levi Gerson Yapura Llanos GUIA : Calixto INSTITUCIÓN : Cognnos TRABAJO : Proyecto final II. SUMAS Y RESTAS El cálculo mental consiste en realizar cálculos

Más detalles

Es la cantidad de electricidad (electrones) que recorre un circuito eléctrico en una unidad. Q t I =

Es la cantidad de electricidad (electrones) que recorre un circuito eléctrico en una unidad. Q t I = 3º E.S.O. UNIDAD DIDÁCTICA: EL CIRCUITO ELÉCTRICO Intensidad de corriente eléctrica (medida de una corriente eléctrica) Es la cantidad de electricidad (electrones) que recorre un circuito eléctrico en

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS) UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

Manual de Matemáticas Financiera

Manual de Matemáticas Financiera Manual de Matemáticas Financiera Matemáticas financieras, dirigido tanto a estudiantes universitarios como a profesionales del sector financiero, que estén interesados en conseguir una base de conocimiento

Más detalles

Matemáticas I: Hoja 1

Matemáticas I: Hoja 1 Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para

Más detalles

Lección 8: Potencias con exponentes enteros

Lección 8: Potencias con exponentes enteros GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como

Más detalles

U.E. Colegio Los Arcos Matemáticas Guía #26B Sexto grado Máximo común divisor. Problemas.

U.E. Colegio Los Arcos Matemáticas Guía #26B Sexto grado Máximo común divisor. Problemas. GUIA DE TRABAJO Materia: Matemáticas Guía # 6B. Tema: Máximo común Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos, ni notas.

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

HOMOGENEIDAD DIMENSIONAL

HOMOGENEIDAD DIMENSIONAL HOMOGENEIDAD DIMENSIONAL Los observables que podemos medir se agrupan en conjuntos caracterizados por una propiedad que llamamos magnitud. Existe la magnitud tiempo, la magnitud velocidad, la magnitud

Más detalles

4. Matemática financiera.

4. Matemática financiera. 4. Matemática financiera. Autora: Maite Seco Benedicto MATEMÁTICAS FINANCIERAS BÁSICAS Las Matemáticas financieras son una herramienta imprescindible para poder valorar las operaciones financieras, tanto

Más detalles

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores:

TEMA 2: POLINOMIOS IDENTIDADES NOTABLES. Ejercicios: 1. Desarrolla las siguientes identidades: 2. Expresa como producto de factores: IDENTIDADES NOTABLES TEMA : POLINOMIOS a b a b ab a b a b ab a ba b a b Ejercicios:. Desarrolla las siguientes identidades: a y 5 b 5 4y c 5 5. Epresa como producto de factores: 4 a 9 0 0 b 9 6 c 5 9y

Más detalles

GUIA DE TRABAJO Materia: Matemáticas Guía # 26A. Tema: Máximo común divisor. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno:

GUIA DE TRABAJO Materia: Matemáticas Guía # 26A. Tema: Máximo común divisor. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: GUIA DE TRABAJO Materia: Matemáticas Guía # 26A. Tema: Máximo común. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos, ni

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Sea A el pago anual uniforme; P = $ 100,000 o el valor presente que tiene la casa n = 10 pagos; i = 10%.

Sea A el pago anual uniforme; P = $ 100,000 o el valor presente que tiene la casa n = 10 pagos; i = 10%. UNIVERSIDAD NACIONAL DE INGENIERÍA. UNI NORTE. Sede Estelí. Líder en Ciencia y Tecnología Asignatura : Ingeniería económica. Carrera : Ingeniería agroindustrial. Año Académico : IV Año. Unidad No. III

Más detalles

APLICACIÓN DE FORMULAS PARA EL CALCULO DE INTERES PARA UN DEPOSITO A PLAZO FIJO DPF

APLICACIÓN DE FORMULAS PARA EL CALCULO DE INTERES PARA UN DEPOSITO A PLAZO FIJO DPF REGION I 1 APLICACIÓN DE FORULAS PARA EL CALCULO DE INTERES PARA UN DEPOSITO A PLAZO FIJO DPF CONSIDERACIONES: - Se considera un horizonte de 360 días por año. - Los plazos fijos tienen una capitalización

Más detalles

MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES

MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES OBJETIVOS Concepto de número mixto. Identificar gráficamente fracciones equivalentes y comprobar si dos fracciones son equivalentes. Obtener fracciones equivalentes

Más detalles

Excel - Fórmulas y Funciones

Excel - Fórmulas y Funciones Excel - Fórmulas y Funciones Fórmulas elaboradas por el usuario Además de las fórmulas y las funciones que provee Excel (como autosuma y promedio), el usuario puede fabricar sus propias fórmulas. Hay que

Más detalles

Método de fórmula general

Método de fórmula general Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

LECCIÓN 9 5 PROBLEMAS RESUELTOS

LECCIÓN 9 5 PROBLEMAS RESUELTOS LECCIÓN 9 PROBLEMAS RESUELTOS Problema. El largo de un rectángulo mide 8 m y su ancho mide 2 m. Cuál de las siguientes es la mayor longitud de una varilla que cabe exactamente tanto en el largo como en

Más detalles

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban. DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números

Más detalles

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición Curso de Matemática Unidad 2 Profesora: Sofía Fuhrman Operaciones Elementales II: Potenciación Definición a n = a. a.a a multiplicado por sí mismo n veces. a) Regla de los signos Exponente Par Exponente

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles