Tema 3 La elasticidad y sus aplicaciones

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3 La elasticidad y sus aplicaciones"

Transcripción

1 Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad y sus aplicacions Ejrcicio 10: Considr las siguints custions rlacionadas con l consumo d papas: a) Un studio indica qu la lasticidad-prcio d la dmanda d papas s 0,2. i un kilo d papas custa 1,20 y s dsa aumntar su consumo un 20%, calcul cuánto dbrá modificars l prcio dl kilo para lograr s objtivo. b) El studio también mustra qu la lasticidad-rnta d la dmanda d papas s -0,1. i la prvisión d disminución d la rnta d los consumidors n los próximos 3 años s dl 3% n promdio anual, calcul cuánto s spra qu varí, n promdio anual, la dmanda d papas d los consumidors. c) Otra d las conclusions dl análisis s qu la lasticidad-cruzada d la dmanda d papas rspcto al prcio dl kilo d arroz s 1,5. i l prcio dl kilo d arroz dscind un 5%, calcul la variación porcntual qu xprimntará la dmanda d papas. olución: a) Un studio indica qu la lasticidad-prcio d la dmanda d papas s 0,2. i un kilo d papas custa 1,20 y s dsa aumntar su consumo un 20%, calcul cuánto dbrá modificars l prcio dl kilo para lograr s objtivo. La lasticidad-prcio d la dmanda d papas (bin ) pud xprsars d la siguint manra: Variación % d la cantidad dmandada d papas Variación % dl prcio d las papas acurdo con l nunciado, dicha lasticidad s 0, 2 ; s dcir, la dmanda d papas s inlástica (poco snsibl a modificacions d su prcio). Admás, también s conoc la variación qu s dsa qu xprimnt la cantidad dmandada d las mismas, un 20%. i s sustituy sta información n la xprsión antrior: 20% 0,2 Variación % dl prcio d las papas Por tanto, dspjando s obtin qu:

2 20% Variación % dl prcio d las papas = 100% 0,2 Es dcir, l prcio d las papas db aumntar un 100% para qu l consumo dscinda un 20%. Tnindo n cunta qu l prcio inicial dl kilo d papas ra 1,20, sto significa qu l nuvo prcio dbría sr: 1, % d 1,20 = 1,20 + 1,20= 2,40 /Kg. d papas. b) El studio también mustra qu la lasticidad-rnta d la dmanda d papas s -0,1. i la prvisión d disminución d la rnta d los consumidors n los próximos 3 años s dl 3% n promdio anual, calcul cuánto s spra qu varí, n promdio anual, la dmanda d papas d los consumidors. i M s la rnta d los consumidors, la lasticidad-rnta d la dmanda d papas s dfin como: Variación % d la dmanda d papas M Variación % d la rnta gún l studio ralizado, sta lasticidad s 0, 2. Como tin un valor ngativo, s pud afirmar qu las papas son un bin infrior, d manra qu un aumnto (disminución) d la rnta rduc (incrmnta) la dmanda. Tnindo n cunta qu stá prvisto un dscnso d la rnta dl 3% n promdio anual, s obtin qu: 0, 1 Variación % d la dmanda d - 3% papas i s dspja la incógnita d la xprsión antrior: Variación % d la dmanda d papas = (-0,1) (-3%) = 0,3% En dfinitiva, s spra qu la dmanda (o consumo) d papas aumnt un 0,3% n promdio anual n los próximos 3 años. c) Otra d las conclusions dl análisis s qu la lasticidad-cruzada d la dmanda d papas rspcto al prcio dl kilo d arroz s 1,5. i l prcio dl kilo d arroz dscind un 5%, calcul la variación porcntual qu xprimntará la dmanda d papas. i la lasticidad-cruzada d la dmanda d papas rspcto al prcio dl arroz (bin Y) s positiva significa qu ambos bins son sustitutivos n l consumo. Por tanto, si aumnta (disminuy) l prcio dl arroz, también crc (dscind) la dmanda d papas. un modo similar a los apartados antriors, para rsolvr sta custión s pud utilizar la xprsión: Variación % d la dmanda d papas Y Variación % dl prcio dl arroz En sta ocasión s conoc l valor d la lasticidad-cruzada ( Y 1, 5 ) y la variación porcntual dl prcio dl arroz (-5%). ustituyndo: Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 2

3 1,5 Variación % d la dmanda d - 5% papas En conscuncia, y por lo dicho antriormnt, la dmanda d papas s rducirá al disminuir l prcio dl arroz: Variación % d la dmanda d papas = (1,5) (-5%) = - 0,3% Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 3

4 Ejrcicio 12: La función d dmanda d mrcado dl bin s 30 20P 2PY 0, 5M. uponindo qu P =1 /u. d, P Y =5 /u. d Y y M =100 : a) Calcul l valor d la lasticidad-prcio d la dmanda d. Intrprt su significado conómico. b) trmin l valor d la lasticidad-cruzada d la dmanda dl bin rspcto al prcio dl bin Y indiqu qué tipo d rlación xist ntr ambos. c) Obtnga la lasticidad-rnta d la dmanda d y xpliqu d qué tipo d bin s trata. olución: a) Calcul l valor d la lasticidad-prcio d la dmanda d. Intrprt su significado conómico. El nunciado dl jrcicio proporciona la función d dmanda dl bin. icha función xprsa la rlación ntr la dmanda dl bin y, n st caso, trs d sus dtrminants: l propio prcio dl bin, P, l prcio d otro bin Y, P Y, y la rnta d los consumidors, M. Al trabajar con una función d dmanda, s ncsario utilizar drivadas parcials para calcular las distintas lasticidads, indicando así rspcto a qué variabl s stá drivando n cada caso. En concrto, para calcular l valor d la lasticidad-prcio d la dmanda d, s db utilizar la xprsión: P P Como paso prvio, s ncsario dtrminar l valor d para l qu s va a valuar dicha lasticidad. Para llo, s pudn sustituir los valors d las variabls qu s nos indican n la xprsión d la función d dmanda: = ,5 100 = 50 u. d La drivada parcial d la función d dmanda d rspcto a su propio prcio s Por tanto, sabindo qu P = 1 /u. d : P = P P ,4 50 Est rsultado indica qu la dmanda dl bin s inlástica, ya qu, n valor absoluto, s mnor qu 1. Por tanto, dicha dmanda s poco snsibl a variacions dl prcio. El significado conómico dl valor d la lasticidad obtnido s l siguint: si l prcio dl bin crc (dcrc) un 1%, la cantidad dmanda dl mismo disminuy (aumnta) un 0,4%. Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 4

5 b) trmin l valor d la lasticidad-cruzada d la dmanda dl bin rspcto al prcio dl bin Y indiqu qué tipo d rlación xist ntr ambos. La xprsión matmática d la lasticidad-cruzada d la dmanda dl bin rspcto al prcio dl bin Y s: Y P Y P Y i drivamos parcialmnt la función d dmanda d rspcto al prcio dl bin Y: Como P Y = 5, sustituimos n la xprsión antrior: P = -2. Y P Y P Y 5 2 0,2 50 Al sr l valor d la lasticidad-cruzada ngativo, podmos afirmar qu los bins Y son complmntarios n l consumo, d manra qu un aumnto (dscnso) dl prcio dl bin Y supon una disminución (un incrmnto) d la dmanda d. Concrtamnt, n st caso s pud intrprtar qu un crciminto (dscnso) dl 1% dl prcio d Y gnra una rducción (un aumnto) d la dmanda d d un 0,2%. c) Obtnga la lasticidad-rnta d la dmanda d y xpliqu d qué tipo d bin s trata. A partir d la función d dmanda d, para calcular la lasticidad-rnta s db utilizar la xprsión: M M M La drivada parcial d la función d dmanda d rspcto a la rnta s conoc qu M = 100. Esto significa qu: M = 0,5. Admás, s M M M 100 0, Es dcir, la dmanda dl bin tin una lasticidad-rnta unitaria. Al sr mayor qu 0, s pud afirmar qu l bin s un bin normal, lo qu significa qu incrmntos (dscnsos) d la rnta gnran aumntos (dscnsos) d la dmanda dl bin. En st caso n concrto, si la rnta d los consumidors aumnta (s rduc) un 1%, la dmanda d también aumntará (s rducirá) un 1%. Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 5

6 Ejrcicio 13: uponga qu las curvas d ofrta y dmanda dl mrcado d un bin vinn dadas por 40 y P 50, rspctivamnt. 4 a) Calcul l quilibrio d mrcado y rprséntlo gráficamnt. b) Calcul la lasticidad-prcio d la dmanda y d la ofrta n l quilibrio dl mrcado intrprt conómicamnt los valors obtnidos. Cuál d las dos curvas s más lástica n s punto? olución: a) Calcul l quilibrio d mrcado y rprséntlo gráficamnt. La curva d ofrta s prfctamnt inlástica n todos sus puntos (vrtical), dado qu la cantidad ofrcida s indpndint dl prcio. Esto implica qu los productors stán dispustos a vndr 40 unidads d bin sa cual sa l prcio dl mismo. La condición d quilibrio d mrcado supon qu, para l prcio d quilibrio P, las cantidads dmandada y ofrcida d mrcado s igualan:. La cantidad d quilibrio s igual a la cantidad ofrcida: 40 u. d. Para calcular l prcio d quilibrio introducimos la cantidad d quilibrio n la xprsión d la curva d dmanda: 40 P 50 P 40 u. d. 4 El gráfico siguint mustra l quilibrio: P Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 6

7 b) Calcul la lasticidad-prcio d la dmanda y d la ofrta n l quilibrio dl mrcado intrprt conómicamnt los valors obtnidos. Cuál d las dos curvas s más lástica n s punto? Calculmos primro la lasticidad-prcio d la ofrta. La curva d ofrta s vrtical y, por tanto, tin pndint infinita: dp Pndint d la curva d ofrta vrtical d La lasticidad-prcio d la ofrta s nula n todos los puntos (lo qu incluy l punto d quilibrio): invrsa d la pndint d la curva d ofrta n la curva d ofrta vrtical la pndint s igual a 1 1 dp d P P P dp 0 d i sustituimos l punto d quilibrio n la xprsión antrior, la lasticidad-prcio d la ofrta sigu sindo nula: 1 P ofrta prfctamnt inlástica 40 Est rsultado quir dcir qu si l prcio varía (ca o aumnta) n un 1%, la cantidad ofrcida no s modifica. La ofrta s prfctamnt inlástica n todos sus puntos. Calculmos ahora la lasticidad-prcio d la dmanda n l punto d quilibrio. d P 1 P dp dp invrsa d d la pndint d la curva d dmanda Calculamos la pndint d la curva d dmanda: dp 1 P 50 4 d 4 curva d dmanda pndint d la curva d dmanda Por tanto, la xprsión d la lasticidad-prcio d la dmanda para sta curva d dmanda s: d P P 4 dp 4 La valuamos n l punto d quilibrio: Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 7

8 P dmanda lástica 40 El rsultado significa qu, n un ntorno dl punto d quilibrio, si l prcio aumnta (ca) un 1%, la cantidad dmandada ca (aumnta) un 4%. En l punto d quilibrio la dmanda s lástica. Por tanto, n l punto d quilibrio, la dmanda s más lástica qu la ofrta. Álvarz, Bcrra, Cácrs, Osorno, Rodríguz 8

Tema 5 El Mercado y el Bienestar. Las externalidades

Tema 5 El Mercado y el Bienestar. Las externalidades Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 5 El Mrcado

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios

Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl ilar Osorno dl Rosal Olga María Rodríguz Rodríguz http://bit.ly/8l8u

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

3ª Colección Tema 3 La elasticidad y sus aplicaciones

3ª Colección Tema 3 La elasticidad y sus aplicaciones Cuestiones y problemas de Introducción a la Teoría Económica Carmen olores Álvarez Albelo Miguel Becerra omínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS Tma Límits, continuidad y asíntotas Matmáticas I º Bachillrato TEMA LÍMITES, CONTINUIDAD ASÍNTOTAS CÁLCULO GRÁFICO DE LÍMITES EJERCICIO : Sobr la gráfica d f), halla : 8 8 8 f f c) f f ) f f f c) f f )

Más detalles

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx.

( ) 2. 1. Calcula las siguientes integrales. Soluciones. 1 x. arctan. x 4x + 13. sen x dx. x 2. 11arctan. x dx + 2. e x. e arctan e. e dx. Albrto Entro Cond Mait Gonzálz Juarrro Intgral indfinida Cálculo d primitivas Calcula las siguints intgrals Solucions A d A d + + + ln( + + ) A d arctan + A sn sn d A d ln ( ) 6A d cos tan + arctan + ln(

Más detalles

LA INFLACIÓN Y SU APLICACIÓN EN EL CÁLCULO FINANCIERO

LA INFLACIÓN Y SU APLICACIÓN EN EL CÁLCULO FINANCIERO Mg. Marco Antonio Plaza Vidaurr 1 LA INFLACIÓN Y SU APLICACIÓN EN EL CÁLCULO FINANCIERO La Inflación La inflación s l aumnto d los prcios d los bins y srvicios d la conomía durant varios priodos sguidos.

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES.

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bach. TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. Tasa d variación mdia. Cálculo y signiicado EJERCICIO : Considramos la unción:. Halla la tasa

Más detalles

12 Representación de funciones

12 Representación de funciones Rprsntación d funcions ACTIVIDADES INICIALES.I. Factorizando prviamnt las prsions, rsulv las siguints cuacions: a) 6 7 5 0 6 c) 0 7 b) 6 d) 0 a) 6 7 5 0 ( )(6 5) 0 5 6 5 0, b) 7 6 ( )( ) 6 6 ( ) 7 ( )

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8 Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula

Más detalles

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden

CAPITULO 5. ECUACIONES DIFERENCIALES DE ORDEN N 2. 5.1. Introducción. 5.2. Reducción de orden APITULO 5. EUAIONES DIFERENIALES DE ORDEN N 5.. Introducción Una cuación difrncial d sgundo ordn s una prsión matmática n la qu s rlaciona una función con sus drivadas primra sgunda. Es dcir, una prsión

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

TEMA 4: LA OFERTA AGREGADA

TEMA 4: LA OFERTA AGREGADA TEMA 4: LA OFERTA AGREGADA Análisis d los ciclos conómicos INTRODUCCIÓN Abandono supusto rigidz n prcios Con prcios flxibls l modlo IS-LM sirv para drivar la curva d Dmanda Agrgada Ncsidad d analizar la

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación

ASÍNTOTAS Y RAMAS INFINITAS Cálculo y representación LÍMITES Cálculo y rprsntación...... 7. 8. - + + - - + + - + - ( + ) - + + - - + + 9. + - +. + - + - 9. + -. + + + - +. + + +. + + + -. +. + - ASÍNTOTAS Y RAMAS INFINITAS Cálculo y rprsntación. y = - +.

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS.

LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS. LA INTEGRAL DEFINIDA: UNA HERRAMIENTA COGNITIVA PODEROSA PARA MODELAR Y RESOLVER PROBLEMAS ECONÓMICOS. Ana Ida Vilir ivilir@cug.co.cu Rafal Cardoza Gámz cardoza@fc.cug.co.cu Univrsidad d Guantánamo Rsumn:

Más detalles

ANÁLISIS (Selectividad 2014) 1

ANÁLISIS (Selectividad 2014) 1 ANÁLISIS (Slctividad 4) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD EN 4 ( Obsrvación: La slcción s ha hcho dando prioridad a las custions más tóricas) Andalucía, junio 4 San

Más detalles

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS.

FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Prof., Enriqu Matus Nivs Doctorano n Eucación Matmática. FUNCIONES EXPONENCIAL, LOGARÍTMICA Y SUS DERIVADAS. Una función ponncial s aqulla n la qu la variabl stá n l ponnt. Algunos - - -5 jmplos funcions

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

Ofertas y Contratos Agiles

Ofertas y Contratos Agiles Ofrtas y Contratos Agils algunas idas xtraídas dl libro Obra bajo licncia Crativ Commons los pilar s d transp arncia, ins adaptación pc, junto con l nfoqu d ción y continua q mjora u forman part d lo Agils,

Más detalles

Practica 9: Tipo de cambio y paridad de poder adquisitivo

Practica 9: Tipo de cambio y paridad de poder adquisitivo Practica 9: Tipo d cambio y paridad d podr adquisitivo 1 Practica 9.1: Ejrcicio 1, capitulo 13, pag. 355 En Munich un bocadillo d salchicha custa 2, n l parqu Fnway d Boston un prrito calint val 1$. Con

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Marita d Franco A Francisco José, Shrl, Marión, Paola, Constanc, Luis Migul Migul. AGRADECIMIENTOS Al Ing. Pdro Rangl por su comprnsión,

Más detalles

METODOLOGÍAS DE EVALUACIÓN SOCIOECONÓMICA DE PROYECTOS RELACIONADOS CON UN SISTEMA INTERCONECTADO DE ENERGIA ENTRE DOS PAÍSES

METODOLOGÍAS DE EVALUACIÓN SOCIOECONÓMICA DE PROYECTOS RELACIONADOS CON UN SISTEMA INTERCONECTADO DE ENERGIA ENTRE DOS PAÍSES METODOLOGÍS DE EVLUCIÓN SOCIOECONÓMIC DE POYECTOS ELCIONDOS CON UN SISTEM INTECONECTDO DE ENEGI ENTE DOS PÍSES por Claudia Botton y Coloma Frrá Univrsidad Nacional d Cuyo gosto 00 METODOLOGÍS DE EVLUCIÓN

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas

1.1 Introducción 1.2 Ecuaciones Lineales 1.3 Ecuaciones de Bernoulli 1.4 Ecuaciones separables 1.5 Ecuaciones Homogéneas 1.6 Ecuaciones exactas ap. Ecuacions Difrncials d Primr ordn. Introducción. Ecuacions Linals. Ecuacions d Brnoulli. Ecuacions sparabls.5 Ecuacions Homogénas.6 Ecuacions actas.7 Factor Intgrant.8 Estabilidad dinámica dl quilibrio.9

Más detalles

José Luis Zofío. Organización Industrial II. Licenciatura: Economía (2º semestre) Código 15710. Parte I: El análisis del equilibrio parcial

José Luis Zofío. Organización Industrial II. Licenciatura: Economía (2º semestre) Código 15710. Parte I: El análisis del equilibrio parcial José Luis Zofío Organización Industrial II Licnciatura: Economía (2º smstr) Código 570 Part I: El análisis dl quilibrio parcial Tma 3.El monopolio. 3. Análisis dl quilibrio. 3.2 Discriminación d prcios

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

TEMA 4. APLICACIONES DE LA DERIVADA.

TEMA 4. APLICACIONES DE LA DERIVADA. 7 Unidad 4. Funcions. Aplicacions d la drivada TEMA 4. APICACIONES DE A DERIVADA.. Monotonía. Crciminto y dcrciminto d una función. Etrmos rlativos 3. Optimización 4. Curvatura 5. Punto d Inflión 6. Propidads

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

El Riesgo de Interés

El Riesgo de Interés Juan Mascarñas Univrsidad Complutns d Madrid Vrsión inicial: mayo 4 - Última vrsión: nro 8 - El risgo d intrés, - La duración modificada como mdida dl risgo d intrés, 4 - El risgo d rinvrsión, . EL RIESGO

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

CAPITULO 3 PER: UN INDICADOR PARA MEDIR VALOR

CAPITULO 3 PER: UN INDICADOR PARA MEDIR VALOR CAPITULO 3 : UN INDICADOR PARA MEDIR VALOR Valor s la prcpción d bnficio o utilidad qu da un bin a una prsona (vr capítulo 1). En invrsions l valor sta dado por l dinro futuro qu gnra un capital n l día

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 ANÁLISIS (Slctividad 5) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 5 Andalucía, junio 5 Sa f la función dfinida por f( ) para a) [ punto] Estudia y calcula las asíntotas

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: 171 LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

Forwards y Futuros (Resumen libro Hull)

Forwards y Futuros (Resumen libro Hull) Forwards y Futuros (Rsumn libro Hull) 1- Supustos d los modlos utilizados 1- No xistn costos d transacción 2- Todas las ganancias stán gravadas a la misma tasa impositiva. 3- La tasa d intrés libr d risgo

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

Prueba ji-cuadrado: χ 2. Estudiar la relación entre dos variables cualitativas. Estudiar la relación entre dos variables cualitativas

Prueba ji-cuadrado: χ 2. Estudiar la relación entre dos variables cualitativas. Estudiar la relación entre dos variables cualitativas ÁNALISIS BIVARIADO Estudiar la rlación ntr dos variabls cualitativas ANALISIS DE FRECUENCIAS, INDEPENDENCIA Estudiar la rlación ntr dos variabls cuantitativas CORRELACIÓN Y REGRESIÓN LINEAL Estudiar la

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

4.2. Ejemplo de aplicación.

4.2. Ejemplo de aplicación. HEB 8 Dsarrollo dl método d los dsplazamintos 45 4.. Ejmplo d aplicación. ontinuando con l pórtico dscrito n l apartado (3.8), s van a calcular las cargas y, postriormnt, sguir con l cálculo matricial,

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

núm. 51 martes, 15 de marzo de 2016 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS

núm. 51 martes, 15 de marzo de 2016 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS boltín oficial d la provincia III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS C.V.E.: BOPBUR-2016-01360 GERENCIA MUNICIPAL DE SERVICIOS SOCIALES, JUVENTUD E IGUALDAD DE OPORTUNIDADES Bass para rgular

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

FIZIKA SPANYOL NYELVEN

FIZIKA SPANYOL NYELVEN Fizika spanyol nylvn középszint 08 ÉRETTSÉGI VIZSGA 010. május 18. FIZIKA SPANYOL NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Los xámns

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

FÍSICA II. Guía De Problemas Nº4:

FÍSICA II. Guía De Problemas Nº4: Univrsidad Nacional dl Nordst Facultad d Ingniría Dpartanto d Físico-Quíica/Cátdra Física II FÍSIC II Guía D roblas Nº4: rir rincipio d la Trodináica 1 ROBLEMS RESUELTOS 1- S dsa calcular l trabajo ralizado

Más detalles

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general III. ADMINISTRACIÓN local DIpuTACIÓN provincial D burgos scrtaría gnral cv: BOPBUR-2011-01058 El Plno d la Excma. Diputación Provincial, n ssión ordinaria clbrada l día 16 d novimbr d 2010, adoptó ntr

Más detalles

EQUILIBRIO QUIMICO. aa + bb cc + Dd

EQUILIBRIO QUIMICO. aa + bb cc + Dd EQUILIBRIO QUIMICO Una racción rvrsibl s aqulla n qu los productos d la racción intractúan ntr sí y forman nuvamnt los raccionants. En la siguint rprsntación d una racción rvrsibl aa + bb cc + Dd los raccionants

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB

PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICAS DE FUNDAMENTOS DE REGULACIÓN AUTOMÁTICA CON MATLAB PRÁCTICA Nº 3: RESPUESTA DE SISTEMAS 4. RESPUESTA TEMPORAL DE SISTEMAS Contnido: D las funcions d transfrncia y sistmas antriors, s prtnd obtnr

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos

ANÁLISIS. a) Derivabilidad de la función en los puntos x = -1, x = 1, x = 2. Calcular la derivada en cada uno de los puntos Matmáticas II Prubas d Accso a la Univrsidad ANÁLISIS Junio 9.. Dada la función cos f () a b si si si a) Calcular los valors d a y b para qu la función f() sa continua n [ punto] b) Es drivabl la función

Más detalles

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.

Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada. MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El

Más detalles

INTRODUCCIÓN A LA TEORÍA ECONÓMICA

INTRODUCCIÓN A LA TEORÍA ECONÓMICA INTROUCCIÓN A LA TEORÍA ECONÓMICA Tema 3 LA ELASTICIA Y SUS APLICACIONES Carmen olores Álvarez Albelo Miguel Becerra omínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez

Más detalles

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto.

Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto. http://matmaticas-tic.wikispacs.com Lambrto Cortázar Vinusa 06 DERIVADAS EJERCICIOS WIKI Ida La drivada d una unción, (), n un punto P s intrprta gométricamnt con la pndint d la rcta tangnt a la curva

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

Núm. 239 Miércoles, 19 de diciembre de 2012 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS BIENESTAR SOCIAL

Núm. 239 Miércoles, 19 de diciembre de 2012 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS BIENESTAR SOCIAL Núm. 239 Miércols, 19 d dicimbr d 2012 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS BIENESTAR SOCIAL cv: BOPBUR-2012-07296 Elvado a dfinitivo por no habrs producido rclamacions n l priodo

Más detalles

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL CUADERNILLO DE TRABAJO EN CLASE TERCER CUADERNILLLO DE CÁLCULO DIFERENCIAL

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL CUADERNILLO DE TRABAJO EN CLASE TERCER CUADERNILLLO DE CÁLCULO DIFERENCIAL TERCER CUADERNILLLO DE COMPETENCIAS A DESARROLLAR: 1. Intrprta gráficas d funcions continuas y discontinuas analizando l dominio y contradominio; y argumnta l comportaminto gráfico d la variabl dpndint

Más detalles