Algoritmos y Estructura de Datos I

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Algoritmos y Estructura de Datos I"

Transcripción

1 Clase práctica funcional III - TADS Facultad de Ciencias Exactas y Naturales Viernes 2 de mayo de 2008

2 Tipo Multiconj<T> Observadores e invariantes del tipo tipo Multiconjunto<T> { observador elementos (Multiconjunto<T>) : [T] ;

3 Constructores Crea un multiconjunto vacío. problema vacio () = result : Multiconjunto<T> { asegura elementos(result) == [] ; Agregar un nuevo elemento al multiconjunto. problema agregar (e : T, mc : Multiconjunto<T>) = result : Multiconjunto<T> { asegura mismos(e : elementos(mc), elementos(result)) ;

4 Constructores Crea un multiconjunto vacío. problema vacio () = result : Multiconjunto<T> { asegura elementos(result) == [] ; Agregar un nuevo elemento al multiconjunto. problema agregar (e : T, mc : Multiconjunto<T>) = result : Multiconjunto<T> { asegura mismos(e : elementos(mc), elementos(result)) ;

5 Constructores Crea un multiconjunto vacío. problema vacio () = result : Multiconjunto<T> { asegura elementos(result) == [] ; Agregar un nuevo elemento al multiconjunto. problema agregar (e : T, mc : Multiconjunto<T>) = result : Multiconjunto<T> { asegura mismos(e : elementos(mc), elementos(result)) ;

6 vacio? -> Dice si el multiconjunto es vacío. problema vacio? (mc : Multiconj<T>) = result : Multiconj<T> { asegura result == (elementos(mc) == []) ; Devuelve la cantidad de elementos del multiconjunto. problema cardinal (mc : Multiconj<T>) = result : Z { asegura result == elementos(mc) ;

7 vacio? -> Dice si el multiconjunto es vacío. problema vacio? (mc : Multiconj<T>) = result : Multiconj<T> { asegura result == (elementos(mc) == []) ; Devuelve la cantidad de elementos del multiconjunto. problema cardinal (mc : Multiconj<T>) = result : Z { asegura result == elementos(mc) ;

8 vacio? -> Dice si el multiconjunto es vacío. problema vacio? (mc : Multiconj<T>) = result : Multiconj<T> { asegura result == (elementos(mc) == []) ; Devuelve la cantidad de elementos del multiconjunto. problema cardinal (mc : Multiconj<T>) = result : Z { asegura result == elementos(mc) ;

9 Si el elemento pertenece al multiconjunto, entonces lo quita, sino queda igual. problema quitar (e : T, mc : Multiconj<T>) = result : Multiconj<T> { asegura mismos(elementos(mc), sin(e, elementos(mc))) ; aux sin (e : T, elementos : [T]) : [T] = [x x elementos, x! = e] ; Devuleve el cardinal del elemento e en el multiconjunto mc. problema cantapariciones (e : T, mc : Multiconj<T>) = result : Z { asegura result == cuenta(e, elementos(mc)) ;

10 Si el elemento pertenece al multiconjunto, entonces lo quita, sino queda igual. problema quitar (e : T, mc : Multiconj<T>) = result : Multiconj<T> { asegura mismos(elementos(mc), sin(e, elementos(mc))) ; aux sin (e : T, elementos : [T]) : [T] = [x x elementos, x! = e] ; Devuleve el cardinal del elemento e en el multiconjunto mc. problema cantapariciones (e : T, mc : Multiconj<T>) = result : Z { asegura result == cuenta(e, elementos(mc)) ;

11 Si el elemento pertenece al multiconjunto, entonces lo quita, sino queda igual. problema quitar (e : T, mc : Multiconj<T>) = result : Multiconj<T> { asegura mismos(elementos(mc), sin(e, elementos(mc))) ; aux sin (e : T, elementos : [T]) : [T] = [x x elementos, x! = e] ; Devuleve el cardinal del elemento e en el multiconjunto mc. problema cantapariciones (e : T, mc : Multiconj<T>) = result : Z { asegura result == cuenta(e, elementos(mc)) ;

12 Devuelve la unión de los dos multiconjuntos. problema union (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Multiconj<T> { asegura mismos(elementos(result), elementos(mc1) + +elementos(mc2)) ; Devuelve la intersección de los dos multiconjuntos. problema interseccion (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Multiconj<T> { asegura ( x elementos(result)) (cuenta(x, elementos(result)) == min(cuenta(x, elementos(mc1)), cuenta(x, elementos(mc2)))) ;

13 Devuelve la unión de los dos multiconjuntos. problema union (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Multiconj<T> { asegura mismos(elementos(result), elementos(mc1) + +elementos(mc2)) ; Devuelve la intersección de los dos multiconjuntos. problema interseccion (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Multiconj<T> { asegura ( x elementos(result)) (cuenta(x, elementos(result)) == min(cuenta(x, elementos(mc1)), cuenta(x, elementos(mc2)))) ;

14 Devuelve la unión de los dos multiconjuntos. problema union (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Multiconj<T> { asegura mismos(elementos(result), elementos(mc1) + +elementos(mc2)) ; Devuelve la intersección de los dos multiconjuntos. problema interseccion (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Multiconj<T> { asegura ( x elementos(result)) (cuenta(x, elementos(result)) == min(cuenta(x, elementos(mc1)), cuenta(x, elementos(mc2)))) ;

15 Dice si mc1 está incluido en mc2. problema incluido (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Bool { asegura result == (( x elementos(mc1)) (cuenta(x, elementos(mc1)) cuenta(x, elementos(mc2)))) ; Dice si dos multicojuntos son iguales. problema soniguales (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Bool { asegura incluido(mc1, mc2) incluido(mc2, mc1) ;

16 Dice si mc1 está incluido en mc2. problema incluido (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Bool { asegura result == (( x elementos(mc1)) (cuenta(x, elementos(mc1)) cuenta(x, elementos(mc2)))) ; Dice si dos multicojuntos son iguales. problema soniguales (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Bool { asegura incluido(mc1, mc2) incluido(mc2, mc1) ;

17 Dice si mc1 está incluido en mc2. problema incluido (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Bool { asegura result == (( x elementos(mc1)) (cuenta(x, elementos(mc1)) cuenta(x, elementos(mc2)))) ; Dice si dos multicojuntos son iguales. problema soniguales (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Bool { asegura incluido(mc1, mc2) incluido(mc2, mc1) ;

18 Dice si dos multicojuntos son iguales. problema resta (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Multiconj<T> { asegura (( x elementos(result)) (cuenta(x, elementos(result)) == restanat(cuenta(x, elementos(mc1)), cuenta(x, elementos(mc2))))) ; aux restanat (x : Z, y : Z) : Z = if (x y)then0else(x y) ;

19 Dice si dos multicojuntos son iguales. problema resta (mc1 : Multiconj<T>, mc2 : Multiconj<T>) = result : Multiconj<T> { asegura (( x elementos(result)) (cuenta(x, elementos(result)) == restanat(cuenta(x, elementos(mc1)), cuenta(x, elementos(mc2))))) ; aux restanat (x : Z, y : Z) : Z = if (x y)then0else(x y) ;

RELACIÓN DE FECHAS Y HORAS PARA LA CELEBRACIÓN DE MATRIMONIO EN FORMA CIVIL CON INDICACIÓN DE SU DISPONIBILIDAD

RELACIÓN DE FECHAS Y HORAS PARA LA CELEBRACIÓN DE MATRIMONIO EN FORMA CIVIL CON INDICACIÓN DE SU DISPONIBILIDAD Mes: noviembre 2015 viernes, 27 de noviembre de 2015 19:00 Reservada sábado, 28 de noviembre de 2015 Mes: diciembre 2015 viernes, 04 de diciembre de 2015 sábado, 05 de diciembre de 2015 viernes, 11 de

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

Instituto de Computación - Facultad de Ingeniería - Universidad de la República

Instituto de Computación - Facultad de Ingeniería - Universidad de la República Parcial de Programación 2 Julio de 2011 Generalidades: La prueba es individual y sin material. Duración: 3hs. Sólo se contestan dudas acerca de la letra de los ejercicios. Escriba las hojas de un sólo

Más detalles

3. ESTRUCTURAS DE DATOS NO LINEALES

3. ESTRUCTURAS DE DATOS NO LINEALES 3. ESTRUCTURAS DE DATOS NO LINEALES 3.1 Conjuntos 3.2 Árboles 3.3 Grafos 1 3.1 Conjuntos Índice Introducción Especificación del TAD TipoConjunto Implementaciones del TAD TipoConjunto Programación usando

Más detalles

Trabajo Práctico N 4: Diseño por Contratos

Trabajo Práctico N 4: Diseño por Contratos 1. Defina los contratos de las siguientes clases: Trabajo Práctico N 4: Diseño por Contratos a. La clase Fecha representa una fecha en el formato dia, mes y año. Especificar los contratos para asegurar

Más detalles

Tipos Abstractos de Datos

Tipos Abstractos de Datos Objetivos Repasar los conceptos de abstracción de datos y (TAD) Diferenciar adecuadamente los conceptos de especificación e implementación de TAD Presentar la especificación algebraica como método formal

Más detalles

DEFINICION. Ing. M.Sc. Fulbia Torres Asignatura: Estructuras de Datos Barquisimeto 2006

DEFINICION. Ing. M.Sc. Fulbia Torres Asignatura: Estructuras de Datos Barquisimeto 2006 ARBOLES ESTRUCTURAS DE DATOS 2006 DEFINICION Un árbol (tree) es un conjunto finito de nodos. Es una estructura jerárquica aplicable sobre una colección de elementos u objetos llamados nodos; uno de los

Más detalles

Especificación e Implementación de Tipos Abstractos de Datos

Especificación e Implementación de Tipos Abstractos de Datos Especificación e Implementación de Tipos Abstractos de Datos Jesús N. Ravelo Universidad Simón Bolívar Dpto. de Computación y Tecnología de la Información Resumen Estas notas presentan un esquema de especificación

Más detalles

3 CONJUNTOS, BOLSAS Y FUNCIONES. FUNCIONES DE DISPERSIÓN

3 CONJUNTOS, BOLSAS Y FUNCIONES. FUNCIONES DE DISPERSIÓN 3 CONJUNTOS, BOLSAS Y FUNCIONES. FUNCIONES DE DISPERSIÓN 3.1 EL TAD CONJUNTO. El TAD Conjunto es una colección de elementos distintos (todos del mismo tipo) junto con una serie de procedimientos de acceso.

Más detalles

Números Reales DESIGUALDADES DESIGUALDADES. Solución de desigualdades. 2x + 4 < 6x +1 6x + 3 8x 7 x 2 > 3x 2 5x + 8. INECUACIONES o DESIGUALDADES

Números Reales DESIGUALDADES DESIGUALDADES. Solución de desigualdades. 2x + 4 < 6x +1 6x + 3 8x 7 x 2 > 3x 2 5x + 8. INECUACIONES o DESIGUALDADES Números Reales INECUACIONES o DESIGUALDADES DESIGUALDADES Una desigualdad en una variable es una expresión donde se establece una relación entre dos cantidades. Las relaciones de orden son: ,, Ejemplos:

Más detalles

SEMINARIO DE ESPECIFICACIONES ALGEBRAICAS

SEMINARIO DE ESPECIFICACIONES ALGEBRAICAS Algoritmos y Estructuras de Datos Ingeniería en Informática, Curso 2º, Año 2004/2005 SEMINARIO DE ESPECIFICACIONES ALGEBRAICAS Contenidos: 1. Descripción general de Maude 2. Comandos básicos 3. Formato

Más detalles

Algoritmos y Estructuras de Datos II

Algoritmos y Estructuras de Datos II 8 de abril de 2015 Clase de hoy 1 Repaso Tipos concretos versus abstractos Tipos abstractos de datos 2 3 4 TAD Pila Especificación del TAD Pila Repaso Tipos concretos versus abstractos Tipos abstractos

Más detalles

1. Ejemplo de clase : La clase Cuenta 2. Uso de la clase Cuenta. 3. Métodos y objetos receptores de mensajes (Importante)

1. Ejemplo de clase : La clase Cuenta 2. Uso de la clase Cuenta. 3. Métodos y objetos receptores de mensajes (Importante) 1. : La clase Cuenta. Uso de la clase Cuenta 3. Métodos y objetos receptores de mensajes (Importante) 1 Una clase para cuentas de un banco Vamos a modelar con una clase, un nuevo tipo de datos, donde los

Más detalles

El programa que permite el manejo de la base de datos tiene la siguiente funcionalidad:

El programa que permite el manejo de la base de datos tiene la siguiente funcionalidad: El TAD Diccionario Cuando se usa un conjunto en el diseño de un algoritmo podría no ser necesario contar con operaciones de unión o intersección. A menudo lo que se necesita es simplemente manipular un

Más detalles

Laboratorio 7 Motor de búsqueda web basado en el TAD Árbol Binario de Búsqueda GUIÓN DEL LABORATORIO

Laboratorio 7 Motor de búsqueda web basado en el TAD Árbol Binario de Búsqueda GUIÓN DEL LABORATORIO Laboratorio 7 Motor de búsqueda web basado en el TAD Árbol Binario de Búsqueda GUIÓN DEL LABORATORIO 1.- Objetivos del laboratorio Diseño de clases en C++ Comprensión y uso del TAD Árbol Binario de Búsqueda

Más detalles

Una variable de clase escalar tiene un nivel de indirección igual a 1. Por ejemplo, las variables i, b y x definidas como se muestra a continuación.

Una variable de clase escalar tiene un nivel de indirección igual a 1. Por ejemplo, las variables i, b y x definidas como se muestra a continuación. Descripción de la semántica de ALFA En esta descripción sólo se mencionarán los aspectos en los que el lenguaje de programación ALFA pueda diferir de otros lenguajes de programación de alto nivel. Se sobreentienden

Más detalles

Árboles. Cursos Propedéuticos 2015. Dr. René Cumplido M. en C. Luis Rodríguez Flores

Árboles. Cursos Propedéuticos 2015. Dr. René Cumplido M. en C. Luis Rodríguez Flores Árboles Cursos Propedéuticos 2015 Dr. René Cumplido M. en C. Luis Rodríguez Flores Contenido de la sección Introducción Árbol genérico Definición y representación Árboles binarios Definición, implementación,

Más detalles

Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole.

Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole. Tema 1: Teoría de Conjuntos. Logica proposicional y lgebras de oole. 1.1 Teoria de conjuntos Objetivo específico: Operar con conjuntos y aplicar sus propiedades para resolver problemas reales. Piensa Elabora

Más detalles

Ejercicio 1 (3 puntos).-

Ejercicio 1 (3 puntos).- URJC Ingeniería Técnica de Gestión Abril 2011 Asignatura: SOFTWARE AVANZADO Normas: La prueba consta de 2 ejercicios. La máxima nota del examen es un 8. Siendo la práctica la que añade los 2 puntos que

Más detalles

CI2126 PRÁCTICA 9: TAD COLA. 1) Implemente las operaciones C_Insert y C_Remove del TAD COLA usando a. un arreglo. La estructura sería:

CI2126 PRÁCTICA 9: TAD COLA. 1) Implemente las operaciones C_Insert y C_Remove del TAD COLA usando a. un arreglo. La estructura sería: CI2126 PRÁCTICA 9: TAD COLA. 1) Implemente las operaciones C_Insert y C_Remove del TAD COLA usando a. un arreglo La estructura sería: typedef struct s_cola ELEM elementos[max]; int primero,ultimo; STRUCTCOLA,*COLA;

Más detalles

Introducción a la Programación Ingenieria en Informática Junio 2008

Introducción a la Programación Ingenieria en Informática Junio 2008 Introducción a la Programación Ingenieria en Informática Junio 2008 Ejercicio 1 [2 puntos] Escribe un programa que reciba el fichero binario.dat, fichero binario de enteros positivos y devuelva un fichero

Más detalles

Introducción a los Tipos Abstractos de Datos

Introducción a los Tipos Abstractos de Datos Página 1 de 8 Introducción a los Tipos Abstractos de Datos Introducción: Concepto de abstracción Abstracción funcional y abstracción de datos Construcción de tipos abstractos de datos Especificación de

Más detalles

1 Estructura básica de un programa C++

1 Estructura básica de un programa C++ Elementos básicos de un lenguaje de alto nivel: C++ CONTENIDOS 1. Estructura básica de un programa C++. 2. Tipos de datos simples. 3. Constantes y variables en C++. Declaración. 4. Operadores y expresiones.

Más detalles

Tema 1. Introducción a los TAD

Tema 1. Introducción a los TAD Tema 1. Introducción a los TAD Objetivos En este tema nos ocupamos inicialmente del concepto de abstracción, dedicando la mayor atención a la abstracción de datos, estudiando aspectos relacionados con

Más detalles

Tema 1. Introducción a las estructuras y tipos de datos

Tema 1. Introducción a las estructuras y tipos de datos Tema 1. Introducción a las estructuras y tipos de datos http://aulavirtual.uji.es José M. Badía, Begoña Martínez, Antonio Morales y José M. Sanchiz {badia,bmartine,morales,sanchiz}@icc.uji.es Estructuras

Más detalles

ANÁLISIS. 4.1. Casos de uso: Identificar Usuario. Diagrama de secuencia del sistema: Contratos:

ANÁLISIS. 4.1. Casos de uso: Identificar Usuario. Diagrama de secuencia del sistema: Contratos: ANÁLISIS 4.1. Casos de uso: Identificar Usuario Name: identificarusuario(nombre, clave): OK Responsabilities: Esta operación verifica que los credenciales introducidos existen en la base de datos. Preconditions:

Más detalles

Semana Viernes Sábado Semana Viernes Sábado 1 03/10/2014 04/10/2014 11 16/01/2015 17/01/2015 2 17/10/2014 18/10/2014 12 23/01/2015 24/01/2015

Semana Viernes Sábado Semana Viernes Sábado 1 03/10/2014 04/10/2014 11 16/01/2015 17/01/2015 2 17/10/2014 18/10/2014 12 23/01/2015 24/01/2015 Semana Semana 1 03/10/2014 04/10/2014 11 16/01/2015 17/01/2015 2 17/10/2014 18/10/2014 12 23/01/2015 24/01/2015 3 24/10/2014 25/10/2014 13 30/01/2015 31/01/2015 4 07/11/2014 08/11/2014 14 06/02/2015 07/02/2015

Más detalles

ARBOLES ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES

ARBOLES ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES ARBOLES ARBOLES BINARIOS ORDENADOS. REPRESENTACIÓN Y OPERACIONES Características ARBOLES - CONCEPTOS Cada elemento del árbol se relaciona con cero o más elementos a quienes llama hijos. Si el árbol no

Más detalles

Tema 3 Modelo relacional

Tema 3 Modelo relacional Contenido: Bases de Datos y Sistemas de Información Ing. Informática GRUPO A Tema 3 Modelo relacional 3.1 Terminología del modelo relacional 3.2 Paso del modelo ER al modelo relacional 3.3 Creación de

Más detalles

8. Sentencia return y métodos

8. Sentencia return y métodos 92 A. García-Beltrán y J.M. Arranz 8. Sentencia return y métodos Objetivos: a) Describir el funcionamiento de la sentencia return b) Interpretar el resultado de una sentencia return en el código fuente

Más detalles

Unidad I: Tipo de Dato Abstracto (TDA)

Unidad I: Tipo de Dato Abstracto (TDA) Asignatura: Programación 2 Unidad 1: Tipo de Dato Abstracto (TDA) Tema 2: Tipo de Dato Abstracto (TDA) Autor: Prof. Hilda Contreras Unidad I: Tipo de Dato Abstracto (TDA) Introducción Suponga que debe

Más detalles

Metodología de la Programación II. Recursividad

Metodología de la Programación II. Recursividad Metodología de la Programación II Recursividad Objetivos Entender el concepto de recursividad. Conocer los fundamentos del diseño de algoritmos recursivos. Comprender la ejecución de algoritmos recursivos.

Más detalles

Tema 1. Abstracciones y Especificaciones.

Tema 1. Abstracciones y Especificaciones. Programa de teoría Parte I. Estructuras de Datos. 1. Abstracciones y especificaciones. 2. Conjuntos y diccionarios. 3. Representación de conjuntos mediante árboles. 4. Grafos. Parte II. Algorítmica. 1.

Más detalles

NIVEL 15: ESTRUCTURAS RECURSIVAS BINARIAS

NIVEL 15: ESTRUCTURAS RECURSIVAS BINARIAS 1 NIVEL 15: ESTRUCTURAS RECURSIVAS BINARIAS Árboles Binarios y Árboles Binarios Ordenados 2 Contenido Árboles binarios Iteradores Árboles binarios ordenados 3 Árboles binarios Algunas definiciones para

Más detalles

Metodología y Tecnología de la Programación

Metodología y Tecnología de la Programación Metodología y Tecnología de la Programación Curso 2008/09 Tema 7 Tipos de Datos Abstractos Temario 7.1 Concepto de Tipo de Datos Abstracto 7.2 Clasificación de Tipos de Datos Abstractos 7.3 Especificación

Más detalles

Práctico 5. Definiciones Inductivas - Segunda Parte -

Práctico 5. Definiciones Inductivas - Segunda Parte - Práctico 5 Definiciones Inductivas - Segunda Parte - Objetivos: Trabajar con tipos inductivos. Realizar pruebas por inducción y análisis de casos. Familiarizarse con los lemas de inversión y las tácticas

Más detalles

15. Parámetros o argumentos

15. Parámetros o argumentos Programación orientada a objetos con Java 161 15. Parámetros o argumentos Objetivos: a) Profundizar en el concepto de parámetro de una clase e indicar su mecanismo de funcionamiento. b) Interpretar el

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Tema 3. Test Driven Development

Tema 3. Test Driven Development Tema 3. Test Driven Development Ejercicios Resueltos Ejercicio 01. Desarrolle mediante TDD una implementación del algoritmo de la Criba de Eratóstenes para calcular la lista de los números primos desde

Más detalles

Un elemento de cualquier clase llamada Info; Un puntero a un nuevo nodo llamado sig; De tal forma una unión de nodos hace que tengamos una lista:

Un elemento de cualquier clase llamada Info; Un puntero a un nuevo nodo llamado sig; De tal forma una unión de nodos hace que tengamos una lista: Tipos Abstractos de Datos: TAD Lista en educación Profesional 1.- Introducción Los tipos abstractos de datos son fundamentales para la informática puesto que de ellos se sirven todos los programas para

Más detalles

Clase 6: Invariantes de representación y funciones de abstracción

Clase 6: Invariantes de representación y funciones de abstracción Clase 6: Invariantes de representación y funciones de abstracción 6.1 Introducción En esta clase, vamos a describir dos herramientas utilizadas para la comprensión de tipos de datos abstractos: los invariantes

Más detalles

Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1

Liceo Nº 35, Instituto Dr. Alfredo Vázquez Acevedo. Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 TEORÍA DE CONJUNTOS CONOCIMIENTOS BÁSICOS Cuando decimos: "un elemento

Más detalles

Programación Avanzada para Sistemas de Telecomunicación. Objetos y clases. J.C. Cruellas. Objetos y clases

Programación Avanzada para Sistemas de Telecomunicación. Objetos y clases. J.C. Cruellas. Objetos y clases Programación Avanzada para Sistemas de Telecomunicación Objetos y clases Juan Carlos Cruellas cruellas@ac.upc.es Objetos y clases Concepto de objeto. Concepto de clase. Clases, objetos y programas. Clases

Más detalles

Tema 3. El modelo Relacional

Tema 3. El modelo Relacional Tema 3. El modelo Relacional Juan Ignacio Rodríguez de León Resumen Presenta el modelo entidad-relación. Visión de alto nivel de las cuestiones referentes a diseño de bases de datos y los problemas encontrados

Más detalles

Algoritmos y Estructuras de Datos II - DC - UBA 1 er cuatrimestre de 2013

Algoritmos y Estructuras de Datos II - DC - UBA 1 er cuatrimestre de 2013 Normativa Trabajo práctico 2: "Quiero aumento YA" Fecha de entrega: Viernes 7 de Junio de 2013 Normas de entrega: Las contenidas en la página web de la materia. Enunciado El objetivo de este trabajo práctico

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: INECUACIONES CON VALOR ABSOLUTO Año escolar: 5to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

Refactorizar (v) Reestructurar el software aplicando una secuencia de refactorizaciones.

Refactorizar (v) Reestructurar el software aplicando una secuencia de refactorizaciones. Refactorización Definición Refactorización (n) Cambio realizado a la estructura interna del software para hacerlo más fácil de comprender y más fácil de modificar sin cambiar su comportamiento observable.

Más detalles

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral. Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida

Más detalles

Árboles Binarios Ordenados Árboles AVL

Árboles Binarios Ordenados Árboles AVL Árboles Binarios Ordenados Árboles AVL Estructuras de Datos Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Recordatorio... Se acerca la fecha de la primera entrega

Más detalles

Ficheros. fd = open(nombre, modo)

Ficheros. fd = open(nombre, modo) 1 Ficheros fd = open(nombre, modo) - ruta es una cadena de texto con el nombre del fichero - modo = r para sólo lectura - modo = w para sólo escritura (sobrescribe) - modo = a para añadir texto (append)

Más detalles

MATEMÁTICAS 3 PERIODOS. FECHA: 8 de junio

MATEMÁTICAS 3 PERIODOS. FECHA: 8 de junio BACHILLERATO EUROPEO 2009 MATEMÁTICAS 3 PERIODOS FECHA: 8 de junio DURACIÓN DEL EXAMEN : 3 horas (180 minutos) MATERIAL AUTORIZADO: Formulario europeo Calculadora no gráfica y no programable OBSERVACIONES:

Más detalles

Tipos primitivos y clases de interés

Tipos primitivos y clases de interés Programación Avanzada para Sistemas de Telecomunicación Tipos primitivos y clases de interés Juan Carlos Cruellas cruellas@ac.upc.es Objetos y clases Tipos primitivos. Clase String y asociadas. Clases

Más detalles

FUNDAMENTOS DE PROGRAMACIÓN. SEPTIEMBRE 2005

FUNDAMENTOS DE PROGRAMACIÓN. SEPTIEMBRE 2005 Dpto. de Ingeniería de Sistemas Telemáticos E.T.S.I. Telecomunicación Universidad Politécnica de Madrid FUNDAMENTOS DE PROGRAMACIÓN. SEPTIEMBRE 2005 Normas de examen: Con libros y apuntes Duración: 2 horas

Más detalles

PROGRAMACION ORIENTADA A OBJETOS Ingenieria Informática Final Febrero 2006/07

PROGRAMACION ORIENTADA A OBJETOS Ingenieria Informática Final Febrero 2006/07 PROGRAMACION ORIENTADA A OBJETOS Ingenieria Informática Final Febrero 2006/07 Ejercicio 1. Un indice de referencias cruzadas de las palabras que aparecen en un texto es una tabla por palabras y, por cada

Más detalles

Las propiedades de la clase en java es el equivalente a las variables globales en lenguajes estructurados como el C.

Las propiedades de la clase en java es el equivalente a las variables globales en lenguajes estructurados como el C. EJERCICIO GUIADO. JAVA: VARIABLES GLOBALES Variables Globales / Propiedades de la Clase Las propiedades de la clase en java es el equivalente a las variables globales en lenguajes estructurados como el

Más detalles

Thumbnail Width Thumbnail Height Vertical Spacing

Thumbnail Width Thumbnail Height Vertical Spacing Con ThumbList object plugin podremos crear listados en miniatura de nuestras imágenes cargándolas desde un directorio elegido para pre visualizaciones en nuestros proyectos, el plugin soporta los formatos

Más detalles

VACL para KDE3: Manual del desarrollador. Francisco José Calvo Fernández

VACL para KDE3: Manual del desarrollador. Francisco José Calvo Fernández VACL para KDE3: Manual del desarrollador Francisco José Calvo Fernández VACL para KDE3: Manual del desarrollador por Francisco José Calvo Fernández Este documento describe el proceso de construcción del

Más detalles

MarcaDescripcion AutoId AutoDescripcion }

MarcaDescripcion AutoId AutoDescripcion } ) 0 pts. Se tiene una aplicación GeneXus para una ensambladora de móviles Se ensamblan distintas marcas de autos (marc. Un tiene una Marca. A su vez pueden haber muchos autos de una marca Determine el

Más detalles

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA DE INFORMÁTICA 1. DATOS GENERALES PLAN DE ESTUDIOS 2006-2 SEMESTRE ACADEMICO 2008-I Nombre del curso: INTRODUCCION

Más detalles

STL: Standard Template Library

STL: Standard Template Library STL: Standard Template Library Estructuras de Datos Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Consideraciones de diseño Programas = Algoritmos + Datos (ecuación

Más detalles

Estructuras de Datos. Dr. Pablo E. Fidel Martínez López Lic. en Ciencias de la Computación UNR

Estructuras de Datos. Dr. Pablo E. Fidel Martínez López Lic. en Ciencias de la Computación UNR Estructuras de Datos Dr. Pablo E. Fidel Martínez López Lic. en Ciencias de la Computación UNR ...but note that an implementation need not be actualized as code a concrete design is sufficient. Chris Okasaki

Más detalles

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin

Más detalles

ALGORITMICA Y PROGRAMACION POR OBJETOS I

ALGORITMICA Y PROGRAMACION POR OBJETOS I ALGORITMICA Y PROGRAMACION POR OBJETOS I Nivel 2 Definiendo situaciones y manejando casos Marcela Hernández Hoyos Qué vamos a aprender en este nivel: Diferencia entre clase y objeto Modelar características

Más detalles

Prof. Dr. Paul Bustamante

Prof. Dr. Paul Bustamante Carnet Nombre: Examen C++ Grupo A Informática II Fundamentos de Programación Prof. Dr. Paul Bustamante Pág.1 Índice 1. INTRODUCCIÓN... 1 2. EJERCICIO 1: AGENDA TELEFÓNICA (4.0 PTOS.)...1 3. EJERCICIO 2:

Más detalles

Programación Funcional en Haskell

Programación Funcional en Haskell Programación Funcional en Haskell Paradigmas de Lenguajes de Programación 1 cuatrimestre 2006 1. Expresiones, valores y tipos Un programa en lenguaje funcional consiste en definir expresiones que computan

Más detalles

CTIBridgeClient V1.0 DOCUMENTACION DEL PROGRAMADOR

CTIBridgeClient V1.0 DOCUMENTACION DEL PROGRAMADOR DOCUMENTACION DEL PROGRAMADOR DATAVOICE S.A Para preguntas relativas a esta documentación : Dpto. Ingeniería de DATAVOICE S.A. Tlfno : +34 91 361 40 16 Fax : +34 91 725 43 97 Está prohibida la copia, divulgación,

Más detalles

VI Colas de prioridad

VI Colas de prioridad VI Colas de prioridad Una cola de prioridad (cat: cua de prioritat; ing: priority queue) es una colección de elementos donde cada elemento tiene asociado un valor susceptible de ordenación denominado prioridad.

Más detalles

Titulación: Ingeniero Técnico en Informática de Gestión Curso: 2º

Titulación: Ingeniero Técnico en Informática de Gestión Curso: 2º 1. Ejercicio (1 punto) Dado el array A={8, 3, 7, 1, 4, 9, 5, 2, 6 Describir cual es el estado del array A después de cada paso principal del algoritmo: InsertionSort. {8, 3, 7, 1, 4, 9, 5, 2, 6 {3, 8,

Más detalles

Tema 3: Herencia en C++ Programación Orientada a Objetos Curso 2008/2009 Begoña Moros Valle

Tema 3: Herencia en C++ Programación Orientada a Objetos Curso 2008/2009 Begoña Moros Valle Tema 3: Herencia en C++ Programación Orientada a Objetos Curso 2008/2009 Begoña Moros Valle Contenido Tipos de herencia Herencia y niveles de visibilidad Herencia y creación Redefinición de métodos Conversión

Más detalles

Tecnólogo Informático- Estructuras de Datos y Algoritmos- 2009

Tecnólogo Informático- Estructuras de Datos y Algoritmos- 2009 Árboles Ejemplos de estructuras arborescentes: con forma de árbol Regla de Alcance: los objetos visibles en un procedimiento son aquellos declarados en él mismo o en cualquier ancestro de él (cualquier

Más detalles

((X A Y ) = A ) si y solo si X = Y, A = B, A X = X, (X A Y ) = X Y, (X A Y ) = X Y

((X A Y ) = A ) si y solo si X = Y, A = B, A X = X, (X A Y ) = X Y, (X A Y ) = X Y El examen de Lógica y fundamentos del 11-02-2005 resuelto por cortesía de Alberto Castellón 1) Sea A = P(B) el conjunto de los subconjuntos de un conjunto B. a) Pruébese que A es un modelo de la teoría

Más detalles

Clase 11. Análisis dinámico, 2ª parte.

Clase 11. Análisis dinámico, 2ª parte. Clase 11. Análisis dinámico, 2ª parte. Continuamos con el mismo tema de la clase anterior, pero esta vez nos ocuparemos principalmente de la fase de prueba. Nos detendremos brevemente en algunas de las

Más detalles

Tema II: El modelo relacional de datos (2.1) El modelo relacional de datos.

Tema II: El modelo relacional de datos (2.1) El modelo relacional de datos. Tema II: El modelo relacional de datos (2.1) El modelo relacional de datos. Objetivos: conocer las estructuras de datos del modelo: la tupla y la relación. conocer básicamente la forma de modelar la realidad

Más detalles

Parte II: Estructuras de datos y algoritmos

Parte II: Estructuras de datos y algoritmos Parte II: Estructuras de datos y algoritmos Tema 11. Tipos abstractos de datos. Conceptos básicos. Listas. Pilas. Colas. Vectores. Conjuntos. Mapas. Árboles. Árboles binarios. GRUPO DE COMPUTADORES Y TIEMPO

Más detalles

Grados Ing. Inf. y Mat. Inf. Julio 2014 Algoritmos y Estructura de Datos Página 1 de 6

Grados Ing. Inf. y Mat. Inf. Julio 2014 Algoritmos y Estructura de Datos Página 1 de 6 Grados Ing. Inf. y Mat. Inf. Julio 201 Algoritmos y Estructura de Datos Página 1 de 6 Algoritmos y Estructura de Datos: Examen Julio (Solución) Grados Ing. Inf. y Mat. Inf. Julio 201 Departamento de Lenguajes,

Más detalles

Primer Parcial de Programación 3 (1/10/2009)

Primer Parcial de Programación 3 (1/10/2009) Primer Parcial de Programación (/0/009) Instituto de Computación, Facultad de Ingeniería Este parcial dura horas y contiene carillas. El total de puntos es 0. En los enunciados llamamos C* a la extensión

Más detalles

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1;

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1; 3. Espacios Vectoriales 3.1. Definición de espacio vectorial Un cuerpo es una estructura algebraica (K, +, ) formada por un conjunto K no vacio y dos operaciones internas + y que verifican las siguientes

Más detalles

Aquí se declaran los. Aquí se declaran los métodos de la clase. *Atributos de la clase

Aquí se declaran los. Aquí se declaran los métodos de la clase. *Atributos de la clase Programación Orientada a Objetos Implementación en Java Angela C. Carrillo Ramos Agenda Implementación y uso de clases en Java Ejemplo clase CuentaBancaria 1 Ejemplo Diseño Cuenta Bancaria (1) Diseñar

Más detalles

EJERCICIOS DEL CAPÍTULO I

EJERCICIOS DEL CAPÍTULO I EJERCICIOS DEL CAPÍTULO I 1. Un grupo es una tipo particular de Ω estructura cuando Ω es el tipo Ω = { } siendo una operación de aridad dos. Pero un grupo también es una Ω -estructura siendo Ω = {e, i,

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

02 de septiembre de 2013-06 de septiembre de 2013

02 de septiembre de 2013-06 de septiembre de 2013 02 de septiembre de 2013-06 de septiembre de 2013 2 lunes 3 martes 4 miércoles 5 jueves 6 viernes 1 17/04/2013 10:23 09 de septiembre de 2013-13 de septiembre de 2013 9 lunes 10 martes 11 miércoles 12

Más detalles

1 Agencia de viajes: enunciado

1 Agencia de viajes: enunciado 1 AGENCIA DE VIAJES: ENUNCIADO 1 1 Agencia de viajes: enunciado Una agencia de viajes mantiene una base de datos con exactamente N clientes y M destinos turísticos. En una situación real, estos valores

Más detalles

Clase 33. Marco para las colecciones de Java. Historia

Clase 33. Marco para las colecciones de Java. Historia Clase 33 Marco para las colecciones de Java Historia En la versión original del kit de desarrollo de Java, JDK 1.0, los desarrolladores contaban con muy pocas estructuras de datos. Éstas eran: Vector Stack:

Más detalles

Ejercicio 1 EJERCICIOS RESUELTOS. En una encuesta realizada a 500 profesionales sobre estrategias de ahorro se obtuvo la siguiente información:

Ejercicio 1 EJERCICIOS RESUELTOS. En una encuesta realizada a 500 profesionales sobre estrategias de ahorro se obtuvo la siguiente información: EJERCICIOS RESUELTOS Ejercicio 1 En una encuesta realizada a 500 profesionales sobre estrategias de ahorro se obtuvo la siguiente información: - 25 optan por Ahorro Provisional Voluntario (APV) y seguro

Más detalles

Contenidos. Funciones (suplemento) Funciones. Justificación del uso de Funciones

Contenidos. Funciones (suplemento) Funciones. Justificación del uso de Funciones Contenidos 1. Justificación del uso de funciones. 2. Declaración de funciones: prototipos. 3. Prototipos y ficheros de cabecera. 4. Polimorfismo (sobrecarga de funciones). 5. Argumentos formales y actuales.

Más detalles

Programación 2. Pruebas para la evaluación voluntaria de la asignatura. Grado en Ingeniería Informática. Curso 2014-15

Programación 2. Pruebas para la evaluación voluntaria de la asignatura. Grado en Ingeniería Informática. Curso 2014-15 Pruebas para la evaluación voluntaria de la asignatura Programación 2 Grado en Ingeniería Informática Departamento de Informática e Ingeniería de Sistemas Curso 2014-15 PROGRAMACIÓN 2. Curso 2014-15. 1

Más detalles

Estructura de datos Tema 3: El TAD Lista lineal. Universidad de Valladolid. Departamento de informática. Campus de Segovia

Estructura de datos Tema 3: El TAD Lista lineal. Universidad de Valladolid. Departamento de informática. Campus de Segovia Universidad de Valladolid Departamento de informática Campus de Segovia Estructura de datos Tema 3: El TAD Lista lineal Prof. Montserrat Serrano Montero ÍNDICE El TAD lista lineal Implementación con estructuras

Más detalles

TEMA II: CONJUNTOS Y RELACIONES DE ORDEN. Álgebra II García Muñoz, M.A.

TEMA II: CONJUNTOS Y RELACIONES DE ORDEN. Álgebra II García Muñoz, M.A. TEMA II: CONJUNTOS Y RELACIONES DE ORDEN OBJETIVOS GENERALES 1. Hacer que el alumno asimile el concepto de conjunto como la estructura algebraica más simple en la que se ambientarán el resto de las estructuras

Más detalles

Bases de Datos / Elementos de Bases de Datos 2011. Que es un Stored Procedure? Stored Procedures: Ventajas

Bases de Datos / Elementos de Bases de Datos 2011. Que es un Stored Procedure? Stored Procedures: Ventajas Bases de Datos / Elementos de Bases de Datos 2011 Stored Procedures, Triggers y Transacciones en MySQL Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur 1 Que es un Stored

Más detalles

Programación Orientada a Objetos. Java: Excepciones

Programación Orientada a Objetos. Java: Excepciones Programación Orientada a Objetos Java: Excepciones Eduardo Mosqueira Rey LIDIA Laboratorio de Investigación y desarrollo en Inteligencia Artificial Departamento de Computación Universidade da Coruña, España

Más detalles

Resumen del lenguaje de programación Visual Basic.NET

Resumen del lenguaje de programación Visual Basic.NET Resumen del lenguaje de programación Visual Basic.NET Contenidos del tema. 1. Datos y Constantes en VBNet....3 Tipos de datos...3 Tipos de Datos definidos por el usuario...5 Declaración de variables...

Más detalles

IIC1103 Capítulo 7: Ordenación y Búsqueda 1

IIC1103 Capítulo 7: Ordenación y Búsqueda 1 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación IIC1103 Introducción a la Programación Capítulo 7: Ordenación y Búsqueda Resumen teórico La operación

Más detalles

RESUMEN DE CONCEPTOS BASICOS DE PROGRAMACION JAVA

RESUMEN DE CONCEPTOS BASICOS DE PROGRAMACION JAVA UNED Centro Asociado de Cádiz RESUMEN DE CONCEPTOS BASICOS DE PROGRAMACION JAVA 1. OBJETOS Cualquier elemento del programa es un objeto. Un programa es un conjunto de objetos que se comunican entre sí

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

NORMA ISO 19109 Resumen

NORMA ISO 19109 Resumen NORMA ISO 19109 Resumen Julio de 2009 1 RESUMEN DE NORMA ISO 19109 INFORMACIÓN GEOGRÁFICA REGLAS PARA EL ESQUEMA DE APLICACIÓN El objetivo de esta Norma Internacional es proporcionar los principios para

Más detalles

Prof. Dr. Paul Bustamante

Prof. Dr. Paul Bustamante Prácticas de C++ Practica Nº 5 Informática II Fundamentos de Programación Prof. Dr. Paul Bustamante Practica Nº 5 Programación en C++ Pág. 1 ÍNDICE ÍNDICE... 1 1. Introducción... 1 1.1 Ejercicio 1: clase

Más detalles

Búsqueda avanzada en Google

Búsqueda avanzada en Google Búsqueda avanzada en Google Como hemos mencionado en las ediciones anteriores, Google es el prototipo de los motores de búsqueda y uno de los buscadores más usado actualmente, no solo por su facilidad

Más detalles

Modelos de Software. Ingeniería en Sistemas de Información 2015

Modelos de Software. Ingeniería en Sistemas de Información 2015 Modelos de Software Ingeniería en Sistemas de Información 2015 Diagrama de Clases UML La línea que separa el modelado de la programación a veces se vuelve algo difusa. Existen muchas herramientas que permiten

Más detalles

Diseño de bases de datos Diapositiva 1

Diseño de bases de datos Diapositiva 1 Diseño o de bases de datos Objetivos del Diseño Principios del Diseño de BD Proceso de Diseño Normalización Diseño de Tablas: Claves Relaciones Integridad referencial Convenciones de nomenclatura Diseño

Más detalles