EJERCICIOS DE PALANCAS. 2. Aplicamos 100 N de fuerza en cada mango de estos alicates. Qué fuerza resultará en cada punta?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE PALANCAS. 2. Aplicamos 100 N de fuerza en cada mango de estos alicates. Qué fuerza resultará en cada punta?"

Transcripción

1 EJERCICIOS DE PALANCAS 1. Indica la fuerza que debe realizar el cilindro hidráulico de esta grúa para levantar un peso de 1000 Kg. El brazo de la fuerza mide 1,5 m y el brazo de la resistencia 5 m. Qué tipo de palanca es esta grúa? (Recuerda que para pasar de masa (Kg) a fuerza (N) debes usar la fórmula F= m a) 2. Aplicamos 100 N de fuerza en cada mango de estos alicates. Qué fuerza resultará en cada punta? 3. Calcula la distancia del punto de apoyo al peso en una palanca de longitud desconocida, si con ella queremos levantar un peso de 100 kg aplicando una fuerza de 400 N. La distancia del punto de apoyo al punto de aplicación de la fuerza es de 80 centímetros. a. Cuánto mide la palanca si es de primer orden? Dibújala. b. Cuánto mide si es de segundo orden? Realiza el dibujo. 4. Calcula la longitud de la palanca que tenemos que comprar si queremos levantar una caja de 140 kg con una fuerza de 500N sabiendo que la longitud del apoyo a la carga es de 95 cm. Realiza el dibujo de la palanca de primer grado. 5. Con una palanca de primer grado se desea levantar un peso de 22,4 kg. La distancia del punto de apoyo al peso es de 11,8 cm y la distancia del apoyo a la fuerza es de 83 cm. a. Realiza un dibujo de la palanca. b. Qué fuerza debemos hacer? c. Qué longitud tiene la palanca? 6. Se quiere pescar un pez de 2 kg con una caña de pescar que mide 320 cm. Realiza todos los cálculos e indica entre las tres soluciones posibles cuál es la fuerza con la que se tiene que tirar si la mano está sujetando la caña a 80 cm de su extremo más lejano del pez. a. 8 kg. b. 1 kg. c. 18 kg. 7. Aplicando una fuerza de 20 Newton al extremo de una palanca que dista 2 metros del punto de apoyo, determina el peso que se podrá elevar si el brazo de resistencia tiene una longitud de 0,5 metros. a. 10 kg. b. 200 kg c. 80 kg. 8. El remero de la ilustración puede imprimir 250 N de fuerza en cada remo. La longitud del brazo de la fuerza es de 60 cm y la del brazo de la resistencia 120 cm. Qué fuerza comunica cada remo contra el agua?

2 9. En cada mango de estas tijeras aplicamos una fuerza de 50 N. Cuál será la fuerza que resultará en cada una de las puntas? Qué tipo de palanca es? 10. El pez que estira de esta caña de pescar hace una fuerza de 30 N. Qué fuerza será necesario aplicar para extraerlo del agua? Qué tipo de palanca es? 11. Un levantador de pesas puede generar 3000 N de fuerza. Cuál es el peso máximo que podrá levantar con una palanca que tiene un brazo de la fuerza de 2 m y un brazo de la resistencia de 50 cm? (Recuerda que para pasar de fuerza (N) a masa (Kg) debes utilizar la fórmula F = m*a) 12. Indica hacia qué lado se moverá la palanca si cada cuadrado azul pesa 1 kg y cada segmento mide 1 m. 13. Calcula la fuerza que tenemos que hacer para mover el peso P con una palanca de primer grado. Sabemos que la distancia del peso (P) al punto de apoyo es 50 cm, la distancia de la fuerza al punto de apoyo es 150 cm y que el peso a mover es de 100 Kg. 14. Calcula la fuerza que tenemos que hacer para mover el peso P con una palanca de primer grado. Sabemos que la distancia del peso (P) al punto de apoyo es 70cm, la distancia de la fuerza al punto de apoyo es 140 cm y que el peso a mover es de 150 Kg.

3 15. Calcula la fuerza que tenemos que hacer para mover el peso P con una palanca de primer grado. Sabemos que la distancia del peso (P) al punto de apoyo es 35cm, la distancia de la fuerza al punto de apoyo es 140 cm y que el peso a mover es de 150 Kg. 16. Calcula la fuerza que tenemos que hacer para mover el peso P con una palanca de primer grado. Sabemos que la distancia del peso (P) al punto de apoyo es 70cm, la distancia de la fuerza al punto de apoyo es 30 cm y que el peso a mover es de 40 Kg. 17. Calcula la longitud del brazo de la fuerza para mover un peso de 120 Kg aplicando una fuerza de 40 Kg. El brazo del peso tiene una longitud de 15cm. 18. Calcula la longitud del brazo de la fuerza para mover un peso de 20 Kg aplicando una fuerza de 40 Kg. El brazo del peso tiene una longitud de 40cm. 19. Calcula la longitud del brazo del peso para mover un peso de 25 Kg aplicando una fuerza de 75 Kg. El brazo de la fuerza tiene una longitud de 30cm. 20. Tenemos que mover un peso de 70 Kg aplicando una fuerza de 7Kg. Tenemos una barra de 3m de longitud total. Calcula el lugar dónde hay que poner el punto de apoyo de la palanca. 21. Calcula la fuerza que tenemos que hacer para mover el peso P con una palanca de segundo grado. Sabemos que la distancia del peso (P) al punto de apoyo es 10cm, la distancia de la fuerza al punto de apoyo es 50 cm y que el peso a mover es de 100 Kg. 22. Calcula la fuerza que tenemos que hacer para mover el peso P con una palanca de segundo grado. Sabemos que la distancia del peso (P) al punto de apoyo es 70cm, la distancia de la fuerza al punto de apoyo es 140 cm y que el peso a mover es de 150 Kg. 23. Calcula la fuerza que tenemos que hacer para mover el peso P con una palanca de segundo grado. Sabemos que la distancia del peso (P) al punto de apoyo es 30cm y la longitud total de la palanca es de 120 cm. El peso a mover es de 150Kg. 24. Utilizando una barra de 2 m de larga como palanca de segundo grado, calcula la distancia a la que tenemos que poner un peso de 90 kg para moverlo con una fuerza de 15 kg. 25. Con una palanca de segundo grado, calcula la longitud del brazo de la fuerza para mover un peso de 120 Kg aplicando una fuerza de 40 Kg. El brazo del peso tiene una longitud de 15cm. 26. Con una palanca de segundo grado, calcula la longitud del brazo de la fuerza para mover un peso de 120 Kg aplicando una fuerza de 40 Kg. El brazo del peso tiene una longitud de 25cm. 27. Utilizando una palanca de segundo grado tenemos que mover un peso de 70 Kg con una fuerza de 7Kg. Tenemos una barra de 3m de longitud total. Calcula el lugar dónde hay que poner el peso. 28. Calcula la fuerza que tenemos que hacer para mover el peso P con una palanca de tercer grado. Sabemos que la distancia del peso (P) al punto de apoyo es 50cm, la distancia de la fuerza al punto de apoyo es 10 cm y que el peso a mover es de 10 Kg. 29. Calcula la fuerza que tenemos que hacer para mover el peso P con una palanca de tercer grado. Sabemos que la distancia del peso (P) al punto de apoyo es 70cm, la distancia de la fuerza al punto de apoyo es 35 cm y que el peso a mover es de 15 Kg. 30. Con una palanca de tercer grado. Calcula la longitud del brazo de la fuerza para mover un peso de 12 Kg aplicando una fuerza de 48 Kg. El brazo del peso tiene una longitud de 2m. 31. Con una palanca de tercer grado. Calcula la longitud de la palanca para mover un peso de 5 Kg aplicando una fuerza de 30Kg. El brazo de la fuerza peso tiene una longitud de 35cm. 32. Con una palanca de tercer grado. Calcula el peso que puedo levantar haciendo 40 kg de fuerza si la palanca mide 3,5 m y la fuerza está aplicada a 50 cm del punto de apoyo. 33. Con la carretilla de la figura queremos transportar dos sacos de cemento de 50Kg cada uno. A partir de los datos dados en la figura responder a los apartados: a. De qué tipo de palanca se trata?

4 b. Calcular la fuerza que hay tenemos que ejercer para poder transportar los sacos de cemento en la carretilla. 34. Con los alicates de la figura queremos cortar un alambre que opone una fuerza a cortarse de 2Kg: a. De qué tipo de palanca se trata? b. Calcular la fuerza que hay que aplicar con la mano en el mango de los alicates para poder cortar el alambre. 35. Con la palanca dibujada queremos subir una piedra de una masa de 15 Kg, a. De qué tipo de palanca se trata? b. Qué fuerza hay que ejercer para poder levantar la piedra? 36. Una grúa tiene una pluma de 12 m y parte de contrapeso de 4 m, indicar cual debe ser el valor del contrapeso si la carga que debe soportar la pluma en su extremo es de 200 kg. (S = 600 kg). 37. Calcula el peso que puede levantar un operario con una palanca de longitud 110 cm, si la distancia entre el punto de apoyo y el peso es de 0 15 m. Datos: Fuerza aplicada por el operario 60 Kg. Palanca de 2º orden. (S = 440 kg). 38. Calcula la distancia del punto de apoyo al peso en una palanca de longitud desconocida, si con ella deseamos levantar un peso de 100 kg aplicando una fuerza de 40 kg. Datos: distancia del punto de apoyo al punto de aplicación de la fuerza 80 cm. (S = 0 32 m). 39. Cuánto mide la palanca del ejercicio anterior si es de primer orden?.?y si es de segundo orden?. (S = 1 12 m y 0 8 m respectivamente). 40. Calcula la longitud de la palanca que tenemos que comprar si queremos levantar un peso de 140 kg con una fuerza de 50 kg. Datos de la palanca: BR = 25 cm (S = 0 95 m). 41. Calcula la longitud de la palanca que tenemos que comprar si queremos levantar un peso de 120 kg con una fuerza de 40 kg. Datos de la palanca: BR = 25 cm. Palanca de 2º orden. (S = 0 75 m). 42. Calcula la longitud de la palanca que tenemos que comprar si queremos levantar un peso de 20 kg. con una fuerza de 80 kg. Datos de la palanca: BF = 25 cm. Palanca de 3er orden. (S = 1m). 43.Calcula la fuerza que tiene que hacer un operario para levantar un cajón de 90 kg con una palanca de longitud 100 cm, si la distancia entre el fulcro y el peso es de 200 mm. (S =22 5 kg.) 44. Calcula la fuerza que tiene que hacer un operario para levantar un armario de 100 kg con una palanca de longitud 12 m de longitud, si la distancia entre el fulcro y el peso es de 30 cm. Palanca de 2º orden. (S = 25 kg.). 45. Calcula la longitud de la palanca que tenemos que comprar si queremos levantar un peso de 130 kg con una fuerza de 40 kg. Datos de la palanca a = 20 cm (S = 0 85 m). 46. Calcula la longitud de la palanca que tenemos que comprar si queremos levantar un peso de 130 kg con una fuerza de 40 kg. Datos de la palanca BR = 20 cm. Palanca de 2º orden. (S = 0 65 m) Un columpio tiene una barra de 5m. de longitud y en ella se sientan dos personas, una de 60 kg. y otra 40 kg. Calcular en qué posición debe situarte el punto de apoyo para que el columpio esté en equilibrio.

5 48. Un mecanismo para poner tapones manualmente a las botellas de vino es como se muestra en el esquema de la figura. Si la fuerza necesaria para introducir un tapón es 50N. Qué fuerza es preciso ejercer sobre el mango? 49. El mecanismo de la figura debe levantar el peso de 4 toneladas. Calcular la fuerza que se debe ejercer en el émbolo para lograrlo. 50. Calcula la longitud de la palanca que tenemos que comprar si queremos levantar un peso de 120 kg. con una fuerza de 40 kg. Datos de la palanca a = 25 cm Palanca de 2º orden. ( S = 75 cm) 51. Calcula la longitud de la palanca que tenemos que comprar si queremos levantar un peso de 20 kg. con una fuerza de 80 kg. Datos de la palanca b = 25 cm Palanca de 3º orden. ( S =100 cm) 52. Calcula la distancia del punto de apoyo al punto de aplicación de la fuerza en una palanca de longitud 110 cm, si con dicha palanca levantamos un peso de 160 kg. Datos: a = 20 cm. ( S = 90 cm ) 53. Calcula la Fuerza que tiene que hacer un operario para levantar un cajón de 90 kg. con una palanca de longitud 100 cm, si la distancia entre el fulcro y el peso es de 200 mm. ( S = 22,5 kg.) 54. Calcula la Fuerza que tiene que hacer un operario para levantar un armario de 100 kg. con una palanca de longitud 1,2 metros de longitud, si la distancia entre el fulcro y el peso es de 30 cm. Si la palanca es de 2º orden ( S = 25 kg.) 55. Calcula la longitud de la palanca que tenemos que comprar si queremos levantar un peso de 130 kg. con una fuerza de 40 kg. Datos de la palanca a = 20 cm ( S = 85 cm) 56. Calcula la longitud de la palanca que tenemos que comprar si queremos levantar un peso de 130 kg. con una fuerza de 40 kg. Datos de la palanca a = 20 cm La palanca es de segundo orden ( S = 65 cm)

6 57. Calcula el peso que puede levantar un operario con una palanca de longitud 100 cm, si la distancia entre el punto de apoyo y el peso es de 200 mm. Datos: Fuerza aplicada por el operario 50 Kg. ( S = 200 kg.) 58. Calcula la Fuerza que tiene que hacer un operario para levantar un armario de 100 kg. con una palanca de longitud 1,25 metros de longitud, si la distancia entre el fulcro y la fuerza es de 95 cm. ( S = kg.) 59. Calcula la distancia del punto de apoyo al punto de aplicación de la fuerza en una palanca de longitud total de 100 cm, si con dicha palanca levantamos una caja de peso de 120 kg con una fuerza de 30 kg. Datos: a = 20 cm ( S = 80 cm ) 60. Calcula el peso que puede levantar un operario con una palanca de longitud 110 cm, si la distancia entre el punto de apoyo y el peso es de 0,15 metros. Datos Fuerza aplicada por el operario 60 Kg. Palanca de 2º orden ( S = 440 kg.) 61. Calcula la distancia del punto de apoyo al peso en una palanca de longitud desconocida, si con ella deseamos levantar un peso de 100 kg. aplicando una fuerza de 40 kg. Datos : Distancia del punto de apoyo al punto de aplicación de la Fuerza 80 cm. ( S = 32 cm )

NOTA: En los siguientes ejercicios, si no pone nada, entenderemos que es una palanca de primer grado. Recordemos la Ley de la Palanca:

NOTA: En los siguientes ejercicios, si no pone nada, entenderemos que es una palanca de primer grado. Recordemos la Ley de la Palanca: OBLIGATORIO: Realiza en todos los ejercicios un esquema del sistema. En él deben aparecer reflejados todos los datos del ejercicio. Palancas NOTA: En los siguientes ejercicios, si no pone nada, entenderemos

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL LA PALANCA. Una palanca es simplemente una barra que oscila sobre un punto de apoyo o fulcro.

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL LA PALANCA. Una palanca es simplemente una barra que oscila sobre un punto de apoyo o fulcro. LA PALANCA La palanca es una máquina simple que lo utilizaremos para reducir el esfuerzo que tenemos que hacer para levantar un peso. El fenómeno de "palanca" se utiliza no sólo para levantar pesos u objetos

Más detalles

TECNOLOGÍA ( UNIDAD 0 MÁQUINAS Y MECANISMOS

TECNOLOGÍA ( UNIDAD 0 MÁQUINAS Y MECANISMOS TECNOLOGÍA ( UNIDAD 0 MÁQUINAS Y MECANISMOS ) FUERZA Qué es la fuerza? - La fuerza es todo aquello capaz de deformar un cuerpo o de hacer que pase de reposo a movimiento o de estar en movimiento a reposo.

Más detalles

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, )

Dpto. TECNOLOGÍA. Tema 7.- MECANISMOS. Mecanismos de transmisión lineal (PALANCAS, ) Tema 7.- MECANISMOS 1. Qué es una palanca? Mecanismos de transmisión lineal (PALANCAS, ) La palanca es una máquina simple, formada por una barra rígida que gira alrededor de un punto sobre el que se aplica

Más detalles

Tema 3. Máquinas simples.

Tema 3. Máquinas simples. Tema 3. Máquinas simples. Tecnología. 3º ESO. Tema 3: Máquinas simples. 1. Introducción. Ya conoces que la Tecnología es una Ciencia que reúne en conjunto de conocimientos, destrezas, habilidades...que

Más detalles

2. Calcula el valor de la Fuerza (F) que será necesaria para vencer la resistencia R. Qué tipo de palanca es?

2. Calcula el valor de la Fuerza (F) que será necesaria para vencer la resistencia R. Qué tipo de palanca es? EJERCICIOS DE PALANCAS 1. Unas tijeras de podar puede cortar grandes ramas de árboles si ejercer demasiada fuerza. A qué crees que se debe la facilidad con la que el agricultor puede cortar las ramas?

Más detalles

EJERCICIOS DE PALANCAS

EJERCICIOS DE PALANCAS IES Los Neveros Dpto. Tecnología EJERCICIOS DE MÁQUINAS SIMPLES 2º DE ESO Nombre:... Grupo:... Fecha:... NOTA EJERCICIOS DE PALANCAS ACLARACIONES: En cada ejercicio se ha de dibujar la figura correspondiente

Más detalles

TEMA 4: ESTRUCTURAS Y MECANISMOS

TEMA 4: ESTRUCTURAS Y MECANISMOS TEMA 4: ESTRUCTURAS Y MECANISMOS 1. Estructuras a. Propiedades b. Tipos I. Naturales II. Artificiales c. Elementos de una estructura I. Zapatas II. Pilares III. Vigas d. Perfiles e. Esfuerzos I. Tracción

Más detalles

MECANISMOS Y MÁQUINAS INDUSTRIALES DE CONTROL PALANCAS

MECANISMOS Y MÁQUINAS INDUSTRIALES DE CONTROL PALANCAS PALANCAS Los inventos basados en la palanca se fueron desarrollando a lo largo de los siglos y tuvieron aplicaciones en campos muy diversos: agricultura, deporte, transporte, etc. Historia de la palanca

Más detalles

4. TRANSMISIÓN DE MOVIMIENTO

4. TRANSMISIÓN DE MOVIMIENTO Departamento Tecnología I.E.S. Drago Cádiz PÁG. 1 # ACTIVIDADES 1.- Indica cuáles de las siguientes máquinas son simples y cuáles compuestas: Abrelatas Pinzas Reloj de pared Abrebotellas Batidora Tornillo

Más detalles

EJERCICIOS EJERCICIOS DE PALANCAS. 1) Calcular el peso que puedo levantar en la palanca del siguiente dibujo si mi fuerza es equivalente a 10 kg.

EJERCICIOS EJERCICIOS DE PALANCAS. 1) Calcular el peso que puedo levantar en la palanca del siguiente dibujo si mi fuerza es equivalente a 10 kg. EJERCICIOS EJERCICIOS DE PALANCAS 1) Calcular el peso que puedo levantar en la palanca del siguiente dibujo si mi fuerza es equivalente a 10 kg. 2) Se desea que dos personas de 40 y 60 kg permanezcan en

Más detalles

Al representar estos datos obtenemos una curva:

Al representar estos datos obtenemos una curva: Pág. 1 18 Cuando de una goma de 10 cm se cuelgan pesos de 1, 2, 3, 4 y 5, esta se estira hasta 15, 21, 28, 36 y 45 cm, respectivamente. Representa la gráfica F-Dl y explica si la goma serviría para hacer

Más detalles

SEPTIEMBRE CUADERNO RECUPERACIÓN 2º ESO.

SEPTIEMBRE CUADERNO RECUPERACIÓN 2º ESO. SEPTIEMBRE CUADERNO RECUPERACIÓN 2º ESO. Alumno/a: Curso: 1.- EXPRESIÓN GRÁFICA Ejercicio 1 Dibujar alzado, planta y perfil Página 1 de 12 Ejercicio 2 Dibujar alzado, planta y perfil. 3.- Explica la diferencia

Más detalles

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.)

PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Departamento de Tecnología PLAN DE RECUPERACIÓN 3º ESO (2ª Ev.) Para recuperar la evaluación deberás: -Realizar estas Actividades -Realizar una Prueba de conocimientos (Las actividades deberás entregarlas

Más detalles

TRANSMISION DEL MOVIMIENTO.

TRANSMISION DEL MOVIMIENTO. TRANSMISION DEL MOVIMIENTO. 1) En el sistema de poleas de la figura A que velocidad girará el eje conducido si el conductor lo hace a 1250 r.p.m.? 1250 2) En un sistema de poleas queremos que el eje conducido

Más detalles

3º ESO - Ejercicios de mecanismos HOJA 1

3º ESO - Ejercicios de mecanismos HOJA 1 3º ESO - Ejercicios de mecanismos HOJA 1 1. Para sacar una muela hay que hacer una fuerza de 980 N. La dentista utiliza para ello unas tenazas que tienen un mango de 15 cm. La distancia entre el extremo

Más detalles

APUNTES DE TECNOLOGÍA 1ºESO MECANISMOS

APUNTES DE TECNOLOGÍA 1ºESO MECANISMOS APUNTES DE TECNOLOGÍA 1ºESO MECANISMOS 1. INTRODUCCIÓN MECANISMO: Son elementos destinados a transmitir y/o transformar fuerzas y/o movimientos desde un elemento motriz (motor) a un elemento conducido

Más detalles

4. Calcular la fuerza que tendré que hacer para mover una piedra de 90 Kg con la palanca mostrada en la figura. De qué grado es dicha palanca?

4. Calcular la fuerza que tendré que hacer para mover una piedra de 90 Kg con la palanca mostrada en la figura. De qué grado es dicha palanca? Los alumnos/as que no hayan superado la TERCERA evaluación realizarán las siguientes tareas por cada unidad didáctica además del control escrito en septiembre con los contenidos de éstas: Estructuras.

Más detalles

Actividades Recuperación septiembre 2º ESO

Actividades Recuperación septiembre 2º ESO Actividades Recuperación septiembre 2º ESO Alumno:.. Grupo:. 1ª Evaluación Escala: 1cuadro = 5 mm Se debe de realizar en láminas de dibujo con cajetín delineadas a lápiz con escuadra y cartabón Lámina

Más detalles

Proyecto de Innovación Educativa: Con los cuatro elementos tecnológicos de una palanca se elabora la denominada Ley de la palanca, que dice :

Proyecto de Innovación Educativa: Con los cuatro elementos tecnológicos de una palanca se elabora la denominada Ley de la palanca, que dice : LEY DE LA PALANCA Con los cuatro elementos tecnológicos de una palanca se elabora la denominada Ley de la palanca, que dice : A) La "potencia" por su brazo es igual a la "resistencia" por el suyo: P x

Más detalles

EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS

EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS EJERCICIOS BLOQUE 2.1: MÁQUINAS Y SISTEMAS MECÁNICOS 1. Con un remo de 3 m de longitud se quiere vencer la resistencia de 400 kg que ofrece una barca mediante una potencia de 300 kg. A qué distancia del

Más detalles

LA ELABORACIÓN DEL LINO EN ASTURIAS (José cuevas, s XIX)

LA ELABORACIÓN DEL LINO EN ASTURIAS (José cuevas, s XIX) L ELORCIÓN DEL LINO EN STURIS (José cuevas, s XIX) MÁQUINS Y MECNISMOS PRTE IV: EJERCICIOS SORE MÁQUINS Y MOVIMIENTOS. 1.- IDENTIFICCIÓN DE OPERDORES ÁSICOS 1.-El siguiente mecanismo representa una barrera

Más detalles

Maquinas Simples fuerzas musculares

Maquinas Simples fuerzas musculares PALANCAS Maquinas Simples: Son dispositivos sencillos que permiten vencer grandes fuerzas musculares, en este sentido son multiplicadores de fuerzas, también permiten cambiar el sentido de la fuerza, para

Más detalles

EJERCICIOS DE MECÁNICA 3º ESO Curso

EJERCICIOS DE MECÁNICA 3º ESO Curso EJERCICIOS DE MECÁNICA 3º ESO Curso 2011-2012 1. Qué es la Mecánica? 2.Tipos de movimiento. 3.Di qué es el rozamiento y qué efectos provoca 4.Diferencia entre mecanismo y máquina. 5.Diferencia entre mecanismo

Más detalles

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.2: Copia en tu cuaderno los siguientes dibujos y completa las frases

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.2: Copia en tu cuaderno los siguientes dibujos y completa las frases ACTIVIDADES SOBRE PALANCAS Ley de la palanca P Bp = R Br Actividad B.1 Indica sobre los siguientes mecanismos de palanca la potencia, la resistencia, los brazos de potencia y de resistencia y el fulcro.

Más detalles

SAN JUAN DE AZNALFARACHE (SEVILLA) PROBLEMAS DE MECANISMOS

SAN JUAN DE AZNALFARACHE (SEVILLA) PROBLEMAS DE MECANISMOS IES MTEO LEMÁN SN JUN DE ZNLFRCHE (SEVILL) PROBLEMS DE MECNISMOS º ESO MOTOR D 4 5 6 7 B C P PEDRO J. CSTEL GIL-TORESNO DEPRTMENTO DE TECNOLOGÍ PROBLEMS DE MECNISMOS Calcula la fuerza F y el desplazamiento

Más detalles

Dadme un punto de apoyo y moveré el mundo, Arquímedes MECANISMOS. La palanca

Dadme un punto de apoyo y moveré el mundo, Arquímedes MECANISMOS. La palanca Dadme un y moveré el mundo, Arquímedes La palanca El tronco del árbol actúa como una palanca. Ésta es simplemente una barra que oscila sobre un eje o. Si se aplica una fuerza que empuja o tira sobre un

Más detalles

TEMA 3: ESTRUCTURAS Y MECANISMOS

TEMA 3: ESTRUCTURAS Y MECANISMOS TEMA 3: ESTRUCTURAS Y MECANISMOS 1. Estructuras a. Propiedades b. Tipos I. Naturales II. Artificiales c. Elementos de una estructura I. Zapatas II. Pilares III. Vigas d. Perfiles e. Esfuerzos I. Tracción

Más detalles

www.tropaymarineria.es TEST RAZONAMIENTO FÍSICO - MECÁNICO

www.tropaymarineria.es TEST RAZONAMIENTO FÍSICO - MECÁNICO TEST RAZONAMIENTO FÍSICO - MECÁNICO Este test se compone de 15 preguntas y cuenta con un tiempo de 25 minutos para resolverlo. Se le muestran cuatro opciones de las cuales sólo una es la correcta. 1) Hacia

Más detalles

Tema 4.- Mecanismos. 1. Concepto. 2. Mecanismos que transforman fuerzas: Palanca. Poleas Plano inclinado Torno

Tema 4.- Mecanismos. 1. Concepto. 2. Mecanismos que transforman fuerzas: Palanca. Poleas Plano inclinado Torno Tema 4.- Mecanismos 1. Concepto. 2. Mecanismos que transforman fuerzas: Palanca. Poleas Plano inclinado Torno Mecanismos 3. Mecanismos que transforman movimientos: Rotación en rotación. Poleas Engranajes

Más detalles

U.T. 4: Máquinas y Mecanismos (2ºESO)

U.T. 4: Máquinas y Mecanismos (2ºESO) U.T. 4: Máquinas y Mecanismos (2ºESO) Nombre Apellidos Curso 1. Calcular el peso de un objeto en la superficie terrestre de: a) 40 Kg b) 50 Kg c) 100 g d) 0,6 g 2. Calcular la masa de un objeto cuyo peso

Más detalles

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente.

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente. Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Deseamos hacer una tabla con datos agrupados a partir de datos, cuyos valores extremos son 9 y. a) Si queremos que sean 0 intervalos de amplitud,

Más detalles

TECNOLOGÍAS (3º ESO) MÁQUINAS Y MECANISMOS MÁQUINAS Y MECANISMOS PÁGINA 1 DE 16

TECNOLOGÍAS (3º ESO) MÁQUINAS Y MECANISMOS MÁQUINAS Y MECANISMOS PÁGINA 1 DE 16 1. Esquematiza los diferentes tipos de palancas, indicando: el tipo de palanca, y donde se encuentran el punto de apoyo, la resistencia (R), y donde se aplica la fuerza (F). 2. Nuestro cuerpo está lleno

Más detalles

UNIDAD 3.- MECANISMOS

UNIDAD 3.- MECANISMOS UNIDAD 3.- MECANISMOS 3.1.- Máquinas simples 3.2.- Mecanismos de transmisión de movimiento 3.3.- Mecanismos de transformación de movimiento MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTO Un MECANISMO

Más detalles

Mecanismo piñón-corredera/cremallera del mecanismo piñón-cadena, o sea, v4 sabemos que: (1) v1 x z1 = v2 x z2

Mecanismo piñón-corredera/cremallera del mecanismo piñón-cadena, o sea, v4 sabemos que: (1) v1 x z1 = v2 x z2 VALORACIÓN: Todas las preguntas valen lo mismo 1. a) Completa el circuito para que Interruptor funcione e identifica los dispositivos del esquema poniendo su nombre b) Si el eje motor gira a 1.200 rpm,

Más detalles

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) MECANISMOS: LA PALANCA La palanca es un mecanismo que transforma un movimiento lineal, es decir de traslación, en otro lineal

Más detalles

DEPARTAMENTO DE TECNOLOGÍA IES MONELOS 3º ESO U.D. MECANISMOS Y MÁQUINAS

DEPARTAMENTO DE TECNOLOGÍA IES MONELOS 3º ESO U.D. MECANISMOS Y MÁQUINAS DEPARTAMENTO DE TECNOLOGÍA IES MONELOS 3º ESO U.D. MECANISMOS Y MÁQUINAS 1. Dibuja esquemáticamente los siguientes objetos y señala en ellos los elementos de las palancas,; indica de qué tipo de palanca

Más detalles

ALUMNOS CON EVALUACIONES PENDIENTES ACTIVIDADES SEPTIEMBRE 2017

ALUMNOS CON EVALUACIONES PENDIENTES ACTIVIDADES SEPTIEMBRE 2017 1ª EVALUACIÓN: ALUMNOS CON EVALUACIONES PENDIENTES TEMA 1: REPASO DE 2º DE ESO: ACTIVIDADES SEPTIEMBRE 2017 Pasa a: (NOTA: TB, GB, MB, KB y B; van de 1.000 en 1.000) a) A bytes: 0,86MB= 1,27GB= 0,000004TB=

Más detalles

Ejercicios de Mecanismos

Ejercicios de Mecanismos Ejercicios de Mecanismos 1º Dibuja un sistema de poleas móviles ( 4) y una fija.si la carga para levantar es de 900 kg, que fuerza habrá que aplicar para levantarla? 2º Si ese mismo sistema tiene 10 poleas,

Más detalles

TECNOLOGIAS: TRABAJO DE VERANO 2014/2015 CURSO: 1º ESO: 1ª Evaluación

TECNOLOGIAS: TRABAJO DE VERANO 2014/2015 CURSO: 1º ESO: 1ª Evaluación 1ª Evaluación 1. Dibuja las vistas de alzado, planta y perfil de las siguientes figuras en tu cuaderno. Para hacer las vistas se dibujará una cruz y se situarán las vistas a 10mm de ésta. Las vistas de

Más detalles

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.1. Ejemplo. Pedal. muelle. Esquema. Solución. 2º género

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.1. Ejemplo. Pedal. muelle. Esquema. Solución. 2º género ACTIVIDADES SOBRE PALANCAS Ley de la palanca P Bp = R Br Actividad B.1 Indica sobre los siguientes mecanismos de palanca el género, la potencia, la resistencia, y el fulcro. Representa esquemáticamente

Más detalles

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.1. Ejemplo. Pedal. muelle. Esquema. Solución. 2º género

ACTIVIDADES SOBRE PALANCAS. Ley de la palanca. P Bp = R Br. Actividad B.1. Ejemplo. Pedal. muelle. Esquema. Solución. 2º género ACTIVIDADES SOBRE PALANCAS Ley de la palanca P Bp = R Br Actividad B.1 Indica sobre los siguientes mecanismos de palanca el género, la potencia, la resistencia, y el fulcro. Representa esquemáticamente

Más detalles

1.- CONSIDERACIONES PREVIAS

1.- CONSIDERACIONES PREVIAS ACTIVIDADES DE RECUPERACIÓN TECNOLOGIA INDUSTRIAL-I 1º BTO JUNIO 2016 ALUMNO: 1º BTO RECUPERACIÓN SEPTIEMBRE ÁREA: TECNOLOGIA INDUSTRIAL -I 1.- CONSIDERACIONES PREVIAS El alumno/a debe estudiar de los

Más detalles

TECNOLOGÍAS, ACTIVIDADES DE REPASO PARA PENDIENTES DE 3º ESO.

TECNOLOGÍAS, ACTIVIDADES DE REPASO PARA PENDIENTES DE 3º ESO. Profesor: Juan Jesús Garfia TECNOLOGÍAS, ACTIVIDADES DE REPASO PARA PENDIENTES DE 3º ESO. La fecha límite de entrega de estas actividades es el día del examen de recuperación, debiendo entregarse con las

Más detalles

PALANCAS.

PALANCAS. PALANCAS Las Palancas Una palanca representa una barra rígida r que se apoya y rota alrededor de un eje. Las palancas sirven para mover un objeto o resistencia. 1 Las palancas están n constituidas de:

Más detalles

MÁQUINAS Y MECANISMOS

MÁQUINAS Y MECANISMOS NOMBRE Y APELLIDOS: CURSO Y GRUPO: MÁQUINAS Y MECANISMOS 1. INTRODUCCIÓN. El ser humano necesita realizar trabajos que sobrepasan sus posibilidades: mover rocas muy pesadas, elevar coches para repararlos,

Más detalles

GUIAS DE TRABAJO DE TEC NOLOGIA : OPERADORES MECANICOS GRADO: OCTAVO PROF. LUISA EUGENIA ORDUZ QUINTERO

GUIAS DE TRABAJO DE TEC NOLOGIA : OPERADORES MECANICOS GRADO: OCTAVO PROF. LUISA EUGENIA ORDUZ QUINTERO GUIAS DE TRABAJO DE TEC NOLOGIA : OPERADORES MECANICOS GRADO: OCTAVO PROF. LUISA EUGENIA ORDUZ QUINTERO CENTRO DE COMERCIO PIEDECUESTA 2017 S E G U N D O P E R I O D O QUÉ ES UNA PALANCA? Una palanca

Más detalles

1. EXPRESIÓN Y COMUNICACIÓN GRÁFICA

1. EXPRESIÓN Y COMUNICACIÓN GRÁFICA 1. EXPRESIÓN Y COMUNICACIÓN GRÁFICA 1.1. Definición de boceto y croquis. Boceto: Croquis: 1.2. Ejercicio1. Dibuja los bocetos a mano alzada y con lápiz de los siguientes dibujos: 1.3. Ejercicio 2. Dibuja

Más detalles

Tecnología 1º E.S.O. Nombre y apellidos: Curso: http://auladetecnologias.blogspot.com/ @TL 1

Tecnología 1º E.S.O. Nombre y apellidos: Curso: http://auladetecnologias.blogspot.com/ @TL 1 Tecnología 1º E.S.O. UERNO E EJERIIOS: Nombre y apellidos: urso: http://auladetecnologias.blogspot.com/ @TL 1 MÁQUINS Y MENISMOS 1. uántos tipos de palancas conoces? Pon al menos dos ejemplos de cada tipo.

Más detalles

Apellidos: Nombre: Grupo:

Apellidos: Nombre: Grupo: Tecnología 1º E.S.O. CUADERNO DE EJERCICIOS Apellidos: Nombre: Grupo: ACTIVIDADES MÁQUINAS SIMPLES 1.- Define con tus propias palabras qué entiendes por mecanismo. 2.- En qué dos grandes grupos se dividen

Más detalles

GEOMETRÍA ESPACIAL Programación

GEOMETRÍA ESPACIAL Programación GEOMETRÍA ESPACIAL Programación En clase, con la ayuda del libro, se explicará la teoría y se realizarán ejercicios similares a los de las fichas, de modo que los ejercicios que realizan por la tarde les

Más detalles

4) Indica en las siguientes imágenes si hay sólo transmisión de movimiento o también hay transformación:

4) Indica en las siguientes imágenes si hay sólo transmisión de movimiento o también hay transformación: ACTIVIDADES: TEMA MECANISMOS 1) Qué función tienen las máquinas? Nombra cinco ejemplos de máquinas que conozcas. 2) Qué son los mecanismos? Conoces algunos ejemplos de mecanismos? Para qué se utilizan?

Más detalles

a) 3 vías y 2 posiciones c) 2 vías y 2 posiciones

a) 3 vías y 2 posiciones c) 2 vías y 2 posiciones UNIDAD DIDÁCTICA: CIRCUITOS HIDRÁULICOS Y NEUMÁTICOS TEORÍA T1.- Dibuja en tu cuaderno las siguientes válvulas: a) 3 vías y 2 posiciones c) 2 vías y 2 posiciones b) 5 vías y 2 posiciones d) 4 vías y 2

Más detalles

Movimiento Circular Movimiento Armónico

Movimiento Circular Movimiento Armónico REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento

Más detalles

Ejercicios de Dinámica

Ejercicios de Dinámica Ejercicios de Dinámica 1. Una fuerza de 14 N que forma 35 con la horizontal se quiere descomponer en dos fuerzas perpendiculares, una horizontal y otra vertical. Calcula el módulo de las dos fuerzas perpendiculares

Más detalles

4 LAS FUERZAS Y EL EQUILIBRIO DE LOS SÓLIDOS

4 LAS FUERZAS Y EL EQUILIBRIO DE LOS SÓLIDOS 4 LAS FUERZAS Y EL EQUILIBRI DE LS SÓLIDS EJERCICIS PRPUESTS 4.1 Nombra cinco sólidos rígidos que se encuentren en tu aula. Mesa, silla, pizarra, libro, bolígrafo, etc. 4.2 Justifica si una moneda se comporta

Más detalles

TECNOLOGIA 3º E.S.O. MECANISMOS Solución examen.

TECNOLOGIA 3º E.S.O. MECANISMOS Solución examen. TECNOLOGIA 3º E.S.O. MECANISMOS Solución examen. 1. Define la palabra Mecanismo. Qué es un elemento motriz?, y un elemento receptor? Qué finalidad tienen los mecanismos? Mecanismo: Elemento destinado a

Más detalles

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS I

TECNOLOGÍA EJERCICIOS SOBRE MECANISMOS I 1. LA PALANCA 1.1 En una palanca de primer género colocamos en uno de sus extremos un peso de 10 N. Si la palanca tiene una longitud de 4 m y el punto de apoyo se encuentra en el punto medio, calcular

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10. Completa la siguiente tabla. Caras (C ) Vértices (V )

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 = 5 dm b) 8 = 8 cm P =

Más detalles

Pila. 34. Explica 35. Explica 36. Explica. 38. Explica. 39. Explica. 40. Explica. 41. Qué es 42. Explica. 46. De qué 47. Qué es 48. Nombra 49.

Pila. 34. Explica 35. Explica 36. Explica. 38. Explica. 39. Explica. 40. Explica. 41. Qué es 42. Explica. 46. De qué 47. Qué es 48. Nombra 49. ACTIVIDADES TECNOLOGÍAS 3º ESO ACTIVIDADES TECNOLOGÍAS 3º ESO TEMA1:ELPROCESOO DE RESOLUCIÓN DE PROBLEMAS TECNOLÓGICOS 1. Cuándo nació la tecnología? 2. Por qué decimos que La tecnología está muy presente

Más detalles

4.- Cómo clasificarías las fuerzas teniendo en cuenta la interacción de los cuerpos?

4.- Cómo clasificarías las fuerzas teniendo en cuenta la interacción de los cuerpos? 1.- Qué es una fuerza? 2.- Cómo se identifican las fuerzas? 3.- Cómo pueden interaccionarse los cuerpos? 4.- Cómo clasificarías las fuerzas teniendo en cuenta la interacción de los cuerpos? 5.- Qué entiendes

Más detalles

FÍSICA CICLO 5 CAPACITACIÓN 2000

FÍSICA CICLO 5 CAPACITACIÓN 2000 FÍSICA CICLO 5 CAPACITACIÓN 000 UNIDAD 4 TABAJO Y ENEGIA TABAJO Es el producto de la fuerza por el desplazamiento en la misma dirección. Sus unidades son Julius en el sistema MKS y Ergios en el sistema

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURS Y UERPOS GEOMÉTRIOS EJERIIOS PR ENTRENRSE Poliedros y cuerpos redondos. Propiedades 10.2 Un poliedro regular tiene 8 vértices y 12 aristas. Utiliza la fórmula de Euler para saber de qué poliedro

Más detalles

Tema 1: Los mecanismos

Tema 1: Los mecanismos 2d ESO. Curso 2017/2018 Tema 1: Los mecanismos 1.1 La palanca. La Ley de la Palanca Clase1-20 septiembre Mecanismos Palancas Versión libre. 1) Poner la fecha de hoy en la libreta de Tecnología 2) Escribir

Más detalles

UNIDAD DE MECANISMOS

UNIDAD DE MECANISMOS UNIDAD DE MECANISMOS 1.- MÁQUINAS Hay muchas maneras de definir qué es una máquina. Una definición muy general podría ser la siguiente: una máquina es cualquier instrumento, aparato o dispositivo que,

Más detalles

El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.).

El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.). 1 ESTATICA MOMENTO DE UNA FUERZA Dada una fuerza F situada a una distancia d de un punto o, se denomina (definición matemática) momento de la fuerza con respecto a un punto o, al producto de la intensidad

Más detalles

ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.-

ÁNGULOS EN POLÍGONOS. Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c. Ejercicio nº 2.- ÁNGULOS EN POLÍGONOS Ejercicio nº 1.- En los siguientes polígonos, halla la media del ángulo : a b c Ejercicio nº.- Halla el valor del ángulo en cada uno de estos casos: a b c Ejercicio nº 3.- Halla el

Más detalles

TEMA 4: MECANISMOS. 2º E.S.O. I.E.S. "San Isidro" Talavera --Dpto. de Tecnología--

TEMA 4: MECANISMOS. 2º E.S.O. I.E.S. San Isidro Talavera --Dpto. de Tecnología-- TEMA 4: MECANISMOS. 2º E.S.O. 1 ÍNDICE: 0.- INTRODUCCIÓN. 1.- TIPOS DE MOVIMIENTO. 2.- CONCEPTOS BÁSICOS SOBRE EL ESTUDIO DE LAS MÁQUINAS. 3.- CLASIFICACIÓN DE LOS MECANISMOS. 4.- MECANISMOS DE TRANSMISIÓN

Más detalles

COLEGIO CEDID CIUDAD BOLIAR AREA DE TECNOLOGIA E INFORMATICA RECUPERACION DE PRIMER PERIODO.

COLEGIO CEDID CIUDAD BOLIAR AREA DE TECNOLOGIA E INFORMATICA RECUPERACION DE PRIMER PERIODO. COLEGIO CEDID CIUDAD BOLIAR AREA DE TECNOLOGIA E INFORMATICA RECUPERACION DE PRIMER PERIODO. 1. META DE COMPRENSION Fundamentará los principios del movimiento y los principios eléctricos a través de mecanismos

Más detalles

Unidad 2: Resolución de triángulos

Unidad 2: Resolución de triángulos Ejercicio 1 Unidad : Resolución de triángulos En las siguientes figuras, calcula las medidas de los segmentos desconocidos indicados por letras (ambos triángulos son rectángulos en A): cm 16'5 7'5 cm a

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. PÁGINA EJERCICIOS Unidades de volumen Transforma en metros cúbicos: a) 50 dam b) 0,08 hm c) 0, km d) 5 80 dm e) 500 hl f) 0 000 l a) 50 dam = 50 000 m b) 0,08 hm = 8 000 m c) 0, km = 0 000 000 m d)

Más detalles

TRABAJO POTENCIA - ENERGÍA

TRABAJO POTENCIA - ENERGÍA PROGRM DE VERNO DE NIVELCIÓN CDÉMIC 15 TRJO POTENCI - ENERGÍ 1. Un sujeto jala un bloque con una fuerza de 7 N., como se muestra, y lo desplaza 6 m. Qué trabajo realizó el sujeto? (m = 1 kg) a) 1 J b)

Más detalles

Actividades de consolidación

Actividades de consolidación Actividades de consolidación 1 Define los siguientes conceptos: Las definiciones de los distintos conceptos son: a) Magnitud: todo aquello que se puede medir. b) Propiedad intensiva: propiedad de la materia

Más detalles

15 EJERCICIOS BÁSICOS SOBRE POLÍGONOS REGULARES. 1. Cuál es el perímetro de un cuadrado de 15 metros de lado?. L=Longitud del lado. P=Perímetro.

15 EJERCICIOS BÁSICOS SOBRE POLÍGONOS REGULARES. 1. Cuál es el perímetro de un cuadrado de 15 metros de lado?. L=Longitud del lado. P=Perímetro. Ejercicios Resueltos 1. Cuál es el perímetro de un cuadrado de 15 metros de lado?. L=Longitud del lado. P=Perímetro. L=15 m. P=15 + 15 + 15 + 15 = 60. Es decir 60 metros. O lo que es lo mismo: P=5 15 =

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado Contenidos 1. Expresiones algebraicas Identidad y ecuación Solución de una ecuación. Ecuaciones de primer grado Definición Método de resolución Resolución de problemas 3. Ecuaciones

Más detalles

FUERZAS EN LOS FLUIDOS

FUERZAS EN LOS FLUIDOS FUERZAS EN LOS FLUIDOS 1.- Calcula la presión ejercida sobre la mesa por un bloque de 10 kg que apoya sobre una superficie de 60cm 2. 2.- Una botella cilíndrica de 18 cm de altura y 4 cm de radio está

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

2. Un sistema de masa-resorte realiza 50 oscilaciones completas en 10 segundos. Cuál es el período y la frecuencia de las oscilaciones?

2. Un sistema de masa-resorte realiza 50 oscilaciones completas en 10 segundos. Cuál es el período y la frecuencia de las oscilaciones? Movimiento armónico simple Problemas del capítulo 1. Un sistema de masa-resorte realiza 20 oscilaciones completas en 5 segundos. Cuál es el período y la frecuencia de las oscilaciones? 2. Un sistema de

Más detalles

Hoja de problemas. nº 2 2003, 2011, 2017,

Hoja de problemas. nº 2 2003, 2011, 2017, Hoja de problemas nº 2 2, 3, 5, 7, 11, 13,11, 2003, 2011, 2017, Hojas de Problemas La Divisibilidad Hoja nº 2 Divisibilidad A. Ariza/A. Sánchez/R. Trigueros 1. Calcular todos los divisores de 60. 2. Calcular

Más detalles

Fuerza. P = Potencia (fuerza que realiza la mano) Fulcro R = Resistencia (peso de la tierra) = 8 kgf

Fuerza. P = Potencia (fuerza que realiza la mano) Fulcro R = Resistencia (peso de la tierra) = 8 kgf EJERCICIOS RESUELTOS. PALANCAS.- Calcular la fuerza que tiene que realizar el brazo sobre el punto medio del mango de la pala para levantar la tierra situada en la cuchara que pesa 8 kg. Primero vemos

Más detalles

EXPERIMENTO 8 MÁQUINAS SIMPLES

EXPERIMENTO 8 MÁQUINAS SIMPLES EXPERIMENTO 8 MÁQUINAS SIMPLES 1. Objetivos 1.1 Estudiar sistemas en equilibrio estático traslacional y rotacional. 1.2 Calcular la ventaja mecánica para diferentes sistemas de poleas y palancas. 1.3 Adquirir

Más detalles

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS 9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS OBJETIVO El objetivo de la practica es determinar la densidad de líquidos utilizando la balanza de Möhr y su aplicación a la determinación de la densidad de disoluciones

Más detalles

d. Se llama altura del prisma a la distancia entre sus dos caras. Cuál sería la altura del prisma de la figura 1?

d. Se llama altura del prisma a la distancia entre sus dos caras. Cuál sería la altura del prisma de la figura 1? MATERIAL PARA EL ESTUDIANTE EJEMPLOS DE ACTIVIDADES Actividad 1 Prismas rectos En años anteriores hemos aprendido a calcular perímetros y áreas de figuras geométricas. Ahora veremos cómo se puede calcular

Más detalles

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza RECOPILACIÓN DE PROBLEMAS DE EXÁMENES MECANISMOS PÁGINA 1 RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS Fuerza 1.1.- La piedra del dibujo pesa 160 kg. Calcular la fuerza que hay que aplicar en el extremo

Más detalles

La presión se puede definir como la fuerza que actúa sobre una superficie por unidad de área.

La presión se puede definir como la fuerza que actúa sobre una superficie por unidad de área. PRESION La presión se puede definir como la fuerza que actúa sobre una superficie por unidad de área. Despejando podemos obtener: CONCEPTO UNIDAD Presión N/m 2 Kp/m 2 gp/cm 2 Fuerza N Kp gp Área m 2 m

Más detalles

La unidad es el KILOPONDÍMETRO

La unidad es el KILOPONDÍMETRO TRABAJO MECÁNICO: - CONCEPTO - UNIDADES POTENCIA: - CONCEPTO - UNIDADES TRABAJO POTENCIA ENERGÍA ENERGÍA: - CONCEPTO - MANIFESTACIONES DE LA ENERGÍA: - ENERGÍA CINÉTICA: - CONCEPTO - UNIDADES - ENERGÍA

Más detalles

1.- Con la carretilla de la figura queremos transportar una carga de tierra.

1.- Con la carretilla de la figura queremos transportar una carga de tierra. MECANISMOS 1.- Con la carretilla de la figura queremos transportar una carga de tierra. A) qué tipo de palanca estamos empleando? B) Qué esfuerzo tenemos que realizar si el peso de la arena a transportar

Más detalles

10. Cuánto vale la fuerza de rozamiento que actúa sobre un objeto en reposo? Justifica tu respuesta.

10. Cuánto vale la fuerza de rozamiento que actúa sobre un objeto en reposo? Justifica tu respuesta. Leyes de la Dinámica 1. Enuncia la segunda ley de la Dinámica y contesta a las siguientes cuestiones: a) Cómo influye la masa en la aceleración que adquiere un cuerpo cuando actúa sobre él una fuerza impulsora?

Más detalles

Y si la niña estuviera situada a 4m del punto de apoyo?. Qué conclusión puedes sacar?.

Y si la niña estuviera situada a 4m del punto de apoyo?. Qué conclusión puedes sacar?. PROBLEMAS DE MÁQUINAS Y MECANISMOS LA PALANCA 1. Indica el tipo de palanca en cada uno de los casos siguientes: 2. A qué distancia del eje de un balancín se tendrá que sentar un niño de 30 kg para que

Más detalles

Objetivo Analizar el principio de funcionamiento y la utilidad de máquinas simples y compuestas en la vida cotidiana.

Objetivo Analizar el principio de funcionamiento y la utilidad de máquinas simples y compuestas en la vida cotidiana. Objetivo Analizar el principio de funcionamiento y la utilidad de máquinas simples y compuestas en la vida cotidiana. Maquinas simples Las máquinas son ingenios inventados por el hombre para poder realizar

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo Contenidos 1. La circunferencia. La circunferencia Elementos de la circunferencia. 2. Posiciones relativas. Punto y circunferencia. Recta y circunferencia. Dos circunferencias.

Más detalles

EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES

EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES EJERCICIOS RESUELTOS DE ÁREAS Y VOLÚMENES 1. Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho y 2500 mm de alto. 2. Una piscina tiene 8 m de largo, 6

Más detalles

9Soluciones a los ejercicios y problemas PÁGINA 200

9Soluciones a los ejercicios y problemas PÁGINA 200 PÁGINA 200 Pág. 1 T ipos de cuerpos geométricos 1 Di, justificadamente, qué tipo de poliedro es cada uno de los siguientes: A B C D E F Hay entre ellos algún poliedro regular? A 8 Prisma pentagonal recto.

Más detalles

8Soluciones a los ejercicios y problemas PÁGINA 179

8Soluciones a los ejercicios y problemas PÁGINA 179 PÁGIN 179 Pág. 1 T eorema de Pitágoras 1 Calcula el área del cuadrado verde en cada uno de los siguientes casos: 14 cm 2 45 m2 60 m 2 30 cm 2 = 44 cm 2 = 15 m 2 2 Cuál es el área de los siguientes cuadrados?:

Más detalles

1. Calcula el momento de una fuerza de 100 N que está a una distancia de 0,75 m del punto de apoyo. Resultado: M= 75 NAm

1. Calcula el momento de una fuerza de 100 N que está a una distancia de 0,75 m del punto de apoyo. Resultado: M= 75 NAm 1.- PALANCAS 1. Calcula el momento de una fuerza de 100 N que está a una distancia de 0,75 m del punto de apoyo. esultado: M= 75 NAm 2. A qué distancia del punto de apoyo está una fuerza de 35 N si tiene

Más detalles