10. 1 Definición de espacio euclídeo.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "10. 1 Definición de espacio euclídeo."

Transcripción

1 ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS Definición de espacio euclídeo. Producto escalar en un espacio vectorial. Dado un espacio vectorial E sobre R, consideremos la aplicación: Es decir, a cada par representar en la forma: le asigna un escalar de R, al cual se le suele Diremos que es un producto escalar (también llamado producto interno ) si cumple las tres siguientes propiedades:. Es decir, un producto escalar es cualquier aplicación f: ExE ---> R que sea bilineal, simétrica y definida positiva. CONSECUENCIAS: Espacio vectorial euclídeo: Un espacio vectorial E, de dimensión n, se llama espacio vectorial euclídeo n- dimensional si en E se halla definido un producto escalar.

2 Ejemplo: Para el espacio vectorial n-dimensional R n se puede definir: Que como fácilmente se comprueba se trata de un producto escalar, llamado producto escalar canónico Expresión matricial de un producto escalar. Sea E un espacio vectorial de dimensión n, y sea una base de este espacio. Una vez conocidos los n productos escalares,, con i, j = 1,..., n, podemos dar una expresión del producto escalar: Considerando los dos vectores: Entonces su producto escalar vendrá expresado por: lo cual en notación matricial queda expresado: siendo G = (g ij ) i,j = 1,...,n La matriz G se llama matriz métrica del producto escalar en la base B. Se trata de una matriz simétrica definida positiva. Atención: La matriz G asociada al producto escalar canónico de R n es la matriz identidad de orden n Norma de un vector. Se llama norma de un vector, representada como, a la raíz cuadrada del producto escalar : Como puede apreciarse la norma de un vector es un número real. (Nota: Hay varias formas de definir la norma de un vector, aquí nosotros utilizamos la más útil para la geometría).

3 Propiedades de la norma: * Vector unitario. Se dice que un vector es unitario o normalizado si es 1., es decir, su norma Consecuencia: Para un vector cualquiera,, supongamos que no sea unitario, siempre podemos extraer un vector unitario de la siguiente manera: Ejemplo: Sea R n con el producto escalar canónico. Para un vector cualquiera, podemos expresar: A partir de él podemos extraer el vector unitario: Coseno del ángulo formado por dos vectores.. Sean dos vectores (no nulos) de un espacio euclídeo E. El ángulo que forman estos dos vectores,, queda caracterizado por su coseno, que por definición es:

4 * Cosenos directores. Se llaman cosenos directores de un vector, en la base a los cosenos de los ángulos: para i = 1, 2,..., n Vectores ortogonales y ortonormales. Dado un espacio vectorial euclídeo E, se llaman vectores ortogonales aquellos cuyo producto escalar sea nulo: Cuando todos los vectores de un sistema son ortogonales dos a dos, se dice que es un sistema ortogonal. Si además los vectores del sistema son unitarios, se dice que es un sistema ortonormal. Un sistema ortonormal cumple: Ejemplo: En R n con el producto escalar canónico, la base canónica es un sistema ortonormal. PROPOSICIÓN: Todo sistema ortonormal es libre. Demostración: Sea S =, un sistema ortonormal. Si S no es libre no todos nulos tal que Si ahora multiplicamos escalarmente a esta expresión por e i : * Cuando el número de vectores de un sistema ortonormal coincide con la dimensión de E, dicho sistema es una base ortonormal de E.

5 10. 6 Método de ortogonalización de Gram-Schmidt. Sea una base cualquiera, se trata de determinar a partir de ella otra base que sea ortogonal. Se procede de la siguiente manera: Donde los coeficientes se determinan de tal forma que cada vector v sea ortogonal al resto de vectores. De esta manera: De manera análoga para hallar se toman las dos condiciones siguientes:, y por tanto: De una manera genérica se llega a la expresión: Con esto se consigue una base de vectores ortogonales. Si ahora dividimos a cada uno de ellos por su norma habremos obtenido una base de vectores ortonormales. (para i = 1,..., n)

6 EJEMPLO: Sea R 3 con el producto escalar euclídeo, y sea la base B = { (1, 1, 0), (1, 0, 1), (0, 1, 0) }. A partir de esta base hallemos una base ortonormal por el método de Gram-Schmidt. Solución: Simplemente seguimos los pasos arriba indicados: A continuación se normalizan estos tres vectores: que nos dan los tres vectores de la base ortonormal Subespacio ortogonal. Sea E un espacio vectorial euclídeo, se dice que dos subespacios de E, digamos U y V, son ortogonales si cualquier vector de uno de ellos es ortogonal a todos los vectores del otro. Dado un subespacio el conjunto:

7 Se llama subespacio ortogonal de U. Para estos subespacios se cumple que: Si además la dimensión de E es finita se verifica también: Producto mixto. Sea E un espacio vectorial euclídeo de dimensión 3 (por ejemplo R 3 ), y sean cuyas coordenadas sean respectivamente: Se llama producto mixto al número: expresados en cierta base ortonormal B. Propiedades: 1. El producto mixto es una forma lineal respecto de cada una de sus tres componentes (forma trilineal), es decir, se cumple: 2. El producto mixto es una forma antisimétrica, es decir 3. La condición implica que el sistema es ligado.

8 10. 8 Producto vectorial. Sea E un espacio vectorial euclídeo de dimensión 3 (por ejemplo R 3 ), y sean dos vectores de E, cuyas coordenadas en una base ortonormal sean: Se define el producto vectorial,, como el vector: Propiedades:

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

13. GEOMETRÍA ANALÍTICA EN R 3

13. GEOMETRÍA ANALÍTICA EN R 3 ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA 13. GEOMETRÍA ANALÍTICA EN R 3 I. Generalidades sobre Geometría analítica en R 3 - II. Ecuaciones

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Topología de R n. Beatriz Porras

Topología de R n. Beatriz Porras Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores

Más detalles

SESIÓN 4: ESPACIOS VECTORIALES

SESIÓN 4: ESPACIOS VECTORIALES SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian 40 Matemáticas I Parte II Álgebra Lineal 41 Matemáticas I : Álgebra Lineal Tema 4 Espacios vectoriales reales 4.1 Espacios vectoriales Definición 88.- Un espacio vectorial real V es un conjunto de elementos

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

Resumen de álgebra vectorial y tensorial

Resumen de álgebra vectorial y tensorial Apéndice A Resumen de álgebra vectorial y tensorial Se resumen aquí algunos conceptos y definiciones importantes de vectores y tensores, con pretensión de sencillez y brevedad. En aras de esta sencillez,

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o

Más detalles

Teoría Tema 5 Producto escalar. Ángulo entre vectores

Teoría Tema 5 Producto escalar. Ángulo entre vectores página 1/8 Teoría Tema 5 Producto escalar. Ángulo entre vectores Índice de contenido Ángulo de dos vectores...2 Producto escalar de dos vectores...5 Obtener ángulo formado por dos vectores a partir de

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio vectorial. 4.2. Espacio vectorial... - 2 -

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio vectorial. 4.2. Espacio vectorial... - 2 - 4.1. Introducción: los conjuntos Espacio ectorial R y R.... - - 4.. Espacio ectorial.... - - 4.. Vectores libres del espacio tridimensional.... - - 4.4. Producto escalar... - 4-4.5. Producto ectorial....

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

Aplicaciones lineales y matrices.

Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 2.1. Introducción. Supondremos al alumno familiarizado con la idea de matriz o tabla de orden n, m con n, m números naturales que denotan el número de filas y columnas,

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Objetivos Definir la matriz asociada a una transformación lineal respecto a un par de bases y estudiar la representación matricial

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C..... El espacio vectorial de los vectores Definición. Vectores fijos Dado dos puntos cualesquiera A e del espacio nos

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Tema 5. Derivación Matricial.

Tema 5. Derivación Matricial. Tema 5. Derivación Matricial. Análisis Matemático I 1º Estadística Universidad de Granada Noviembre 2012 1 / 24 Producto de Kronecker Definición Dadas dos matrices A M m n y B M p q, el producto de Kronecker

Más detalles

Tema II: Aplicaciones lineales

Tema II: Aplicaciones lineales Definiciones y ejemplos. Matriz asociada a una aplicación lineal. Núcleo e imagen. Cambios de base. Espacio vectorial cociente.teoremas de isomorfía. El espacio de las aplicaciones lineales. Ejemplos de

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS 2. DERIVADAS DE FUNCIONES 2.1 Noción de derivada de una función

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD IV: VECTORES EN R2 Y R3 VECTOR Se puede considerar un vector como un segmento de recta con una flecha en uno de sus extremos. De esta forma lo podemos distinguir por cuatro partes fundamentales:

Más detalles

Tema 6.- ESPACIOS VECTORIALES

Tema 6.- ESPACIOS VECTORIALES Tema 6.- ESPACIOS VECTORIALES EUCLÍDEOS PRODUCTO ESCALAR, NORMA Y DISTANCIA. MATRIZ DE GRAM ORTOGONALIDAD PROCESO DE ORTOGONALIZACIÓN N DE GRAM- SCHMIDT APROXIMACIÓN N LINEAL EN ESPACIOS VECTORIALES EUCLÍDEOS

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

CAPÍTULO 6: ESPACIO VECTORIAL EUCLÍDEO. 6.1- Definición: producto escalar.

CAPÍTULO 6: ESPACIO VECTORIAL EUCLÍDEO. 6.1- Definición: producto escalar. CAPÍTULO 6: ESPACIO VECTORIAL EUCLÍDEO 6.1- Definición: producto escalar. Sea E un espacio vectorial de dimensión n. Un producto escalar es una aplicación que denotaremos por E E R y que verifica las siguientes

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

T0. TRANSFORMADAS DE LAPLACE

T0. TRANSFORMADAS DE LAPLACE ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS T0. TRANSFORMADAS DE LAPLACE Mediante transformadas de Laplace (por Pierre-Simon

Más detalles

16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes.

16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes. TEMA 5. VECTORES 5.1. Vectores en el plano. - Definición. - Componentes de un vector. - Módulo. - Vectores equivalentes. 5.2. Operaciones con vectores. - Suma y resta. - Multiplicación por un número real.

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

Matrices escalonadas y escalonadas reducidas

Matrices escalonadas y escalonadas reducidas Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema

Más detalles

TRA NSFORMACIO N ES LIN EA LES

TRA NSFORMACIO N ES LIN EA LES TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

Aproximación funcional por mínimos cuadrados

Aproximación funcional por mínimos cuadrados Aproximación funcional por mínimos cuadrados Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Introducción

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

4 Vectores en el espacio

4 Vectores en el espacio 4 Vectores en el espacio ACTIVIDADES INICIALES 4.I. Efectúa las siguientes operaciones en R³ a) + 5,, 4, 7, b),, c) 6(,, ) + 4(, 5, ) 4 6 5 a),, 6 9 b) 6,, c) (6,, ) 4 4.II. Calcula los valores de a, b

Más detalles

Concepto de espacio vectorial. Propiedades. Distintos espacios vectoriales. El espacio real tridimensional.

Concepto de espacio vectorial. Propiedades. Distintos espacios vectoriales. El espacio real tridimensional. Otras páginas Matemáticas 2º MATEMÁTICAS II Álgebra: Espacios Vectoriales Concepto de espacio vectorial. Propiedades. Distintos espacios vectoriales. El espacio real tridimensional. Combinación lineal.

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Producto escalar. Longitudes, distancias y ángulos en R 3. c Jana Rodriguez Hertz p. 1/2

Producto escalar. Longitudes, distancias y ángulos en R 3. c Jana Rodriguez Hertz p. 1/2 Producto escalar Longitudes, distancias y ángulos en R 3 c Jana Rodriguez Hertz p. 1/2 Producto escalar - definición Dados X = (x 1,x 2,x 3 ) Y = (y 1,y 2,y 3 ) c Jana Rodriguez Hertz p. 2/2 Producto escalar

Más detalles

Capítulo 8. Geometría euclídea. 8.1 Problemas métricos

Capítulo 8. Geometría euclídea. 8.1 Problemas métricos Capítulo 8 Geometría euclídea 81 Problemas métricos Espacios vectoriales El plano: R 2 = { (x,y : x,y R } El espacio: R 3 = { (x,y, z : x, y, z R } Si u = λv para algún λ 0 diremos que son proporcionales:

Más detalles

El espacio euclídeo. 1.1. El espacio vectorial R N

El espacio euclídeo. 1.1. El espacio vectorial R N Lección 1 El espacio euclídeo Como punto de partida para el estudio de las funciones de varias variables reales, debemos familiarizarnos con la estructura y propiedades del espacio en el que dichas funciones

Más detalles

Determinantes. Primera definición. Consecuencias inmediatas de la definición

Determinantes. Primera definición. Consecuencias inmediatas de la definición Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

INDICE. Prefacio de la segunda edición francesa

INDICE. Prefacio de la segunda edición francesa INDICE Prefacio de la segunda edición francesa IX Parte I Conjuntos. Estructuras fundamentales Cap. 1.- Conjuntos, aplicaciones, relaciones binarias Conjuntos: 1. Noción de conjunto, Pág. 3.-2. Subconjuntos,

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

TEMA 4: Espacios y subespacios vectoriales

TEMA 4: Espacios y subespacios vectoriales TEMA 4: Espacios y subespacios vectoriales 1. Espacios vectoriales Sea K un cuerpo. Denominaremos a los elementos de K escalares. Definición 1. Un espacio vectorial sobre K es un conjunto V cuyos elementos

Más detalles

EL ESPACIO EUCLÍDEO INTRODUCCIÓN.

EL ESPACIO EUCLÍDEO INTRODUCCIÓN. EL ESPACIO EUCLÍDEO INTRODUCCIÓN. Trataremos en este tema de llevar a los espacios vectoriales nociones geométricas como ortogonalidad, ángulo, longitud, distancias, áreas... Veremos que todo ello se puede

Más detalles

Álgebra lineal y geometría para la ingeniería. María Isabel García Planas

Álgebra lineal y geometría para la ingeniería. María Isabel García Planas Álgebra lineal y geometría para la ingeniería María Isabel García Planas Primera edición: Enero 011 Editor: la autora ISBN: 978-84-614-8386-0 Depósito legal: B-135-011 c M ā Isabel García Planas, Está

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema 5: Diagonalización de matrices La intención en este tema es dada una matriz cuadrada ver si existe otra matriz semejante a ella que sea diagonal Recordemos (ver Tema : Matrices determinantes y sistemas

Más detalles

Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores)

Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores) Subespacio generado por un conjunto finito de vectores (envoltura lineal de un conjunto finito de vectores). Listas de vectores. Listas de vectores son personajes típicos de Álgebra Lineal. Una lista de

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

4. " $#%&' (#) para todo $#* (desigualdad triangular).

4.  $#%&' (#) para todo $#* (desigualdad triangular). 10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes

Más detalles

Sistemas de ecuaciones lineales 4

Sistemas de ecuaciones lineales 4 4. SISTEMAS DE ECUACIONES LINEALES 4.1. DEFINICIONES Y CLASIFICACIÓN DE SISTEMAS. La ecuación de una recta en el plano tiene la forma ; su generalización a variables es:, y recibe el nombre de ecuación

Más detalles

2. Determine el área del triángulo cuyos vértices son los extremos de los vectores u, v y w u = (1,0,-2) v = (-1,1,0) w = (2,-1,1)

2. Determine el área del triángulo cuyos vértices son los extremos de los vectores u, v y w u = (1,0,-2) v = (-1,1,0) w = (2,-1,1) 2011 ÁLGEBRA II (L. S. I. P. I.) Guíía de Trabajjos Prácttiicos Nºº 4 Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO Prroducctto Veeccttorriiall.. Reecctta.. Pllano

Más detalles

Algebra Lineal y Geometría.

Algebra Lineal y Geometría. Algebra Lineal y Geometría. Unidad n 6: Subespacios Vectoriales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos. Subespacios Vectoriales. Operaciones con Subespacios: Intersección, unión,

Más detalles

Forman base cuando p 0 y 1.

Forman base cuando p 0 y 1. 1 VECTORES: cuestiones y problemas Preguntas de tipo test 1. (E11). Los vectores u = (p, 0, p), v = (p, p, 1) y w = (0, p, ) forman una base de R : a) Sólo si p = 1 b) Si p 1 c) Ninguna de las anteriores,

Más detalles

BLOQUE II GEOMETRÍA. Resolución a) Para que los tres vectores formen una base, han de ser L.I. Veámoslo:

BLOQUE II GEOMETRÍA. Resolución a) Para que los tres vectores formen una base, han de ser L.I. Veámoslo: II BLOQUE II GEOMETRÍA Página 6 Considera los vectores u(3,, ), v ( 4, 0, 3) y w (3,, 0): a) Forman una base de Á 3? b) Halla m para que el vector (, 6, m) sea perpendicular a u. c) Calcula u, ì v y (

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

TEMA 12. RECTAS Y PLANOS. INCIDENCIA.

TEMA 12. RECTAS Y PLANOS. INCIDENCIA. TEMA 12. RECTAS Y PLANOS. INCIDENCIA. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora consideraremos el sistema de referencia

Más detalles

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012 1 Guía de Estudio y Ejercitación propuesta Esta selección de Temas y Ejercicios están extraídos del texto FUNDAMENTOS DE ALGEBRA LINEAL de R. Larson y D. Falvo.

Más detalles

GEOMETRÍA ANALÍTICA EN EL PLANO

GEOMETRÍA ANALÍTICA EN EL PLANO GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante

Más detalles

Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya

Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya FUNDAMENTOS DEL ÁLGEBRA LINEAL. EJERCICIOS Y CUESTIONES. SOLUCIONES CON MATHEMATICA Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya ISBN: 978-84-606-6054-5 Depósito legal: BI-355-2015

Más detalles

1. NUMEROS COMPLEJOS.

1. NUMEROS COMPLEJOS. Apunte de Números complejos o imaginarios: Representación gráfica. Complejos conjugados y opuestos. Forma trigonométrica, de De Moivre, exponencial. Operaciones. Raíces.Fórmula de Euler. 1. NUMEROS COMPLEJOS.

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

TEMA 5. VECTORES EN EL ESPACIO

TEMA 5. VECTORES EN EL ESPACIO TEMA 5. VECTORES EN EL ESPACIO ÍNDICE 1. INTRODUCCIÓN... 2 2. VECTORES EN EL ESPACIO.... 3 2.1. CONDICIONES INICIALES.... 3 2.2. PRODUCTO DE UN VECTOR POR UN NÚMERO.... 3 2.3. VECTORES UNITARIOS.... 3

Más detalles

APUNTES DE ÁLGEBRA II INGENIERÍA INDUSTRIAL

APUNTES DE ÁLGEBRA II INGENIERÍA INDUSTRIAL APUNTES DE ÁLGEBRA II INGENIERÍA INDUSTRIAL a t e a t i c a s UNIVERSIDAD CARLOS III DE MADRID DEPARTAMENTO DE MATEMÁTICAS Fernando de Terán Vergara Índice general. PRODUCTOS ESCALARES 3.. Definiciones

Más detalles

Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : , y los vectores

Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : , y los vectores FASÍCULO: ESPACIOS CON PRODUCTO INTERNO Teorema. Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : i) ii) iii) iv) Ejemplo: Sean el espacio vectorial con el producto interno definido

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

GEOMETRÍA II: Tema 2 Formas Bilineales y Formas Cuadráticas

GEOMETRÍA II: Tema 2 Formas Bilineales y Formas Cuadráticas GEOMETRÍA II: Tema 2 Formas Bilineales y Formas Cuadráticas 2.1. Definiciones y ejemplos. Expresión matricial. Congruencia de matrices. 2.2. Clasificación de formas cuadráticas reales. Ley de inercia de

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

TEMA 1. NÚMEROS REALES Y COMPLEJOS

TEMA 1. NÚMEROS REALES Y COMPLEJOS TEMA 1. NÚMEROS REALES Y COMPLEJOS 1.1 DEFINICIÓN AXIOMATICA DE LOS NÚMEROS REALES 1.1.1 Axiomas de cuerpo En admitimos la existencia de dos operaciones internas la suma y el producto, con estas operaciones

Más detalles