Movimiento armónico conceptos básicos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Movimiento armónico conceptos básicos"

Transcripción

1 Movimiento armónico conceptos básicos Llamamos movimiento oscilatorio cuando un móvil realiza un recorrido que se repite periódicamente, y que tiene un máximo y un mínimo respecto a un punto. Por ejemplo, un péndulo que oscila a izquierda y derecha respecto a la posición vertical. El movimiento armónico es un caso particular del movimiento oscilatorio. Al igual que el movimiento rectilíneo y circular, tiene sus propias ecuaciones de posición, velocidad y aceleración, y del mismo modo que en aquellos movimientos, estas ecuaciones se sacan derivando sucesivamente. Sin embargo, tienen algo de particular: en estas ecuaciones aparecen senos y cosenos (que son los que se encargan de que los valores se repitan periódicamente). Ecuación de posición o bien y = A(senωt + φ 0 ) x = A(cosωt + φ 0 ) dependiendo de si el movimiento lo medimos desde el eje vertical o el eje horizontal. Qué es cada cosa? A es la amplitud, la distancia máxima que el móvil llega a alcanzar respecto a la posición de equilibrio. También se denomina elongación máxima (elongación es la distancia del móvil respecto del punto de equilibrio en cualquier momento). La amplitud es una distancia, y por lo tanto se mide en metros. ω es la velocidad angular, equivalente a la del movimiento circular. También se mide en radianes por segundo. φ 0 es la fase inicial, equivalente a la posición inicial de los otros movimientos (por ejemplo, si el péndulo empieza un poco inclinado a la izquierda). Se mide en radianes.

2 Ecuación de velocidad La ecuación de velocidad, en realidad, son dos. Depende de si medimos la velocidad en vertical o en horizontal. Vamos a hacer un pequeño paréntesis para aclarar que es todo esto de una ecuación para la vertical y otra para la horizontal. Imagina un péndulo oscilando. Lo más seguro es que te lo estés imaginando con este aspecto: Si miramos el péndulo así, la trayectoria que describe sería una parábola, una especie de u abierta. Ahora, en vez de mirar el péndulo desde esa posición, lo vamos a mirar desde la izquierda, poniéndonos justo enfrente de él. Veríamos esto: Esto es medir la posición, la velocidad y la aceleración en vertical. Ahora imagina que vemos el péndulo colocándonos justo debajo de él. Veríamos esto: Esto es medir la posición, la velocidad y la aceleración en horizontal. Cuándo usamos cada uno? Pues depende de lo que nos pida el enunciado, aunque cuando se trata de péndulos se suele utilizar más la medida de las verticales (aunque ojo, hay más cosas que oscilan, aparte de los péndulos).

3 Bueno, después de esta pequeña aclaración, sigamos con lo nuestro. Decíamos que había dos fórmulas para la velocidad, que se obtienen de derivar las respectivas ecuaciones de posición 1 : y = A(senωt + φ 0 ) v y = Aω(cosωt + φ 0 ) x = A(cosωt + φ 0 ) v x = - Aω(senωt + φ 0 ) Ecuación de aceleración No hay mucho que explicar sobre ellas, si recuerdas que la aceleración se obtiene de derivar la velocidad respecto al tiempo, y que tendremos una aceleración en vertical y otra en horizontal. v y = Aω(cosωt + φ 0 ) a y = -Aω 2 (senωt + φ 0 ) v x = - Aω(senωt + φ 0 ) ax = - Aω 2 (cosωt + φ 0 ) Algunas conclusiones interesantes Vamos a reunir en un solo vistazo las tres ecuaciones y ver unas cuantas cosas que se pueden deducir de ellas. Para mayor claridad, nos vamos a quedar sólo con las que se refieren al movimiento en vertical, pero se podría aplicar exactamente lo mismo al resto. Posición y = A(senωt + φ 0 ) Velocidad v y = Aω(cosωt + φ 0 ) Aceleración a y = -Aω 2 (senωt + φ 0 ) Cuándo la posición del objeto que oscila alcanza su elongación máxima? (O dicho de otra manera, cuándo su posición coincide con la amplitud?) Cuando lo que hay dentro del paŕentesis vale 1. Si, como suele ser el caso, la fase inicial vale cero, esto quiere decir que ωt tiene que valer π/2. Por qué? Porque es el único ángulo para el cual el seno vale 1 (recuerda que medimos en radianes). En cualquier caso, si nos piden el tiempo para el cual el objeto se encuentra en su punto de elongación máxima, tienes que calcular cuándo senωt + φ 0 = 1 Siguiendo el mismo razonamiento, el objeto se encuentra en el punto de equilibrio cuando senωt + φ 0 = 0 1 Si no te acuerdas cómo se deriva, refresca tu memoria en nuestra sección de matemáticas. Si compruebas personalmente que sale exactamente lo que se indica, no sólo repasarás derivadas, sino que verás que las cosas encajan y que la física y las mates son ciencias hermanas.

4 Para la velocidad ocurre algo parecido, sólo que a la inversa porque hay un coseno en lugar de un seno. La velocidad máxima será cuando Y la velocidad mínima cuando cosωt + φ 0 = 1 cosωt + φ 0 = 0 Supón que la fase inicial vale cero. Fíjate lo que pasa: Elongación máxima cuando ωt = π/2 y 3π/2 2 Punto de equilibrio cuando ωt = 0 y π Velocidad máxima cuando ωt = 0 y π Velocidad mínima cuando ωt = π/2 y 3π/2 En resumen, en los extremos de su movimiento, el objeto tiene velocidad cero, y velocidad máxima en el punto de equilibrio. Cuando la elongación es máxima, la velocidad es mínima y viceversa. 2 Para el valor de y 3π/2 el seno vale -1. El objeto tendría su elongación máxima, aunque con signo negativo. En otras palabras, estaría en el otro extremo de su oscilación.

5 Otras relaciones importantes Estas fórmulas te pueden servir para relacionar entre sí distintos parámetros. Puede ocurrir que en lugar de darte uno de los valores (por ejemplo, la velocidad angular) te proporcionen otros datos para calcularlo. ω = 2πf f es la frecuencia del movimiento, es decir, el número de ciclos (u oscilaciones) por unidad de tiempo. T = 1/f El periodo (T) es la inversa de la frecuencia (f). Se define como el tiempo que tarda el objeto en realizar un ciclo completo. T = 2π/ k k es una constante propia de cada movimiento, y que puede calcularse también como k = ω 2 Como ves, el movimiento armónico tiene unas cuantas fórmulas, algunas de ellas no muy grandes, pero un poco parecidas entre sí. Es necesario trabajar con ellas y hacer bastantes ejercicios para fijarlas bien en la memoria.

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

Fuerzas: Ejercicios resueltos

Fuerzas: Ejercicios resueltos Fuerzas: Ejercicios resueltos 1) Un hombre, usando una cuerda, tira de una caja de 2,5 Kg con una fuerza de 10N, mientras la cuerda forma un ángulo de 60º con la horizontal. b) Calcula la fuerza resultante.

Más detalles

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple.

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1.1. Movimiento oscilatorio características. 4.1.2. Movimiento periódico: período. 4.1.3. Movimiento armónico simple: características

Más detalles

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

Ejercicios resueltos de tiro oblicuo

Ejercicios resueltos de tiro oblicuo Ejercicios resueltos de tiro oblicuo 1) Un arquero dispara una flecha cuya velocidad de salida es de 100m/s y forma un ángulo de 30º con la horizontal. Calcula: a) El tiempo que la flecha está en el aire.

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

DERIVADA GENERALIZADA DE LAS FUNCIONES SENO Y COSENO

DERIVADA GENERALIZADA DE LAS FUNCIONES SENO Y COSENO DERIVADA GENERALIZADA DE LAS FUNCIONES SENO Y COSENO Sugerencias para quien imparte el curso: Hay que privilegiar el aspecto utilitario del Cálculo, haciendo ver que ante la necesidad de resolver problemas

Más detalles

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 3 Movimiento armónico simple Ejercicio Una partícula que vibra a lo largo de un segmento de 0 cm de longitud tiene en el instante inicial su máxima velocidad que es de 0 cm/s.

Más detalles

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Movimiento Circular Movimiento Armónico

Movimiento Circular Movimiento Armónico REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2011

PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

MOVIMIENTOS EN UNA Y DOS DIMENSIONES

MOVIMIENTOS EN UNA Y DOS DIMENSIONES MOVIMIENTOS EN UNA Y DOS DIMENSIONES 1. Cómo se describen los movimientos? La descripción física de un fenómeno, como por ejemplo los movimientos, se hace en términos de la constancia de determinada magnitud.

Más detalles

Ecuaciones de la recta

Ecuaciones de la recta Ecuaciones de la recta Cajón de Ciencias Cuando empezamos a trabajar con rectas en primaria, lo hacemos solo utilizando expresiones del tipo y = mx + n o y = mx. Pero esto es solo una de las muchas formas

Más detalles

Choques Elásticos Apuntes de Clases

Choques Elásticos Apuntes de Clases COLEGIO JOSEFINO SANTÍSIMA TRINIDAD DEPARTAMENTE DE FÍSICA Profesor Jaier E. Jiménez C. Choques Elásticos Apuntes de Clases Se produce un choque elástico cuando los cuerpos chocan y no se pierde energía

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones

Más detalles

La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan.

La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan. CINEMATICA La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan. SISTEMA DE REFERENCIA Lo primero que hacemos para saber que un cuerpo

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simpe 1. Definiciones Se ama movimiento periódico a aque en que a posición, a veocidad y a aceeración de móvi se repiten a intervaos reguares de tiempo. Se ama movimiento osciatorio

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS APELLIDOS, NOMBRE: n o Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.008 Sea Oxyz un sistema de referencia ligado a un sólido S

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la T.7: TRIGONOMETRÍA 7.1 Medidas de ángulos. El radián. Ángulo reducido. Las unidades más comunes que se utilizan para medir los ángulos son el grado sexagesimal y el radián: Grado sexageximal: es cada una

Más detalles

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL:

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: Si junto con la fuerza de Van der Waals atractiva, que varía proporcionalmente a r 7, dos atómos idénticos de masa M eperimentan una fuerza repulsiva proporcional

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Descripción del movimiento 1.- Enumera todos aquellos factores que te parezcan relevantes para describir un movimiento. 2.- Es verdadera

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

N = {1, 2, 3, 4, 5,...}

N = {1, 2, 3, 4, 5,...} Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus

Más detalles

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato Mecánica Cuestiones y Problemas PAU 00009 Física º Bachillerato 1. Conteste razonadamente a las siguientes a) Si la energía mecánica de una partícula permanece constante, puede asegurarse que todas las

Más detalles

Demostración de la Transformada de Laplace

Demostración de la Transformada de Laplace Transformada de Laplace bilateral Demostración de la Transformada de Laplace Transformada Inversa de Laplace En el presente documento trataremos de demostrar matemáticamente cómo puede obtenerse la Transformada

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Distribución normal. Cajón de Ciencias. www.cajondeciencias.com. Qué es una variable estadística?

Distribución normal. Cajón de Ciencias. www.cajondeciencias.com. Qué es una variable estadística? Distribución normal Cajón de Ciencias Qué es una variable estadística? Una variable estadística es un parámetro que puede variar de manera aleatoria dentro de un rango de valores. Por ejemplo, la variable

Más detalles

2 (6370 + 22322) 10 = 2.09 10 J

2 (6370 + 22322) 10 = 2.09 10 J OPCIÓN A 1. La Agencia Espacial Europea lanzó el pasado 27 de Marzo dos satélites del Sistema de Navegación Galileo. Dichos satélites de masa 1,5 toneladas cada uno, orbitan ya a 22 322 km sobre la superficie

Más detalles

INSTITUTO TECNICO MARIA INMACULADA

INSTITUTO TECNICO MARIA INMACULADA INSTITUTO TECNICO MARIA INMACULADA ASIGNATURA: FISICA GRADO: NOVENO CAPITULO: GRAVITACION UNIVERSAL TEMA: CAIDA LIBRE DE LOS CUERPOS INDICADORES DE DESEMPEÑO. 1.- Analizar las características del movimiento.

Más detalles

Cinemática de la partícula

Cinemática de la partícula Cinemática de la partícula Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción

Más detalles

Límites e indeterminaciones

Límites e indeterminaciones Límites e indeterminaciones La idea de límite de una función no es en sí complicada, pero hubo que esperar hasta el siglo XVII a que los matemáticos Newton 1 y Leibniz 2 le dieran forma y la convirtiesen

Más detalles

Construcción de una línea perpendicular, dado un punto y una línea. 1. Dibuja una línea horizontal y un punto por encima de esa línea.

Construcción de una línea perpendicular, dado un punto y una línea. 1. Dibuja una línea horizontal y un punto por encima de esa línea. Materia: Matemática de Séptimo Tema: Rectas Perpendiculares Qué piensas cuando te dicen que dos líneas forman en un ángulo recto? Qué terminología usarías para describir a estas líneas? Después de revisar

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo Contenidos 1. La circunferencia. La circunferencia Elementos de la circunferencia. 2. Posiciones relativas. Punto y circunferencia. Recta y circunferencia. Dos circunferencias.

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

EL MOVIMIENTO Y SU DESCRIPCIÓN

EL MOVIMIENTO Y SU DESCRIPCIÓN 1. EL VECTOR VELOCIDAD EL MOVIMIENTO Y SU DESCRIPCIÓN Se van a tener dos tipos de magnitudes: Magnitudes escalares Magnitudes vectoriales Las magnitudes escalares son aquellas que quedan perfectamente

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

Función lineal y afín

Función lineal y afín Función lineal y afín Objetivos 1. Comprender el concepto de ejes de coordenadas 2. Comprender el concepto de función 3. Obtener información a partir de la gráfica de una función 4. Manejar la función

Más detalles

Unidad: Aceleración. http://www.galeriagalileo.cl 1

Unidad: Aceleración. http://www.galeriagalileo.cl 1 Unidad: Aceleración Ahora que entendemos que significa que un auto se mueva rápido o despacio en un movimiento rectilíneo uniforme, veremos la relación que existe entre el cambio de rapidez y el concepto

Más detalles

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) :

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) : Movimiento circular uniforme (MCU) : Es el movimiento de un cuerpo cuya trayectoria es una circunferencia y describe arcos iguales en tiempos iguales. Al mismo tiempo que recorremos un espacio sobre la

Más detalles

2. Un sistema de masa-resorte realiza 50 oscilaciones completas en 10 segundos. Cuál es el período y la frecuencia de las oscilaciones?

2. Un sistema de masa-resorte realiza 50 oscilaciones completas en 10 segundos. Cuál es el período y la frecuencia de las oscilaciones? Movimiento armónico simple Problemas del capítulo 1. Un sistema de masa-resorte realiza 20 oscilaciones completas en 5 segundos. Cuál es el período y la frecuencia de las oscilaciones? 2. Un sistema de

Más detalles

HOMOGENEIDAD DIMENSIONAL

HOMOGENEIDAD DIMENSIONAL HOMOGENEIDAD DIMENSIONAL Los observables que podemos medir se agrupan en conjuntos caracterizados por una propiedad que llamamos magnitud. Existe la magnitud tiempo, la magnitud velocidad, la magnitud

Más detalles

TEMA 3: El movimiento rectilíneo. T_m[ 3: El movimi_nto r_]tilín_o 1

TEMA 3: El movimiento rectilíneo. T_m[ 3: El movimi_nto r_]tilín_o 1 TEMA 3: El movimiento rectilíneo T_m[ 3: El movimi_nto r_]tilín_o ESQUEMA DE LA UNIDAD.- Movimiento rectilíneo uniorme...- Características del movimiento rectilíneo uniorme...- Ecuación del m.r.u..3.-

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN

UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN 86 _ 087-098.qxd 7//07 : Página 88 IDENTIICAR OBJETIVO UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN NOMBRE: CURSO: ECHA: Dado el polinomio P(x) x +, ya sabemos cómo se calcula su valor numérico: x P() + x P( )

Más detalles

PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO

PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO PRÁCTICA REMTA PÉNDUL FÍSIC AMRTIGUAD 1. BJETIV Estudio del comportamiento de un péndulo físico débilmente amortiguado. Determinación de la constante de amortiguamiento, γ, del periodo, T, de la frecuencia

Más detalles

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO 1.- Por un plano inclinado de ángulo y sin rozamiento, se lanza hacia arriba una masa m con una velocidad v o. Se pide: a) Fuerza o fuerzas que actúan sobre

Más detalles

Teoremas del seno y el coseno: ejercicios resueltos

Teoremas del seno y el coseno: ejercicios resueltos Teoremas del seno y el coseno: ejercicios resueltos 1) En los siguientes triángulos, halla los lados y ángulos restantes: a) b) c) d) 22º 12 92º 6 110º 25 28 8 79º 15 70º 5 2) Desde lo alto de un globo

Más detalles

ESTALMAT-Andalucía Actividades 06/07

ESTALMAT-Andalucía Actividades 06/07 ACTIVIDAD 1. NÚMEROS RACIONALES esto? a) Efectúa las divisiones 1/3, 1/5, 1/7, 8/2. Son exactas? Se empiezan a repetir las cifras del cociente en algún momento? Cuándo sucede b) Sin efectuar 15/13, di

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

UNIDAD 1: NÚMEROS NATURALES

UNIDAD 1: NÚMEROS NATURALES UNIDAD 1: NÚMEROS NATURALES 1. Calcula: Ya conoces las cuatro operaciones básicas, la suma, la resta, multiplicación y división. Cuando te aparezcan varias operaciones para realizar debes saber la siguiente

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos

Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos Ing. Laura Istabhay Ensástiga Alfaro. 1 Ejercicios de movimiento Horizontal. 1. Un automóvil viaja inicialmente a 20 m/s y está

Más detalles

TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten bien presente la diferencia entre dos clases de cantidades: las que representan propiedades físicas básicas del sistema

Más detalles

Problemas de Física I CINEMÁTICA DE LA PARTÍCULA

Problemas de Física I CINEMÁTICA DE LA PARTÍCULA Problemas de Física I CINEMÁTICA DE LA PARTÍCULA (1 er Q.:prob impares, 2 do Q.:prob pares) 1. Una partícula se mueve sobre el eje x de modo que su velocidad es v = 2 + 3t 2 + 4t 3 (m/s). En el instante

Más detalles

Tema 3: Acústica física III

Tema 3: Acústica física III Tema 3: Acústica física III Interferencia y ondas estacionarias. Principio, aplicación y demostración. Ondas estacionarias en un tubo. Ondas estacionarias 1D. Demostración. Modos propios y teoría de ondas

Más detalles

MOVIMIENTO UNIFORMEMENTE ACELERADO

MOVIMIENTO UNIFORMEMENTE ACELERADO MOVIMIENTO UNIFORMEMENTE ACELERADO El movimiento rectilíneo uniformemente aceleradoes un tipo de movimiento frecuente en la naturaleza. Una bola que rueda por un plano inclinado o una piedra que cae en

Más detalles

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos.

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos. RELACIÓN DE ACTIVIDADES MATEMÁTICAS º ESO TEMA 7: RESOLUCIÓN DE TRIÁNGULOS Y TRIGONOMETRÍA Contesta razonadamente a las siguientes preguntas:. Halla la incógnita en los siguientes triángulos rectángulos:

Más detalles

Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU)

Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU) Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU) 1. Cuál de los siguientes movimientos es más rápido, el del sonido que viaja a 340 m/s o el de un avión comercial que viaja a 1.080

Más detalles

5. PÉNDULO SIMPLE. MEDIDA DE g

5. PÉNDULO SIMPLE. MEDIDA DE g 5. PÉNDULO SIMPLE. MEDIDA DE g OBJETIVO El objetivo de la práctica es medir la aceleración de la gravedad en el laboratorio, g, a partir del estudio del movimiento armónico de un péndulo simple. MATERIAL

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

GEOMETRÍA ANALÍTICA EN EL PLANO

GEOMETRÍA ANALÍTICA EN EL PLANO GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

b 11 cm y la hipotenusa

b 11 cm y la hipotenusa . RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS UNIDAD : Trigonometría II Resolver un triángulo es conocer la longitud de cada uno de sus lados y la medida de cada uno de sus ángulos. En el caso de triángulos rectángulos,

Más detalles

Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x.

Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x. EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 4 ECUACIONES Ejercicio nº 1.- Dada la siguiente igualdad: x 1 3 9 x 5 3x = x responde razonadamente: a) Es cierta si sustituimos la incógnita por el valor cero?

Más detalles

Ejercicios resueltos de funciones

Ejercicios resueltos de funciones Ejercicios resueltos de funciones 1) Representa en un eje de coordenadas los siguientes puntos: A(1,5), B(-3,3), C(0, -4), D (2,0). 2) Representa en dos ejes de coordenadas las funciones siguientes: a)

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

Movimiento de caída libre

Movimiento de caída libre Movimiento de caída libre El movimiento de los cuerpos en caída libre (por la acción de su propio peso) es una forma derectilíneo uniformemente acelerado. La distancia recorrida (d) se mide sobre la vertical

Más detalles

4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría.

4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría. - Un triángulo de hipotenusa unidad Teorema fundamental de la trigonometría Puesto que el valor de las razones trigonométricas en un triángulo rectángulo no dependen del tamaño de los lados, puede elegirse

Más detalles

Construyamos una tabla de valores que incluya valores negativos y positivos de.

Construyamos una tabla de valores que incluya valores negativos y positivos de. Materia: Matemáticas de 4to año Tema: Representación gráfica de una función exponencial Marco teórico Funciones exponenciales Iniciemos esta sección construyendo las gráficas de algunas funciones exponenciales.

Más detalles

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función

Más detalles

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura

Figura 3.-(a) Movimiento curvilíneo. (b) Concepto de radio de curvatura Componentes intrínsecas de la aceleración: Componentes tangencial y normal Alfonso Calera Departamento de Física Aplicada. ETSIA. Albacete. UCLM En muchas ocasiones el análisis del movimiento es más sencillo

Más detalles

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado. Movimiento Circular. Se define como movimiento circular aquél cuya trayectoria es una circunferencia. El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo. Estamos rodeados

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

Ejercicios de Dinámica

Ejercicios de Dinámica Ejercicios de Dinámica 1. Una fuerza de 14 N que forma 35 con la horizontal se quiere descomponer en dos fuerzas perpendiculares, una horizontal y otra vertical. Calcula el módulo de las dos fuerzas perpendiculares

Más detalles

CAPÍTULO. 1 Conceptos básicos

CAPÍTULO. 1 Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.4.2 Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes

Más detalles

Coordenadas polares. Representación de puntos con coordenadas polares. Por ejemplo

Coordenadas polares. Representación de puntos con coordenadas polares. Por ejemplo Instituto de Matemática Cálculo Integral Profesora Elisabeth Ramos Coordenadas polares El sistema de coordenadas polares es un sistema de coordenadas bidimensional en el cual cada punto o posición del

Más detalles

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador.

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador. UD6 FUERZAS Y MOVIMIENTO EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si cambia de posición con respecto al sistema de referencia; en caso contrario, está en reposo. Sistema de referencia

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el

Más detalles

Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR

Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR Módulo MOVIMIENTO PENDULAR C.N. Física Lic. Orlando Chaparro Ch. 1 MOVIMIENTO PENDULAR PÉNDULO: Es un sistema físico que puede oscilar bajo la acción gravitatoria u otra característica física y que está

Más detalles

PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.

PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. Matemáticas º ESO Federico Arregui PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en es igual a su cuadrado?. Qué número multiplicado por 3 es 0

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

1.- EL MOVIMIENTO. Ejercicios

1.- EL MOVIMIENTO. Ejercicios Ejercicios 1.- EL MOVIMIENTO 1.- En la siguiente figura se representa la posición de un móvil en distintos instantes. Recoge en una tabla la posición y el tiempo y determina en cada caso el espacio recorrido

Más detalles

ONDAS ESTACIONARIAS FUNDAMENTO

ONDAS ESTACIONARIAS FUNDAMENTO ONDAS ESTACIONARIAS FUNDAMENTO Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a

Más detalles

Trigonometría y problemas métricos

Trigonometría y problemas métricos Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.

Más detalles

FUNCIONES LINEAL Y POTENCIA

FUNCIONES LINEAL Y POTENCIA FUNCIONES LINEAL Y POTENCIA La función lineal La función lineal puede describirse en forma genérica con la fórmula y = ax + c, donde a (la pendiente) y c (la ordenada al origen) son constantes. La gráfica

Más detalles

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas.

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas. ECUACIÓN DE LA RECTA. El punto (, 0) está situado: a) Sobre el eje de ordenadas. b) En el tercer cuadrante. c) Sobre el eje de abscisas. (Convocatoria junio 00. Examen tipo D) Dibujando los ejes de coordenadas

Más detalles

TEMA 6 CORRIENTE ALTERNA

TEMA 6 CORRIENTE ALTERNA TEMA 6 CORRIENTE ALTERNA CARACTERÍSTICAS DE LA CORRIENTE ALTERNA Un circuito de corriente alterna consta de una combinación de elementos: resistencias, condensadores y bobinas y un generador que suministra

Más detalles

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco.

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco. Trigonometría Radianes Los grados sexagesimales, que son los más frecuentes, se utilizan para dividir a la circunferencia en 360 partes iguales. Si colocamos el eje de coordenadas en la circunferencia

Más detalles