Oliver A. Vilca H. Pág. 1. Resumen de clases Oliver Amadeo Vilca Huayta

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Oliver A. Vilca H. Pág. 1. Resumen de clases Oliver Amadeo Vilca Huayta"

Transcripción

1 Oliver A. Vilca H. Pág. 1 Expresiones regulares y autómatas finitos Resumen de clases Oliver Amadeo Vilca Huayta Una expresión regular sirve como un descriptor de un lenguaje, también es una herramienta para describir patrones de texto, por ejemplo: 1. Se utiliza una notación similar a una expresión regular para describir patrones de búsqueda. Por ejemplo en el procesamiento de documentos electrónicos, bioinformática, base de datos y en comandos de búsqueda como el GREP de UNIX. 2. En los generadores de analizadores léxico como el Lex y el Flex. El análisis léxico es una fase de un compilador que divide el código de entrada en unidades lógicas denominadas tokens de uno o más caracteres. Ejemplos de tokens son las palabras reservadas (ejemplo: if ), identificadores y signos como +,>. 3. En búsqueda de texto flexible, se utiliza la expresión regular como un patrón de búsqueda, por ejemplo: a??bc[f-p] puede represetar a todas las cadenas (palabras) de texto que inician con la a seguida de cualquier dos carateres (símbolos), seguida de bc, y, finalmente un carater que puede ser desde la f hasta la k, es decir, uno del rango de carateres comprendido entre la f y k. Una ventaja adicional es que se puede convertir en una máquina (autómata finito), el cual puede automáticamente decidir si una cadena (palabra) pertenece o no al lenguaje denotado por la expresión regular. Cadena Una cadena (o algunas veces palabra) es una secuencia finita de símbolos escogidos de un alfabeto. Por ejemplo: aba es una cadena del alfabeto Σ = {a, b} La cadena vacia. Es la cadena de cero ocurrencias de símbolos, es denotado por ǫ. Longitud de una cadena. Es el número de símbolos (posiciones) de una cadena. Por ejemplo aba tiene longitud 3. La notación para la longitud de una cadena w es w. Y ǫ = 0 (la única cadena cuya longitud es cero). La estrella de Kleene (o la clausura de Kleene). De un lenguaje L se denota por L. Es la unión infinita i 0 L i, donde L 0 = {ǫ}, L 1 = L y L i, para i > 1 es LLL L, la concatenación de i copias de L. Expresión regular. Se puede describir una expresión regular recursivamente como sigue: Las constantes ǫ (cadena vacia) y (conjunto vacio) son expresiones regulares. Si a Σ, es un símbolo, entonces a es una expresión regular. Inducción: Si r y s son expresiones regulares entonces: r s es una expresión regular, denota la unión de los lenguajes que representan dichas expresiones regulares. rs es una expresión regular, denota la concatenación. r es una expresión regular, denota la estrella de kleene. (r) es una expresión regular, denota el mismo lenguaje r. Nota: Debido a que en algunos casos el operador (unión) no está muy accesible en el teclado del computador, en algunas aplicaciones como el JFLAP se utiliza el + y algunos autores lo utilizan Precedencia: Para evitar el uso exagerado de paréntesis se puede emplear la precedencia de operadores. 1. Operador unario : Tiene la mayor precedencia y es asociativo por la izquierda, es decir, se aplica sólo a la secuencia más corta de símbolos a su izquierda que constituye una expresión regular. 2. La concatenación, o punto : tiene la segunda mayor precedencia y es asociativo por la izquierda. Este operador se representa con un punto, pero por fines prácticos se obvia, en su lugar se ubican los símbolos

2 Oliver A. Vilca H. Pág La unión : tiene la menor precedencia y es asociativo por la izquierda. En ocasiones no se desea que una expresión regular sea agrupada según la precedencia de los operadores. En dicho caso, se puede emplear paréntesis para agrupar los operandos de la forma que se requiera. por conveniencia. Ejemplos: Complete los espacios en blanco. Lenguaje regular Expresión regular {a, b} {ǫ, b} {a, ab} {abe, ace, } {a, b, c, d} {ǫ, b, bb, bbb, bbbb,...} {a, ab, abb, abbb, abbbb,...} {ǫ, c, ab, cc, ccc, cccc,...} {a, ab, abb, abbb, abbbb,... ac, abc, abbc, abbbc, abbbbc,...} Todas las cadenas que se pueden formar con el alfabeto Σ = {a, b}, incluido la cadena vacia a b ǫ b a ab = a(ǫ b) a(b c d)e (a b)(a b) (a b) (c d) = a b c d b ab c ab c ab (ǫ c) = ab ab c a b a b (a b) (ab) Lenguajes cuyas clausuras no son infinitas: = {ǫ}. Asimismo, 0 = {ǫ}, mientras que i, para algun i 1 es vacio, debido a que no se puede seleccionar alguna cadena del conjunto vacio. Finalmente ǫ = {ǫ}. Ejemplo: Construya una expresión regular para: L = {w {a,b}* : w tiene una cantidad par de a s } Si se tratara solamente de a s la respuesta sería: (aa) el cual genera una cantidad par de a s (cero es par). Pero es necesario considerar el alfabeto Σ = {a, b} el cual permite la cadena como: babba, baabababb. La respueta es: (b ab ab ) que también puede escribirse: (b ab a) Ejemplo: Dado el lenguaje formado sobre el alfabeto Σ = {a, b} donde se tiene la condición de que cada b esta precedida por una a (pueden haber mas a s que la preceden). Por ejemplo: ǫ, aaabaa, ababa, aaa. L = {w {a, b} : en w cada b está precedido por al menos una a} Respuesta: (a ab) Ejemplo: Dado el lenguaje formado con el alfabeto Σ = {a, b} donde todas las cadenas no tienen la subcadena aa ni la subcadena bb. Es decir, el siguiente lenguaje: L = {w {a, b} : w no tiene la subcadenas aa ni bb } Solución: Para obtener el resutado se ordena las cadenas (que se pueden generar) en tres filas como sigue:

3 Oliver A. Vilca H. Pág. 3 ǫ a, ab, aba, abab, ababa, ababab,... b, ba, bab, baba, babab, bababa,... Para generar el primer conjunto de cadenas (primera y segunda fila) se tiene: (ab) (a ǫ). A este resultado se le debe incluir el segundo conjunto de cadenas, siendo el resultado: (ab) (a ǫ) (ba) (b ǫ). Si se observa mas el ejercicio se obtiene: (b ǫ)(ab) (a ǫ) Algebra de expresiones regulares Complete los espacios en blanco. Lenguaje regular La clausura de : ǫ Ley de idempotencia para la unión: r r Elemento neutro de la unión: r = r Elemento neutro de la concatenación: ǫr = ǫr Elemento nulo de la concatenación: r = r Clausura de una expresión que ya está clausurada: (r ) Expresiones regulares en Unix/Linux Resultado Por conveniencia en el Unix/Linux se utiliza una notación extendida de expresiones regulares para facilitar su uso, considerando las características y restricciones de la computadora (ejemplo códigos). Se presenta una breve descripción sin desviarse en detalles. Permite escribir clases de caracteres para representar grandes conjuntos cadenas lo mas compacto posible. Sus reglas son las siguientes: El símbolo. representa cualquier caracter. La secuencia [c 1 c 2 c n ] representa la expresión regular: c 1 c 2 c n Por ejemplo se puede utilizar para representar los cuatro caracteres utilizados en los operadores de comparación del C/C++ [<>=!]. La secuencia [ c 1 c 2 c n ] representa cualquier caracter que no sea: c 1 c 2 c n Rango [x y] que significa todos los caracteres de x hasta y en la secuencia ASCCI. Por ejemplo las letras mayúsculas se pueden representar como [A Z] y el conjunto de todas las letras y dígitos como [A Za z0 9]. Los corchetes y otros caracteres reservados del UNIX pueden representarse precediéndolos con \. Ejemplos del comando GREP del Unix: $ # Buscar líneas con al menos una letra de la a a la z (minúsculas o mayúsculas). $ grep [a-za-z] sistemas.txt $ # Lista líneas con cualquier carácter que no sean ni letra ni número. $ grep [ a-za-z0-9] archivo.txt Expresiones regulares para el programador A continuación algunas de las herramientas de programación disponibles que ofrecen motores de búsqueda con soporte para expresiones regulares:

4 Oliver A. Vilca H. Pág. 4 Java: existen varias bibliotecas hechas para java que permiten el uso de RegEx, y Sun planea dar soporte a estas desde el SDK. JavaScript: a partir de la versión 1.2 (ie4+, ns4+) JavaScript tiene soporte integrado para expresiones regulares. PCRE: biblioteca de ExReg para C, C++ y otros lenguajes que puedan utilizar bibliotecas dll (Visual Basic 6 por ejemplo)..net Framework: provee un conjunto de clases mediante las cuales es posible utilizar expresiones regulares para hacer búsquedas, reemplazar cadenas y validar patrones. Ejercicios propuestos 1. Verdadero o Falso. Explique su respuesta: (a) a* a*b* (b) a*b* b*a* = a* b* (c) abab (a(cd)*b)* (d) abcd (a*(cd)*b*)* 2. Verdadero o Falso. Explique su respuesta: (a) b*a* a*b* = (a b)* (b) abcd (a(cd)*b)* (c) (a b) = (a b ) (d) (ab a)*ab = (aa*b)* 3. Escriba una expresión regular para los siguientes lenguajes: (a) {w {0,1}* : w tiene una cantidad de 1 s divisible por cinco } (b) {w {a,b}* : w no tiene tres b s consecutivas } Es decir, cadenas que tienen a lo mas dos b s consecutivas. (c) {w {a,b}* : w tiene exactamente una ocurrencia de bbb } (d) {w {a,b}* : w no tiene la subcadena aba } 4. Escriba una expresión regular para el siguiente lenguaje: [6p] L = {a m b n : m + n es par } 5. Desmuestre o refute lo siguiente: (ab a) = (aa b) [5p] 6. Demuestre ó refute que: a b(ba b a) = a b(a ba ba ) [5p] 7. Escriba una expresión regular para la diferencia de los siguientes lenguajes: a b b [5p] 8. Derivadas de expresiones regulares, fue introducido por Brzozowski 1. Sea E una expresión regular sobre un alfabeto Σ y sean a y b dos símbolos distintos de Σ. La derivada de E con respecto a a (de longitud unitaria), se define recursivamente como sigue: [8p] (a) a = ǫ (1) a (ǫ) = a ( ) = (b) a = (2) a (F ) = a (F )F (3) (F G) = a (F )G a (G) Si ǫ F, a a (F )G En otro caso. (4) 1 Janusz A. Brzozowski (1964) Derivatives of regular expressions.

5 Oliver A. Vilca H. Pág. 5 Derive: (a b) a(a b) 2 respecto a a y b. Defina la derivada de una expresión regular E respecto a una cadena w de Σ.

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia III: Conocer, utilizar y manipular expresiones regulares

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia III: Conocer, utilizar y manipular expresiones regulares Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia III: Conocer,

Más detalles

Lenguajes Regulares. Antonio Falcó. - p. 1

Lenguajes Regulares. Antonio Falcó. - p. 1 Lenguajes Regulares Antonio Falcó - p. 1 Cadenas o palabras I Una cadena o palabra es una sucesión finita de símbolos. cadena {c, a, d, e, n}. 10001 {0, 1} El conjunto de símbolos que empleamos para construir

Más detalles

TEMA 5. GRAMÁTICAS REGULARES.

TEMA 5. GRAMÁTICAS REGULARES. TEMA 5. GRAMÁTICAS REGULARES. 5.1. Gramáticas Regulares. 5.2. Autómatas finitos y gramáticas regulares. 5.2.1. Gramática regular asociada a un AFD 5.2.2. AFD asociado a una Gramática regular 5.3. Expresiones

Más detalles

UNIDAD I. ALGORITMOS

UNIDAD I. ALGORITMOS UNIDAD I. ALGORITMOS 1.1 Definición Un algoritmo es una serie de pasos organizados que describe el proceso que se debe seguir, para dar solución a un problema específico. 1.2 Tipos Cualitativos: Son aquellos

Más detalles

TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 }

TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 } TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar

Más detalles

2. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS

2. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS 2. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS 2.1 Tipos De Datos Todos los datos tienen un tipo asociado con ellos. Un dato puede ser un simple carácter, tal como b, un valor entero tal como

Más detalles

EXPRESIONES REGULARES Y AUTOMATAS

EXPRESIONES REGULARES Y AUTOMATAS EXPRESIONES REGULARES Y AUTOMATAS La fase de rastreo, o análisis léxico, de un compilador tiene la tarea de leer el programa fuente como un archivo de caracteres y dividirlo en tokens. Los tokens son como

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

Clase 09: AFN, AFD y Construcción de Thompson

Clase 09: AFN, AFD y Construcción de Thompson Clase 09: AFN, AFD y Construcción de Thompson Solicitado: Ejercicios 07: Construcción de AFN scon Thompson M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom

Más detalles

ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS Tipos de datos Expresiones Operadores y operandos Identificadores como localidades de memoria

ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS Tipos de datos Expresiones Operadores y operandos Identificadores como localidades de memoria ENIDADES PRIMIIVAS PARA EL DESARROLLO DE ALGORIMOS ipos de datos Expresiones Operadores y operandos Identificadores como localidades de memoria ipos De Datos odos los datos tienen un tipo asociado con

Más detalles

UNIDAD 2: INTRODUCCIÓN AL LENGUAJE DE PROGRAMACiÓN R

UNIDAD 2: INTRODUCCIÓN AL LENGUAJE DE PROGRAMACiÓN R UNIDAD 2: INTRODUCCIÓN AL LENGUAJE DE PROGRAMACiÓN R Técnicas Inteligentes en Bioinformática Máster en Lógica, Computación e Inteligencia Artificial Dpto. Ciencias de la Computación e Inteligencia Artificial

Más detalles

Autómatas Finitos y Lenguajes Regulares

Autómatas Finitos y Lenguajes Regulares Autómatas Finitos y Lenguajes Regulares Problema: Dado un lenguaje L definido sobre un alfabeto A y una cadena x arbitraria, determinar si x L o x L. Cadena x AUTOMATA FINITO SI NO Lenguaje Regular Autómatas

Más detalles

Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]*

Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]* Procesadores de lenguaje Ejercicios del Tema 2 Ejercicio 2.1 Sean L = {a, aa, b} y M = {ab, b }. Describe LM y M 3 por enumercaión LM = { aab, ab, aaab, bab, bb } M 3 = { ababab, ababb, abbab, abbb, babab,

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt holger.billhardt@urjc.es Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Qué Tipos de Datos se Almacenan en OpenOffice.org Calc?

Qué Tipos de Datos se Almacenan en OpenOffice.org Calc? Qué Tipos de Datos se Almacenan en OpenOffice.org Calc? Se puede ingresar cualquier dato en una celda de la hoja de cálculo. OpenOffice.org Calc está en condiciones de comprobar automáticamente el tipo

Más detalles

Lenguajes (gramáticas y autómatas)

Lenguajes (gramáticas y autómatas) Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

Proyecto Unico - Parte 1 - Solución

Proyecto Unico - Parte 1 - Solución Universidad Simón Bolívar Dpto. de Computación y Tecnología de la Información CI3721 - Traductores e Interpretadores Abril-Julio 2006 Proyecto Unico - Parte 1 - Solución Revisión Teórico-Práctica 1. Presente

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES (TALF) BLOQUE II: LENGUAJES REGULARES Tema 2: Autómatas Finitos Parte 2 (de 3). Autómatas Finitos No Deterministas (AFNDs) Grado en Ingeniería Informática URJC

Más detalles

Sintaxis y Semántica del Lenguaje. Gramáticas

Sintaxis y Semántica del Lenguaje. Gramáticas Gramáticas La tarea de proveer una descripción bien concisa y entendible de un lenguaje de programación es difícil pero esencial para el éxito de un lenguaje. Uno de los problemas en describir un lenguaje

Más detalles

CAPITULO II. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS

CAPITULO II. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS CAPIULO II. ENIDADES PRIMIIVAS PARA EL DESARROLLO DE ALGORIMOS 2.1 ipos de datos 2.2 Expresiones 2.3 Operadores y operandos 2.4 Identificadores como localidades de memoria OBJEIVO EDUCACIONAL: El alumno:

Más detalles

Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas.

Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Tema 2. Funciones Lógicas Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Álgebra de conmutación Algebra de Conmutación: Postulados y Teoremas. Representación

Más detalles

EJERCICIOS RESUELTOS DE MATRICES

EJERCICIOS RESUELTOS DE MATRICES EJERCICIOS RESUELTOS DE MATRICES. Dadas las matrices A - 3, B 0 - y C 3 -, calcular si es posible: a) A + B b) AC c) CB y C t B d) (A+B)C a) A + B - 3 + 0 - b) AC - 3 3 - +0 -+ 3+ +(-) 0 7 0.+(-).3+(-)(-).+(-)

Más detalles

GUIA PRACTICA PARA LA APLICACIÓN DE MS EXCEL TECNOLOGIA/ INFORMATICA

GUIA PRACTICA PARA LA APLICACIÓN DE MS EXCEL TECNOLOGIA/ INFORMATICA Fórmulas y funciones De la barra de menú seleccionmos la opción insertar y haciendo clic en la opción f x se desplegará el siguiente cuadro de diálogo a partir del cual escogeremos la función adecuada

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 OPERACIONES CON LOS NÚMEROS REALES En R se de nen dos operaciones: Suma o adición y producto o multiplicación: Si a 2 R y

Más detalles

Autómatas finitos no deterministas (AFnD)

Autómatas finitos no deterministas (AFnD) Autómatas finitos no deterministas (AFnD) Elvira Mayordomo Universidad de Zaragoza 1 de octubre de 2012 Contenido de este tema Introducción y ejemplos de autómatas finitos no deterministas Definición de

Más detalles

I PRELIMINARES 3 1 Identidades notables... 3 1.1 Productos y potencias notables... 3 2 Uso del símbolo de sumatoria... 6 2.1 Símbolo de sumatoria:

I PRELIMINARES 3 1 Identidades notables... 3 1.1 Productos y potencias notables... 3 2 Uso del símbolo de sumatoria... 6 2.1 Símbolo de sumatoria: ÍNDICE I PRELIMINARES Identidades notables............................... Productos y potencias notables...................... Uso del símbolo de sumatoria........................ 6. Símbolo de sumatoria:

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO

INSTITUTO TECNOLÓGICO DE APIZACO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA LSC 2003-1 5491 Taller de Linux PRÁCTICA No. 18 LABORATORIO DE NOMBRE DE LA PRÁCTICA Licenciado en Sistemas Computacionales DURACIÓN (HORA)

Más detalles

2.Teoría de Autómatas

2.Teoría de Autómatas 2.Teoría de Autómatas Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

2: Autómatas finitos y lenguajes regulares.

2: Autómatas finitos y lenguajes regulares. 2: Autómatas finitos y lenguajes regulares. Los autómatas finitos son el modelo matemático de los sistemas que presentan las siguientes características: 1) En cada momento el sistema se encuentra en un

Más detalles

Definición formal de autómatas finitos deterministas AFD

Definición formal de autómatas finitos deterministas AFD inicial. Ejemplo, supóngase que tenemos el autómata de la figura 2.4 y la palabra de entrada bb. El autómata inicia su operación en el estado q 0 (que es el estado inicial). Al recibir la primera b pasa

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

Capítulo 7: Expresiones Regulares

Capítulo 7: Expresiones Regulares Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión

Más detalles

OPERADORES LÓGICOS JAVASCRIPT. EJEMPLOS. RELACIONALES MAYOR, MENOR, IGUAL, DISTINTO. AND, OR, NOT. CORTO- CIRCUITO (CU01117E)

OPERADORES LÓGICOS JAVASCRIPT. EJEMPLOS. RELACIONALES MAYOR, MENOR, IGUAL, DISTINTO. AND, OR, NOT. CORTO- CIRCUITO (CU01117E) APRENDERAPROGRAMAR.COM OPERADORES LÓGICOS JAVASCRIPT. EJEMPLOS. RELACIONALES MAYOR, MENOR, IGUAL, DISTINTO. AND, OR, NOT. CORTO- CIRCUITO (CU01117E) Sección: Cursos Categoría: Tutorial básico del programador

Más detalles

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012 1 Guía de Estudio y Ejercitación propuesta Esta selección de Temas y Ejercicios están extraídos del texto FUNDAMENTOS DE ALGEBRA LINEAL de R. Larson y D. Falvo.

Más detalles

LEX. Las definiciones y subrutinas son opcionales. El segundo %% es opcional pero el primer %% indica el comienzo de las reglas.

LEX. Las definiciones y subrutinas son opcionales. El segundo %% es opcional pero el primer %% indica el comienzo de las reglas. LEX Estructura de un programa en LEX { definiciones { reglas { subrutinas del usuario Las definiciones y subrutinas son opcionales. El segundo es opcional pero el primer indica el comienzo de las reglas.

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Teoría de Conjuntos y Conjuntos Numéricos

Teoría de Conjuntos y Conjuntos Numéricos Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R

Más detalles

Expresión, Operador, Operando, Asignación, Prioridad

Expresión, Operador, Operando, Asignación, Prioridad 4. EXPRESIONES Y OPERADORES Conceptos: Resumen: Expresión, Operador, Operando, Asignación, Prioridad En este tema se presentan los siguientes elementos de la programación: las expresiones y los operadores.

Más detalles

Teoría de la Computación

Teoría de la Computación Teoría de la Computación Grado en Ingeniería Informática Prácticas de Laboratorio * Gregorio de Miguel Casado email: gmiguel@unizar.es Elvira Mayordomo Cámara email: elvira@unizar.es Dpto. de Informática

Más detalles

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Dr. Ricardo Soto [ricardo.soto@ucv.cl] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia

Más detalles

Principios de Computadoras II

Principios de Computadoras II Departamento de Ingeniería Electrónica y Computadoras Operadores y Expresiones rcoppo@uns.edu.ar Primer programa en Java 2 Comentarios en Java Comentario tradicional (multi-línea) Comentario de línea Comentario

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

UNIDAD III: Elementos del Lenguaje QuickBASIC OBJETIVO GENERAL:

UNIDAD III: Elementos del Lenguaje QuickBASIC OBJETIVO GENERAL: UNIDAD III: Elementos del Lenguaje QuickBASIC OBJETIVO GENERAL: Aprender los tipos de datos que soporta este lenguaje de programación. 3.1 Números en QuickBASIC QuickBASIC soporta cuatro tipos de números:

Más detalles

Definición(2) La base (r) de un sistema de numeración especifica el número de dígitos o cardinal* de dicho conjunto ordenado. Las bases más utilizadas

Definición(2) La base (r) de un sistema de numeración especifica el número de dígitos o cardinal* de dicho conjunto ordenado. Las bases más utilizadas Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Definición(1) Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

Teoría de conjuntos. Tema 1: Teoría de Conjuntos.

Teoría de conjuntos. Tema 1: Teoría de Conjuntos. Tema 1: Teoría de Conjuntos. La teoría de Conjuntos es actualmente una de las más importantes dentro de la matemática. Muchos de los problemas que se le han presentado a esta disciplina en los últimos

Más detalles

Repaso. Lenguajes formales

Repaso. Lenguajes formales Repaso. Lenguajes formales Profesor Federico Peinado Elaboración del material José Luis Sierra Federico Peinado Ingeniería en Informática Facultad de Informática Universidad Complutense de Madrid Curso

Más detalles

Capítulo 5 IDENTIFICADORES, VARIABLES Y CONSTANTES. Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C"

Capítulo 5 IDENTIFICADORES, VARIABLES Y CONSTANTES. Presentación resumen del libro: EMPEZAR DE CERO A PROGRAMAR EN lenguaje C Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C" Autor: Carlos Javier Pes Rivas (correo@carlospes.com) Capítulo 5 IDENTIFICADORES, VARIABLES Y CONSTANTES 1 OBJETIVOS Saber qué

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

INSTITUTO SUPERIOR DE FORMACIÓN TÉCNICA Nº 177

INSTITUTO SUPERIOR DE FORMACIÓN TÉCNICA Nº 177 INSTITUTO SUPERIOR DE FORMACIÓN TÉCNICA Nº 177 Instrucción condicional if else Uso de la estructura condicional Ejemplos con diagramas de flujo y codificación wdcarnero@gmail.com LA INSTRUCCIÓN CONDICIONAL

Más detalles

Proposiciones Condicionales

Proposiciones Condicionales SENTENCIAS CONDICIONALES SIMPLES: if- Anteriormente se discutió que una de las estructuras utilizadas en la programación estructurada es la Estructura Selectiva o Condicional. Se explican aquí las sentencias

Más detalles

Capítulo 1. Algoritmos, diagramas de flujo y programas.

Capítulo 1. Algoritmos, diagramas de flujo y programas. Capítulo 1. Algoritmos, diagramas de flujo y programas. 1.1 Problemas y algoritmos 1.2 Diagramas de flujo 1.2.1 Reglas para la construcción de diagramas de flujo 1.3 Conceptos fundamentales 1.3.1 Tipos

Más detalles

Clase 25/09/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf

Clase 25/09/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Clase 25/09/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf A pesar de haber ejercitado la realización de demostraciones en varias materias, es frecuente que el alumno consulte sobre la validez

Más detalles

Propiedades de los Lenguajes Libres de Contexto

Propiedades de los Lenguajes Libres de Contexto de los s de los Lenguajes Libres de Contexto INAOE (INAOE) 1 / 47 Contenido de los s 1 2 -ɛ 3 4 5 6 de los s (INAOE) 2 / 47 () de los s Queremos mostrar que todo (sin ɛ) se genera por una CFG donde todas

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD II EXCEL

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD II EXCEL UNIDAD II EXCEL COMPETENCIAS E INDICADORES DE DESEMPEÑO Identificar las funciones de microsoft excel utiliza la tabla de cálculo para elaborar documentos. Interactúa con las diferentes herramientas de

Más detalles

Operando1 operador de relación Operando2

Operando1 operador de relación Operando2 PROGRAMACIÓN 10 Prof. Dolores Cuiñas H. Recuerde que estos son apuntes muy simplificados que deberá completar con la bibliografía recomendada APUNTES Nº 5 ESTRUCTURAS DE CONTROL SELECTIAS O ESTRUCTURAS

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales Motivación e Ideas y Derivadas Formales La Derivación como Operación. Universidad de Cantabria Esquema Motivación e Ideas 1 Motivación e Ideas 2 3 Motivación Motivación e Ideas Sabemos como son los conjuntos

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

Serafín Moral Departamento de Ciencias de la Computación. Modelos de Computación ITema 2: Autómatas Finitos p.1/88

Serafín Moral Departamento de Ciencias de la Computación. Modelos de Computación ITema 2: Autómatas Finitos p.1/88 Modelos de Computación I Tema 2: Autómatas Finitos Serafín Moral Departamento de Ciencias de la Computación Modelos de Computación ITema 2: Autómatas Finitos p./88 Contenido Autómata Finito Determinista

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto:

Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto: I.- Teoría de conjuntos Definición de conjunto Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto: a) Por extensión

Más detalles

5. INTRODUCCIÓN A LAS HOJAS DE CÁLCULO

5. INTRODUCCIÓN A LAS HOJAS DE CÁLCULO Unidad 5. Introducción a las Hojas de Cálculo Pag: 1/6 5. INTRODUCCIÓN A LAS HOJAS DE CÁLCULO Una hoja de cálculo es, una tabla de información dispuestas en filas y columnas. A las columnas se les nombra

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA

EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA 1ER PARCIAL TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Examen parcial 12/02/2003 1.- Usa el lema de bombeo para

Más detalles

FLEX: Un generador de analizadores léxicos. AT&T Lex (más común en UNIX) MKS Lex (MS-Dos) Flex Abraxas Lex Posix Lex ScanGen JLex...

FLEX: Un generador de analizadores léxicos. AT&T Lex (más común en UNIX) MKS Lex (MS-Dos) Flex Abraxas Lex Posix Lex ScanGen JLex... Como hemos visto, el paso de una expresión regular a un AF se puede hacer de manera automatizada Existen varias herramientas que relizan dicho trabajo Generadores de analizadores léxicos AT&T Lex (más

Más detalles

Conceptos básicos de programación. Arquitectura de Computadoras. Conceptos básicos de programación

Conceptos básicos de programación. Arquitectura de Computadoras. Conceptos básicos de programación Arquitectura de Computadoras Conceptos básicos de programación 1. Introducción: Programación es el conjunto de actividades implicadas en la descripción, el desarrollo y la implementación eficaz de soluciones

Más detalles

Notación de Conjuntos

Notación de Conjuntos 1 A. Introducción UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Métodos Cuantitativos Prof. J.L.Cotto Conferencia: Conceptos Matemáticos Básicos Notación

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 4: Autómatas finitos deterministas. Holger Billhardt holger.billhardt@urjc.

Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 4: Autómatas finitos deterministas. Holger Billhardt holger.billhardt@urjc. Formales Tema 4: Autómatas finitos deterministas Holger Billhardt holger.billhardt@urjc.es Sumario: Bloque 2: Autómatas Finitos 4. Autómatas Finitos Deterministas 1. Concepto y Definición 2. Autómata finito

Más detalles

TEORÍA DE AUTÓMATAS I Informática de Sistemas

TEORÍA DE AUTÓMATAS I Informática de Sistemas TEORÍA DE AUTÓMATAS I Informática de Sistemas Soluciones a las cuestiones de examen del curso 22/3 Febrero 23, ª semana. Considere los lenguajes del alfabeto Σ={,}: L = { n n, n } y L 2 = {cadenas con

Más detalles

SISTEMA DE NUMERACIÓN BINARIO

SISTEMA DE NUMERACIÓN BINARIO SISTEMA DE NUMERACIÓN BINARIO Cuando se trabaja en una computadora, los datos son convertidos en números dígitos que, a su vez, son representados como pulsaciones o pulsos electrónicos. En la actualidad

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

Represent. Información. Caracteres Alfanuméricos

Represent. Información. Caracteres Alfanuméricos Representación de la 2009-20102010 Sistemas de Numeración 1 a Representar Qué información necesitamos representar? Caracteres Alfabéticos: A, B,..., Z, a, b,..., z Caracteres numéricos: 0, 1,..., 9 Caracteres

Más detalles

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e Conjuntos Notación de conjuntos Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: A 1,2,3 B 2,5,6 C a, e, i, o, u D #,&,*,@ Es bastante corriente dibujar los

Más detalles

Declaración de variables. Sentencias de entrada/salida

Declaración de variables. Sentencias de entrada/salida Declaración de variables. Sentencias de entrada/salida Introducción En los capítulos anteriores se introdujo la notación algorítmica y unas nociones básicas del lenguaje de programación FORTRAN; se describió

Más detalles

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados. Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,

Más detalles

Clase 08: Autómatas finitos

Clase 08: Autómatas finitos Solicitado: Ejercicios 06: Autómatas finitos M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfrancom@ipn.mx 1 Contenido Autómata finito Definición formal

Más detalles

Conjuntos. Dra. Noemí L. Ruiz Limardo Revisado 2011 Derechos Reservados

Conjuntos. Dra. Noemí L. Ruiz Limardo Revisado 2011 Derechos Reservados Conjuntos Dra. Noemí L. Ruiz Limardo Revisado 2011 Derechos Reservados Objetivos de la lección Definir y dar ejemplos de conceptos fundamentales relacionados con conjuntos Conjunto Elementos Simbolismo

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

INTRODUCCION A PLC. Autor: Angel M Alicea, PE

INTRODUCCION A PLC. Autor: Angel M Alicea, PE INTRODUCCION A PLC Autor: Angel M Alicea, PE Controles de Lógica Programable Prof. Egberto Hernández EX#1-Repaso PLC Parte #2 Prof.ehernandez@hotmail.com www.profehernandez.weebly.com Conversión de Puertas

Más detalles

MANUAL BÁSICO DEL LENGUAJE SQL

MANUAL BÁSICO DEL LENGUAJE SQL MANUAL BÁSICO DEL LENGUAJE SQL INTRODUCCIÓN A continuación se presentan lo que son comandos DLL y DML, las clausulas, lo operadores (lógicos y de comparación), funciones de agregado, consultas, tipos de

Más detalles

Numeración. Número Es la idea que tenemos sobre la cantidad de los elementos de la naturaleza.

Numeración. Número Es la idea que tenemos sobre la cantidad de los elementos de la naturaleza. Numeración Denominamos Numeración al capítulo de la Aritmética que estudia la correcta formación, lectura y escritura de los números. Número Es la idea que tenemos sobre la cantidad de los elementos de

Más detalles

Compiladores e Intérpretes

Compiladores e Intérpretes Compiladores e Intérpretes Coordinador: Prof. Ing. Pablo Pandolfo 1 Contenido: Lenguajes Formales. Gramáticas Formales. Lenguajes Regulares. Lenguajes Incontextuales. Maquina de Turing. Proceso de compilación

Más detalles

UNIDAD 14 CONJUNTOS. Objetivo 1. Recordarás la definición de un conjunto y sus elementos.

UNIDAD 14 CONJUNTOS. Objetivo 1. Recordarás la definición de un conjunto y sus elementos. UNIDAD 14 CONJUNTOS Objetivo 1. Recordarás la definición de un conjunto y sus elementos. Ejercicios resueltos: 1. {2, 4, 6} es un conjunto. Los elementos que forman este conjunto son: 2, 4, 6 2. Cuántos

Más detalles

Etapas para la solución de un problema por medio del computador

Etapas para la solución de un problema por medio del computador Algoritmos. Definición Un algoritmo se puede definir como una secuencia de instrucciones que representan un modelo de solución para determinado tipo de problemas. O bien como un conjunto de instrucciones

Más detalles

PRIMITIVAS ALGORITMICAS Y METODOS DE REPRESENTACIÓN DE ALGORITMOS

PRIMITIVAS ALGORITMICAS Y METODOS DE REPRESENTACIÓN DE ALGORITMOS PRIMITIVAS ALGORITMICAS Y METODOS DE REPRESENTACIÓN DE ALGORITMOS 1. Que es una primitiva algorítmica 2. Enúncielas y clasifíquelas 3. Identifique y explique la estructura de las primitivas algorítmicas

Más detalles

TEMA 10. EL CONJUNTO DE LOS NÚMEROS ENTEROS

TEMA 10. EL CONJUNTO DE LOS NÚMEROS ENTEROS TEMA 10. EL CONJUNTO DE LOS NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS Hasta ahora sólo has conocido el conjunto de los números naturales (N), que está formado por todos los números positivos desde el cero

Más detalles

TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD

TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD 1 Asignatura: Lógica 3 Curso 2004-2005 Profesor: Juan José Acero 20 25 de Octubre del 2004 TEMA I: LOS CONCEPTOS FUNDAMENTALES DE LA TEORÍA DE LA COMPUTABILIDAD 1. El concepto de algoritmo. Los matemáticos

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles