Oliver A. Vilca H. Pág. 1. Resumen de clases Oliver Amadeo Vilca Huayta

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Oliver A. Vilca H. Pág. 1. Resumen de clases Oliver Amadeo Vilca Huayta"

Transcripción

1 Oliver A. Vilca H. Pág. 1 Expresiones regulares y autómatas finitos Resumen de clases Oliver Amadeo Vilca Huayta Una expresión regular sirve como un descriptor de un lenguaje, también es una herramienta para describir patrones de texto, por ejemplo: 1. Se utiliza una notación similar a una expresión regular para describir patrones de búsqueda. Por ejemplo en el procesamiento de documentos electrónicos, bioinformática, base de datos y en comandos de búsqueda como el GREP de UNIX. 2. En los generadores de analizadores léxico como el Lex y el Flex. El análisis léxico es una fase de un compilador que divide el código de entrada en unidades lógicas denominadas tokens de uno o más caracteres. Ejemplos de tokens son las palabras reservadas (ejemplo: if ), identificadores y signos como +,>. 3. En búsqueda de texto flexible, se utiliza la expresión regular como un patrón de búsqueda, por ejemplo: a??bc[f-p] puede represetar a todas las cadenas (palabras) de texto que inician con la a seguida de cualquier dos carateres (símbolos), seguida de bc, y, finalmente un carater que puede ser desde la f hasta la k, es decir, uno del rango de carateres comprendido entre la f y k. Una ventaja adicional es que se puede convertir en una máquina (autómata finito), el cual puede automáticamente decidir si una cadena (palabra) pertenece o no al lenguaje denotado por la expresión regular. Cadena Una cadena (o algunas veces palabra) es una secuencia finita de símbolos escogidos de un alfabeto. Por ejemplo: aba es una cadena del alfabeto Σ = {a, b} La cadena vacia. Es la cadena de cero ocurrencias de símbolos, es denotado por ǫ. Longitud de una cadena. Es el número de símbolos (posiciones) de una cadena. Por ejemplo aba tiene longitud 3. La notación para la longitud de una cadena w es w. Y ǫ = 0 (la única cadena cuya longitud es cero). La estrella de Kleene (o la clausura de Kleene). De un lenguaje L se denota por L. Es la unión infinita i 0 L i, donde L 0 = {ǫ}, L 1 = L y L i, para i > 1 es LLL L, la concatenación de i copias de L. Expresión regular. Se puede describir una expresión regular recursivamente como sigue: Las constantes ǫ (cadena vacia) y (conjunto vacio) son expresiones regulares. Si a Σ, es un símbolo, entonces a es una expresión regular. Inducción: Si r y s son expresiones regulares entonces: r s es una expresión regular, denota la unión de los lenguajes que representan dichas expresiones regulares. rs es una expresión regular, denota la concatenación. r es una expresión regular, denota la estrella de kleene. (r) es una expresión regular, denota el mismo lenguaje r. Nota: Debido a que en algunos casos el operador (unión) no está muy accesible en el teclado del computador, en algunas aplicaciones como el JFLAP se utiliza el + y algunos autores lo utilizan Precedencia: Para evitar el uso exagerado de paréntesis se puede emplear la precedencia de operadores. 1. Operador unario : Tiene la mayor precedencia y es asociativo por la izquierda, es decir, se aplica sólo a la secuencia más corta de símbolos a su izquierda que constituye una expresión regular. 2. La concatenación, o punto : tiene la segunda mayor precedencia y es asociativo por la izquierda. Este operador se representa con un punto, pero por fines prácticos se obvia, en su lugar se ubican los símbolos

2 Oliver A. Vilca H. Pág La unión : tiene la menor precedencia y es asociativo por la izquierda. En ocasiones no se desea que una expresión regular sea agrupada según la precedencia de los operadores. En dicho caso, se puede emplear paréntesis para agrupar los operandos de la forma que se requiera. por conveniencia. Ejemplos: Complete los espacios en blanco. Lenguaje regular Expresión regular {a, b} {ǫ, b} {a, ab} {abe, ace, } {a, b, c, d} {ǫ, b, bb, bbb, bbbb,...} {a, ab, abb, abbb, abbbb,...} {ǫ, c, ab, cc, ccc, cccc,...} {a, ab, abb, abbb, abbbb,... ac, abc, abbc, abbbc, abbbbc,...} Todas las cadenas que se pueden formar con el alfabeto Σ = {a, b}, incluido la cadena vacia a b ǫ b a ab = a(ǫ b) a(b c d)e (a b)(a b) (a b) (c d) = a b c d b ab c ab c ab (ǫ c) = ab ab c a b a b (a b) (ab) Lenguajes cuyas clausuras no son infinitas: = {ǫ}. Asimismo, 0 = {ǫ}, mientras que i, para algun i 1 es vacio, debido a que no se puede seleccionar alguna cadena del conjunto vacio. Finalmente ǫ = {ǫ}. Ejemplo: Construya una expresión regular para: L = {w {a,b}* : w tiene una cantidad par de a s } Si se tratara solamente de a s la respuesta sería: (aa) el cual genera una cantidad par de a s (cero es par). Pero es necesario considerar el alfabeto Σ = {a, b} el cual permite la cadena como: babba, baabababb. La respueta es: (b ab ab ) que también puede escribirse: (b ab a) Ejemplo: Dado el lenguaje formado sobre el alfabeto Σ = {a, b} donde se tiene la condición de que cada b esta precedida por una a (pueden haber mas a s que la preceden). Por ejemplo: ǫ, aaabaa, ababa, aaa. L = {w {a, b} : en w cada b está precedido por al menos una a} Respuesta: (a ab) Ejemplo: Dado el lenguaje formado con el alfabeto Σ = {a, b} donde todas las cadenas no tienen la subcadena aa ni la subcadena bb. Es decir, el siguiente lenguaje: L = {w {a, b} : w no tiene la subcadenas aa ni bb } Solución: Para obtener el resutado se ordena las cadenas (que se pueden generar) en tres filas como sigue:

3 Oliver A. Vilca H. Pág. 3 ǫ a, ab, aba, abab, ababa, ababab,... b, ba, bab, baba, babab, bababa,... Para generar el primer conjunto de cadenas (primera y segunda fila) se tiene: (ab) (a ǫ). A este resultado se le debe incluir el segundo conjunto de cadenas, siendo el resultado: (ab) (a ǫ) (ba) (b ǫ). Si se observa mas el ejercicio se obtiene: (b ǫ)(ab) (a ǫ) Algebra de expresiones regulares Complete los espacios en blanco. Lenguaje regular La clausura de : ǫ Ley de idempotencia para la unión: r r Elemento neutro de la unión: r = r Elemento neutro de la concatenación: ǫr = ǫr Elemento nulo de la concatenación: r = r Clausura de una expresión que ya está clausurada: (r ) Expresiones regulares en Unix/Linux Resultado Por conveniencia en el Unix/Linux se utiliza una notación extendida de expresiones regulares para facilitar su uso, considerando las características y restricciones de la computadora (ejemplo códigos). Se presenta una breve descripción sin desviarse en detalles. Permite escribir clases de caracteres para representar grandes conjuntos cadenas lo mas compacto posible. Sus reglas son las siguientes: El símbolo. representa cualquier caracter. La secuencia [c 1 c 2 c n ] representa la expresión regular: c 1 c 2 c n Por ejemplo se puede utilizar para representar los cuatro caracteres utilizados en los operadores de comparación del C/C++ [<>=!]. La secuencia [ c 1 c 2 c n ] representa cualquier caracter que no sea: c 1 c 2 c n Rango [x y] que significa todos los caracteres de x hasta y en la secuencia ASCCI. Por ejemplo las letras mayúsculas se pueden representar como [A Z] y el conjunto de todas las letras y dígitos como [A Za z0 9]. Los corchetes y otros caracteres reservados del UNIX pueden representarse precediéndolos con \. Ejemplos del comando GREP del Unix: $ # Buscar líneas con al menos una letra de la a a la z (minúsculas o mayúsculas). $ grep [a-za-z] sistemas.txt $ # Lista líneas con cualquier carácter que no sean ni letra ni número. $ grep [ a-za-z0-9] archivo.txt Expresiones regulares para el programador A continuación algunas de las herramientas de programación disponibles que ofrecen motores de búsqueda con soporte para expresiones regulares:

4 Oliver A. Vilca H. Pág. 4 Java: existen varias bibliotecas hechas para java que permiten el uso de RegEx, y Sun planea dar soporte a estas desde el SDK. JavaScript: a partir de la versión 1.2 (ie4+, ns4+) JavaScript tiene soporte integrado para expresiones regulares. PCRE: biblioteca de ExReg para C, C++ y otros lenguajes que puedan utilizar bibliotecas dll (Visual Basic 6 por ejemplo)..net Framework: provee un conjunto de clases mediante las cuales es posible utilizar expresiones regulares para hacer búsquedas, reemplazar cadenas y validar patrones. Ejercicios propuestos 1. Verdadero o Falso. Explique su respuesta: (a) a* a*b* (b) a*b* b*a* = a* b* (c) abab (a(cd)*b)* (d) abcd (a*(cd)*b*)* 2. Verdadero o Falso. Explique su respuesta: (a) b*a* a*b* = (a b)* (b) abcd (a(cd)*b)* (c) (a b) = (a b ) (d) (ab a)*ab = (aa*b)* 3. Escriba una expresión regular para los siguientes lenguajes: (a) {w {0,1}* : w tiene una cantidad de 1 s divisible por cinco } (b) {w {a,b}* : w no tiene tres b s consecutivas } Es decir, cadenas que tienen a lo mas dos b s consecutivas. (c) {w {a,b}* : w tiene exactamente una ocurrencia de bbb } (d) {w {a,b}* : w no tiene la subcadena aba } 4. Escriba una expresión regular para el siguiente lenguaje: [6p] L = {a m b n : m + n es par } 5. Desmuestre o refute lo siguiente: (ab a) = (aa b) [5p] 6. Demuestre ó refute que: a b(ba b a) = a b(a ba ba ) [5p] 7. Escriba una expresión regular para la diferencia de los siguientes lenguajes: a b b [5p] 8. Derivadas de expresiones regulares, fue introducido por Brzozowski 1. Sea E una expresión regular sobre un alfabeto Σ y sean a y b dos símbolos distintos de Σ. La derivada de E con respecto a a (de longitud unitaria), se define recursivamente como sigue: [8p] (a) a = ǫ (1) a (ǫ) = a ( ) = (b) a = (2) a (F ) = a (F )F (3) (F G) = a (F )G a (G) Si ǫ F, a a (F )G En otro caso. (4) 1 Janusz A. Brzozowski (1964) Derivatives of regular expressions.

5 Oliver A. Vilca H. Pág. 5 Derive: (a b) a(a b) 2 respecto a a y b. Defina la derivada de una expresión regular E respecto a una cadena w de Σ.

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia III: Conocer, utilizar y manipular expresiones regulares

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia III: Conocer, utilizar y manipular expresiones regulares Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia III: Conocer,

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

SSL Guia de Ejercicios

SSL Guia de Ejercicios 1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.

Más detalles

Lenguajes Regulares. Antonio Falcó. - p. 1

Lenguajes Regulares. Antonio Falcó. - p. 1 Lenguajes Regulares Antonio Falcó - p. 1 Cadenas o palabras I Una cadena o palabra es una sucesión finita de símbolos. cadena {c, a, d, e, n}. 10001 {0, 1} El conjunto de símbolos que empleamos para construir

Más detalles

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I Tema 3: Gramáticas regulares Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison

Más detalles

TEMA 5. GRAMÁTICAS REGULARES.

TEMA 5. GRAMÁTICAS REGULARES. TEMA 5. GRAMÁTICAS REGULARES. 5.1. Gramáticas Regulares. 5.2. Autómatas finitos y gramáticas regulares. 5.2.1. Gramática regular asociada a un AFD 5.2.2. AFD asociado a una Gramática regular 5.3. Expresiones

Más detalles

INAOE. Expresiones Regulares. Operadores y Operandos. Equivalencia de Lenguajes de FA y Lenguajes RE. Leyes Algebraicas de las. Expresiones Regulares

INAOE. Expresiones Regulares. Operadores y Operandos. Equivalencia de Lenguajes de FA y Lenguajes RE. Leyes Algebraicas de las. Expresiones Regulares INAOE (INAOE) 1 / 52 Contenido 1 2 3 4 (INAOE) 2 / 52 Es un equivalente algebraico para un autómata. Utilizado en muchos lugares como un lenguaje para describir patrones en texto que son sencillos pero

Más detalles

UNIDAD I. ALGORITMOS

UNIDAD I. ALGORITMOS UNIDAD I. ALGORITMOS 1.1 Definición Un algoritmo es una serie de pasos organizados que describe el proceso que se debe seguir, para dar solución a un problema específico. 1.2 Tipos Cualitativos: Son aquellos

Más detalles

EXPRESIONES REGULARES Y AUTOMATAS

EXPRESIONES REGULARES Y AUTOMATAS EXPRESIONES REGULARES Y AUTOMATAS La fase de rastreo, o análisis léxico, de un compilador tiene la tarea de leer el programa fuente como un archivo de caracteres y dividirlo en tokens. Los tokens son como

Más detalles

TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 }

TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 } TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar

Más detalles

2. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS

2. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS 2. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS 2.1 Tipos De Datos Todos los datos tienen un tipo asociado con ellos. Un dato puede ser un simple carácter, tal como b, un valor entero tal como

Más detalles

Conceptos básicos sobre gramáticas

Conceptos básicos sobre gramáticas Procesamiento de Lenguajes (PL) Curso 2014/2015 Conceptos básicos sobre gramáticas Gramáticas y lenguajes Gramáticas Dado un alfabeto Σ, un lenguaje es un conjunto (finito o infinito) de cadenas de símbolos

Más detalles

Capítulo 1 Lenguajes formales 6

Capítulo 1 Lenguajes formales 6 Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.

Más detalles

Compiladores: Sesión 3. Análisis léxico, expresiones regulares

Compiladores: Sesión 3. Análisis léxico, expresiones regulares Compiladores: Sesión 3. Análisis léxico, expresiones regulares Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali 29 de enero de

Más detalles

Clase 09: AFN, AFD y Construcción de Thompson

Clase 09: AFN, AFD y Construcción de Thompson Clase 09: AFN, AFD y Construcción de Thompson Solicitado: Ejercicios 07: Construcción de AFN scon Thompson M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom

Más detalles

ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS Tipos de datos Expresiones Operadores y operandos Identificadores como localidades de memoria

ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS Tipos de datos Expresiones Operadores y operandos Identificadores como localidades de memoria ENIDADES PRIMIIVAS PARA EL DESARROLLO DE ALGORIMOS ipos de datos Expresiones Operadores y operandos Identificadores como localidades de memoria ipos De Datos odos los datos tienen un tipo asociado con

Más detalles

UNIDAD 2: INTRODUCCIÓN AL LENGUAJE DE PROGRAMACiÓN R

UNIDAD 2: INTRODUCCIÓN AL LENGUAJE DE PROGRAMACiÓN R UNIDAD 2: INTRODUCCIÓN AL LENGUAJE DE PROGRAMACiÓN R Técnicas Inteligentes en Bioinformática Máster en Lógica, Computación e Inteligencia Artificial Dpto. Ciencias de la Computación e Inteligencia Artificial

Más detalles

Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]*

Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]* Procesadores de lenguaje Ejercicios del Tema 2 Ejercicio 2.1 Sean L = {a, aa, b} y M = {ab, b }. Describe LM y M 3 por enumercaión LM = { aab, ab, aaab, bab, bb } M 3 = { ababab, ababb, abbab, abbb, babab,

Más detalles

Autómatas Finitos y Lenguajes Regulares

Autómatas Finitos y Lenguajes Regulares Autómatas Finitos y Lenguajes Regulares Problema: Dado un lenguaje L definido sobre un alfabeto A y una cadena x arbitraria, determinar si x L o x L. Cadena x AUTOMATA FINITO SI NO Lenguaje Regular Autómatas

Más detalles

Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos

Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos Formales Tema 1: Conceptos básicos (parte 1) Holger Billhardt holger.billhardt@urjc.es Sumario: Tema 1: Conceptos básicos 1. Lenguajes Formales 2. Gramáticas Formales 3. Autómatas Formales 2 1 Sumario:

Más detalles

Proyecto Unico - Parte 1 - Solución

Proyecto Unico - Parte 1 - Solución Universidad Simón Bolívar Dpto. de Computación y Tecnología de la Información CI3721 - Traductores e Interpretadores Abril-Julio 2006 Proyecto Unico - Parte 1 - Solución Revisión Teórico-Práctica 1. Presente

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt holger.billhardt@urjc.es Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Lenguajes (gramáticas y autómatas)

Lenguajes (gramáticas y autómatas) Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013

Más detalles

Qué Tipos de Datos se Almacenan en OpenOffice.org Calc?

Qué Tipos de Datos se Almacenan en OpenOffice.org Calc? Qué Tipos de Datos se Almacenan en OpenOffice.org Calc? Se puede ingresar cualquier dato en una celda de la hoja de cálculo. OpenOffice.org Calc está en condiciones de comprobar automáticamente el tipo

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

EJERCICIOS RESUELTOS DE MATRICES

EJERCICIOS RESUELTOS DE MATRICES EJERCICIOS RESUELTOS DE MATRICES. Dadas las matrices A - 3, B 0 - y C 3 -, calcular si es posible: a) A + B b) AC c) CB y C t B d) (A+B)C a) A + B - 3 + 0 - b) AC - 3 3 - +0 -+ 3+ +(-) 0 7 0.+(-).3+(-)(-).+(-)

Más detalles

Sintaxis y Semántica del Lenguaje. Gramáticas

Sintaxis y Semántica del Lenguaje. Gramáticas Gramáticas La tarea de proveer una descripción bien concisa y entendible de un lenguaje de programación es difícil pero esencial para el éxito de un lenguaje. Uno de los problemas en describir un lenguaje

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES (TALF) BLOQUE II: LENGUAJES REGULARES Tema 2: Autómatas Finitos Parte 2 (de 3). Autómatas Finitos No Deterministas (AFNDs) Grado en Ingeniería Informática URJC

Más detalles

CAPITULO II. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS

CAPITULO II. ENTIDADES PRIMITIVAS PARA EL DESARROLLO DE ALGORITMOS CAPIULO II. ENIDADES PRIMIIVAS PARA EL DESARROLLO DE ALGORIMOS 2.1 ipos de datos 2.2 Expresiones 2.3 Operadores y operandos 2.4 Identificadores como localidades de memoria OBJEIVO EDUCACIONAL: El alumno:

Más detalles

Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas.

Tema 2. Funciones Lógicas. Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Tema 2. Funciones Lógicas Algebra de Conmutación. Representación de circuitos digitales. Minimización de funciones lógicas. Álgebra de conmutación Algebra de Conmutación: Postulados y Teoremas. Representación

Más detalles

GUIA PRACTICA PARA LA APLICACIÓN DE MS EXCEL TECNOLOGIA/ INFORMATICA

GUIA PRACTICA PARA LA APLICACIÓN DE MS EXCEL TECNOLOGIA/ INFORMATICA Fórmulas y funciones De la barra de menú seleccionmos la opción insertar y haciendo clic en la opción f x se desplegará el siguiente cuadro de diálogo a partir del cual escogeremos la función adecuada

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 OPERACIONES CON LOS NÚMEROS REALES En R se de nen dos operaciones: Suma o adición y producto o multiplicación: Si a 2 R y

Más detalles

Autómatas finitos no deterministas (AFnD)

Autómatas finitos no deterministas (AFnD) Autómatas finitos no deterministas (AFnD) Elvira Mayordomo Universidad de Zaragoza 1 de octubre de 2012 Contenido de este tema Introducción y ejemplos de autómatas finitos no deterministas Definición de

Más detalles

I PRELIMINARES 3 1 Identidades notables... 3 1.1 Productos y potencias notables... 3 2 Uso del símbolo de sumatoria... 6 2.1 Símbolo de sumatoria:

I PRELIMINARES 3 1 Identidades notables... 3 1.1 Productos y potencias notables... 3 2 Uso del símbolo de sumatoria... 6 2.1 Símbolo de sumatoria: ÍNDICE I PRELIMINARES Identidades notables............................... Productos y potencias notables...................... Uso del símbolo de sumatoria........................ 6. Símbolo de sumatoria:

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO

INSTITUTO TECNOLÓGICO DE APIZACO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA LSC 2003-1 5491 Taller de Linux PRÁCTICA No. 18 LABORATORIO DE NOMBRE DE LA PRÁCTICA Licenciado en Sistemas Computacionales DURACIÓN (HORA)

Más detalles

PROCESADORES DE LENGUAJES

PROCESADORES DE LENGUAJES PROCESADORES DE LENGUAJES Análisis léxico con Prof. Dr. Nicolás Luis Fernández García Departamento de Informática y Análisis Numérico Escuela Politécnica Superior Universidad de Córdoba Universidad de

Más detalles

2.Teoría de Autómatas

2.Teoría de Autómatas 2.Teoría de Autómatas Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

2: Autómatas finitos y lenguajes regulares.

2: Autómatas finitos y lenguajes regulares. 2: Autómatas finitos y lenguajes regulares. Los autómatas finitos son el modelo matemático de los sistemas que presentan las siguientes características: 1) En cada momento el sistema se encuentra en un

Más detalles

Expresiones Regulares

Expresiones Regulares Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

Definición formal de autómatas finitos deterministas AFD

Definición formal de autómatas finitos deterministas AFD inicial. Ejemplo, supóngase que tenemos el autómata de la figura 2.4 y la palabra de entrada bb. El autómata inicia su operación en el estado q 0 (que es el estado inicial). Al recibir la primera b pasa

Más detalles

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.

Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ. Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de

Más detalles

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal

k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en

Más detalles

LEX. Las definiciones y subrutinas son opcionales. El segundo %% es opcional pero el primer %% indica el comienzo de las reglas.

LEX. Las definiciones y subrutinas son opcionales. El segundo %% es opcional pero el primer %% indica el comienzo de las reglas. LEX Estructura de un programa en LEX { definiciones { reglas { subrutinas del usuario Las definiciones y subrutinas son opcionales. El segundo es opcional pero el primer indica el comienzo de las reglas.

Más detalles

Capítulo 7: Expresiones Regulares

Capítulo 7: Expresiones Regulares Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión

Más detalles

OPERADORES LÓGICOS JAVASCRIPT. EJEMPLOS. RELACIONALES MAYOR, MENOR, IGUAL, DISTINTO. AND, OR, NOT. CORTO- CIRCUITO (CU01117E)

OPERADORES LÓGICOS JAVASCRIPT. EJEMPLOS. RELACIONALES MAYOR, MENOR, IGUAL, DISTINTO. AND, OR, NOT. CORTO- CIRCUITO (CU01117E) APRENDERAPROGRAMAR.COM OPERADORES LÓGICOS JAVASCRIPT. EJEMPLOS. RELACIONALES MAYOR, MENOR, IGUAL, DISTINTO. AND, OR, NOT. CORTO- CIRCUITO (CU01117E) Sección: Cursos Categoría: Tutorial básico del programador

Más detalles

DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES

DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES 1 DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES Los LENGUAJES FORMALES están formados por PALABRAS, las palabras son CADENAS y las cadenas están constituidas por SÍMBOLOS de un ALFABETO. SÍMBOLOS

Más detalles

Teoría de la Computación

Teoría de la Computación Teoría de la Computación Grado en Ingeniería Informática Prácticas de Laboratorio * Gregorio de Miguel Casado email: gmiguel@unizar.es Elvira Mayordomo Cámara email: elvira@unizar.es Dpto. de Informática

Más detalles

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012 1 Guía de Estudio y Ejercitación propuesta Esta selección de Temas y Ejercicios están extraídos del texto FUNDAMENTOS DE ALGEBRA LINEAL de R. Larson y D. Falvo.

Más detalles

Principios de Computadoras II

Principios de Computadoras II Departamento de Ingeniería Electrónica y Computadoras Operadores y Expresiones rcoppo@uns.edu.ar Primer programa en Java 2 Comentarios en Java Comentario tradicional (multi-línea) Comentario de línea Comentario

Más detalles

Teoría de Autómatas y Lenguajes Formales, IS17 Ingeniería Técnica en Informática de Sistemas. Práctica 1: Introducción al Analizador Léxico FLEX

Teoría de Autómatas y Lenguajes Formales, IS17 Ingeniería Técnica en Informática de Sistemas. Práctica 1: Introducción al Analizador Léxico FLEX Teoría de Autómatas y Lenguajes Formales, IS17 Ingeniería Técnica en Informática de Sistemas Práctica 1: Introducción al Analizador Léxico FLEX Enunciado: El objetivo de esta práctica consiste en aprender

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Teoría de Conjuntos y Conjuntos Numéricos

Teoría de Conjuntos y Conjuntos Numéricos Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R

Más detalles

Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones

Conceptos previos. Revisión de Sistemas Lógicos Formatos Numéricos. Dpto. Ingeniería Electrónica y Comunicaciones Conceptos previos Revisión de Sistemas Lógicos Formatos Numéricos Revisión de Sistemas Lógicos Álgebra de Boole Base matemática de la Electrónica Digital Consta de dos elementos: 0 lógico y 1 lógico Tecnología

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

Expresión, Operador, Operando, Asignación, Prioridad

Expresión, Operador, Operando, Asignación, Prioridad 4. EXPRESIONES Y OPERADORES Conceptos: Resumen: Expresión, Operador, Operando, Asignación, Prioridad En este tema se presentan los siguientes elementos de la programación: las expresiones y los operadores.

Más detalles

Sintaxis y Semántica. Tema 3. Sintaxis y Semántica. Expresiones y Lenguajes Regulares. Dr. Luis A. Pineda ISBN:

Sintaxis y Semántica. Tema 3. Sintaxis y Semántica. Expresiones y Lenguajes Regulares. Dr. Luis A. Pineda ISBN: Tema 3 Expresiones y Lenguajes Regulares Dr Luis A Pineda ISBN: 970-32-2972-7 Sintaxis y Semántica En us uso normal, las expresiones lingüística hacen referencia a objetos individuales, así como a sus

Más detalles

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Dr. Ricardo Soto [ricardo.soto@ucv.cl] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

UNIDAD III: Elementos del Lenguaje QuickBASIC OBJETIVO GENERAL:

UNIDAD III: Elementos del Lenguaje QuickBASIC OBJETIVO GENERAL: UNIDAD III: Elementos del Lenguaje QuickBASIC OBJETIVO GENERAL: Aprender los tipos de datos que soporta este lenguaje de programación. 3.1 Números en QuickBASIC QuickBASIC soporta cuatro tipos de números:

Más detalles

Definición(2) La base (r) de un sistema de numeración especifica el número de dígitos o cardinal* de dicho conjunto ordenado. Las bases más utilizadas

Definición(2) La base (r) de un sistema de numeración especifica el número de dígitos o cardinal* de dicho conjunto ordenado. Las bases más utilizadas Sistemas numéricos MIA José Rafael Rojano Cáceres Arquitectura de Computadoras I Definición(1) Un sistema de representación numérica es un sistema de lenguaje que consiste en: un conjunto ordenado de símbolos

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del

Más detalles

INTRODUCIR FORMULAS EN EXCEL

INTRODUCIR FORMULAS EN EXCEL INTRODUCIR FORMULAS EN EXCEL Las fórmulas, comienzan con un signo (=) y son ecuaciones que efectúan cálculos con los valores ingresados en la hoja de cálculo. Por ejemplo, la siguiente fórmula multiplica

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Repaso. Lenguajes formales

Repaso. Lenguajes formales Repaso. Lenguajes formales Profesor Federico Peinado Elaboración del material José Luis Sierra Federico Peinado Ingeniería en Informática Facultad de Informática Universidad Complutense de Madrid Curso

Más detalles

Teoría de conjuntos. Tema 1: Teoría de Conjuntos.

Teoría de conjuntos. Tema 1: Teoría de Conjuntos. Tema 1: Teoría de Conjuntos. La teoría de Conjuntos es actualmente una de las más importantes dentro de la matemática. Muchos de los problemas que se le han presentado a esta disciplina en los últimos

Más detalles

INSTITUTO SUPERIOR DE FORMACIÓN TÉCNICA Nº 177

INSTITUTO SUPERIOR DE FORMACIÓN TÉCNICA Nº 177 INSTITUTO SUPERIOR DE FORMACIÓN TÉCNICA Nº 177 Instrucción condicional if else Uso de la estructura condicional Ejemplos con diagramas de flujo y codificación wdcarnero@gmail.com LA INSTRUCCIÓN CONDICIONAL

Más detalles

Aplicaciones del análisis combinatorio

Aplicaciones del análisis combinatorio Aplicaciones del análisis combinatorio UNAM 25 de noviembre de 2010 Plan de la plática Plantear problemas Especificación de clases combinatorias Traducción a funciones generadoras Comportamiento asintótico

Más detalles

Capítulo 5 IDENTIFICADORES, VARIABLES Y CONSTANTES. Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C"

Capítulo 5 IDENTIFICADORES, VARIABLES Y CONSTANTES. Presentación resumen del libro: EMPEZAR DE CERO A PROGRAMAR EN lenguaje C Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C" Autor: Carlos Javier Pes Rivas (correo@carlospes.com) Capítulo 5 IDENTIFICADORES, VARIABLES Y CONSTANTES 1 OBJETIVOS Saber qué

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

Clase 25/09/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf

Clase 25/09/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Clase 25/09/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf A pesar de haber ejercitado la realización de demostraciones en varias materias, es frecuente que el alumno consulte sobre la validez

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 2.

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 2. UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes Tema 2 Análisis Léxico Javier Vélez Reyes jvelez@lsi.uned.es Objetivos del Tema

Más detalles

Propiedades de los Lenguajes Libres de Contexto

Propiedades de los Lenguajes Libres de Contexto de los s de los Lenguajes Libres de Contexto INAOE (INAOE) 1 / 47 Contenido de los s 1 2 -ɛ 3 4 5 6 de los s (INAOE) 2 / 47 () de los s Queremos mostrar que todo (sin ɛ) se genera por una CFG donde todas

Más detalles

Capítulo 1. Algoritmos, diagramas de flujo y programas.

Capítulo 1. Algoritmos, diagramas de flujo y programas. Capítulo 1. Algoritmos, diagramas de flujo y programas. 1.1 Problemas y algoritmos 1.2 Diagramas de flujo 1.2.1 Reglas para la construcción de diagramas de flujo 1.3 Conceptos fundamentales 1.3.1 Tipos

Más detalles

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0.

Álgebra Booleana. Suma Booleana. El término suma es 1 si al menos uno de sus literales son 1. El término suma es 0 solamente si cada literal es 0. Álgebra Booleana El álgebra de Boole son las matemáticas de los sistemas digitales. En el nivel de lógica digital de una computadora, lo que comúnmente se llama hardware y que está formado por los componentes

Más detalles

Proposiciones Condicionales

Proposiciones Condicionales SENTENCIAS CONDICIONALES SIMPLES: if- Anteriormente se discutió que una de las estructuras utilizadas en la programación estructurada es la Estructura Selectiva o Condicional. Se explican aquí las sentencias

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD II EXCEL

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD II EXCEL UNIDAD II EXCEL COMPETENCIAS E INDICADORES DE DESEMPEÑO Identificar las funciones de microsoft excel utiliza la tabla de cálculo para elaborar documentos. Interactúa con las diferentes herramientas de

Más detalles

Operando1 operador de relación Operando2

Operando1 operador de relación Operando2 PROGRAMACIÓN 10 Prof. Dolores Cuiñas H. Recuerde que estos son apuntes muy simplificados que deberá completar con la bibliografía recomendada APUNTES Nº 5 ESTRUCTURAS DE CONTROL SELECTIAS O ESTRUCTURAS

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales Motivación e Ideas y Derivadas Formales La Derivación como Operación. Universidad de Cantabria Esquema Motivación e Ideas 1 Motivación e Ideas 2 3 Motivación Motivación e Ideas Sabemos como son los conjuntos

Más detalles

EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA

EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA EXÁMENES DE REPASO Teoría de Autómatas y Lenguajes Formales UNIVERSIDAD FRANCISCO DE VITORIA 1ER PARCIAL TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Examen parcial 12/02/2003 1.- Usa el lema de bombeo para

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 4: Expresiones Regulares Luis Peña Sumario Tema 4: Expresiones Regulares. 1. Concepto de Expresión Regular 2. Teoremas de Equivalencia Curso 2012-2013

Más detalles

Serafín Moral Departamento de Ciencias de la Computación. Modelos de Computación ITema 2: Autómatas Finitos p.1/88

Serafín Moral Departamento de Ciencias de la Computación. Modelos de Computación ITema 2: Autómatas Finitos p.1/88 Modelos de Computación I Tema 2: Autómatas Finitos Serafín Moral Departamento de Ciencias de la Computación Modelos de Computación ITema 2: Autómatas Finitos p./88 Contenido Autómata Finito Determinista

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

5. INTRODUCCIÓN A LAS HOJAS DE CÁLCULO

5. INTRODUCCIÓN A LAS HOJAS DE CÁLCULO Unidad 5. Introducción a las Hojas de Cálculo Pag: 1/6 5. INTRODUCCIÓN A LAS HOJAS DE CÁLCULO Una hoja de cálculo es, una tabla de información dispuestas en filas y columnas. A las columnas se les nombra

Más detalles

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

12 La herramienta LEX

12 La herramienta LEX 2 Contenido La herramienta Lex Esquema de un fuente en Lex Zona de definiciones Zona de reglas Zona de rutinas del usuario Archivo de salida (lex.yy.c) Copilar un fuente de Lex Opciones estándar Depuración

Más detalles

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados. Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,

Más detalles

Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto:

Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto: I.- Teoría de conjuntos Definición de conjunto Un conjunto se considera como una colección de objetos, llamados miembros o elementos del conjunto. Existen dos formas de expresar un conjunto: a) Por extensión

Más detalles

Conceptos básicos de programación. Arquitectura de Computadoras. Conceptos básicos de programación

Conceptos básicos de programación. Arquitectura de Computadoras. Conceptos básicos de programación Arquitectura de Computadoras Conceptos básicos de programación 1. Introducción: Programación es el conjunto de actividades implicadas en la descripción, el desarrollo y la implementación eficaz de soluciones

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles