Explorando la ecuación de la recta pendiente intercepto
|
|
- Adrián Córdoba Toro
- hace 2 años
- Vistas:
Transcripción
1 Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el método para verificar que tres o más puntos sean colineales. 3. Las rectas no verticales que tienen la misma son siempre. 4. Describe el método para buscar la ecuación de una recta a través del origen y cualquier otro punto en el plano de coordenadas. 5. Para una ecuación lineal en la forma de y mx b, la pendiente de la recta está representada por y el está representado por. 6. Describe el método pendiente intercepto para encontrar la ecuación de una recta no vertical. 7. Una recta a través del origen tiene un intercepto de y de. Por lo tanto, el valor de en la ecuación y mx b es. Palabras claves: pendiente intercepto en y intercepto vertical forma de pendiente intercepto de una recta Objetivos de aprendizaje: Expresar la relación entre x, y y como una ecuación dado una tabla de valores, b = 0. Reconocer que el valor de la pendiente de una recta no vertical, es el coeficiente de x en la ecuación y = m x. Escribir la ecuación de una recta dada su gráfica por el origen y las coordenadas de un segundo punto en la recta. Reconocer el valor del intercepto en y de una recta como la constante b en la ecuación y = m x + b. Crear una gráfica de una recta, dadas sus ecuaciones en la forma y = m x + b, b no es igual a 0. Escribir la ecuación de una recta en forma de pendiente intercepto, dada la gráfica de una recta no vertical y las coordenadas del intercepto en y y un segundo punto en la recta. 8. Una recta horizontal tiene una pendiente de. Por lo tanto, el valor de en la ecuación y mx b es. Entonces, la ecuación horizontal es. 31
2 Explorando la ecuación de la recta pendiente intercepto 1. Identifica la pendiente y el intercepto de y para las rectas definidas por las ecuaciones dadas. Ecuación lineal Pendiente, m Intercepto de y, b a. y x b. y 2x c. y 3 5 x d. y 5 e. y 4x 1 f. y x 3 g. y 3 2 x 2 2. Haz una gráfica de cada una de las rectas definidas por las ecuaciones en la tabla de la pregunta 1. Usa el plano aquí mostrado y una escala de 1 unidad por los aumentos del eje vertical y del eje horizontal. Nombra cada recta. y x 32 A-C1-2.2-S1-2
3 Explorando la ecuación de la recta punto pendiente Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. La variable independiente está representada por el eje. 2. La variable dependiente está representada por el eje. 3. Una razón de cambio constante es la de una. 4. Describe cómo calcular las coordenadas de un punto nuevo en una recta, dado un punto en la recta y su pendiente. 5. Si la pendiente es constante entre cualesquiera de dos puntos en un conjunto de datos, entonces esos puntos son. 6. Dada una recta no vertical, qué se conoce acerca de la diferencia entre las coordenadas de x de cualesquiera dos puntos en esa recta? 7. La ecuación y y 1 = m (x x 1 ) representa la forma de una donde x 1 y y 1 representan, m representa, y x y son variables que representan Palabras claves: ecuación de la recta punto pendiente Objetivos de aprendizaje: Encontrar las coordenadas de un punto en una recta dada la pendiente y las coordenadas de un punto en la recta. Encontrar el valor del intercepto en y dada la pendiente de una recta y las coordenadas de un punto en la recta. Utilizar la definición de la pendiente de una recta no vertical para expresar la ecuación de una recta en la forma y y 1 m(x x 1 ). Identificar la pendiente y las coordenadas de un punto en la recta, dada una ecuación de la forma y y 1 m(x x 1 ). 8. Una ecuación en forma de punto pendiente se puede ser reescribir como una ecuación de forma pendiente intercepto ya sea sustituyendo por para encontrar el intercepto de y o. 9. Dada la ecuación punto pendiente de una recta y cualquier valor de x, describe cómo encontrarías el valor correspondiente de y. 33
4 Explorando la ecuación de la recta punto pendiente Un avión pequeño desciende a una razón constante de 200 pies por minuto. Luego de 1 minuto, el avión está a una altitud de 2,500 por encima del nivel de la tierra. 1. Usando la información dada, determina la pendiente de la recta que describe el descenso del avión. 2. Usando la información dada, nombra las coordenadas de otro punto en la recta que describa la altitud del avión en un tiempo específico. 3. Encuentra la altitud h del avión en el tiempo t = 0. Este valor corresponde al en una gráfica de la recta que describe el descenso del avión. 4. Usando la información de las preguntas previas y las variables t y h, encuentra la ecuación de la recta en la forma de punto pendiente que describe el descenso del avión. 5. Cuántos minutos le toma al avión aterrizar una vez comienza el descenso? 6. Nombra la gráfica y sus ejes, y dibuja el segmento que representa el descenso del avión. O 34 A-C1-2.2-S2-2a
5 Relaciones y funciones Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Una es un conjunto de pares ordenados en la cual la primera coordenada tiene exactamente segunda coordenada. 2. El el es conjunto de todas las primeras coordenadas en una. 3. El es el conjunto de todas las segundas coordenadas en una. 4. y 200x 1,700 es una función. 5. Puedes sustituir cualquier valor por la variable independente en una función y encontrar un valor correspondiente para la variable dependiente? Por qué o por qué no? 6. Las ecuaciones representan una forma útil de expresar funciones lineales porque al sustituir un en el podemos calcular el valor correspondiente en el campo de valores. Palabras claves: relación función conjunto elemento dominio amplitud f (x) Objetivos de aprendizaje: Definir una función. Definir el dominio y la amplitud de una función. Expresar ecuaciones de rectas como funciones. Evaluar f (x) para una función f dada y los valores de x dados. Analizar el dominio y la amplitud de la función de valor absoluto. Definir una relación. 7. Cuál es el valor absoluto de un número? 8. Cuando x no es 0 la gráfica de f(x) x aparece en los cuadrantes y. Los de esta función son todos números no negativos, y el de la función son todos números. 9. La gráfica de una ecuación de valor absoluto que está en los cuadrantes 1 y 4 describe una, pero no una. 10. Todas las funciones son, pero no todas las son. 35
6 Relaciones y funciones 1. Usa la notación de la función para escribir una ecuación de cada recta representada en la tabla. Pendiente Punto Ecuación 1 2 (0, 5) 3 ( 5, 6) 2 (3, 0) 3 22 (0, 11) El precio de entrada de una feria es $2.00. Un 8% de impuesto de venta se añade al precio de venta de todos los bienes vendidos en la feria. Una persona que asiste a la feria puede gastar un máximo de $20 además del precio de entrada. Si x representa el costo de los bienes vendidos, y la función t(x) = 1.08x representa la cantidad total que una persona puede gastar, completa los siguientes enunciados. Expresa las respuestas a dos lugares decimales donde sea necesario. 2. Encuentra el dominio y el promedio de la función. Dominio: Promedio: 3. Qué representa t(10.00)? 4. Encuentra el valor de t(10.00). 5. Crea la gráfica de una función con un dominio de todos los enteros positivos menores de 4 y un promedio de todos los enteros negativos mayores que Crea una gráfica de valor absoluto con un dominio de todos los números reales y un promedio de todos los números reales mayores que 1. A-C1-2.2-S3-2a 36 A-C1-2.2-S3-2a
7 1. Los datos de la tabla son las coordenadas de los puntos en una recta. Cuál es la ecuación de la recta en la forma pendiente intercepto? x y Una recta pasa por el origen y tiene el punto (5, 3). Cuál es la ecuación de la recta en forma de punto pendiente? 3. Identifica la pendiente y el intercepto de y de la recta definida por la ecuación y 4x 12. La pendiente es y el intercepto de y es. 4. Cuál es la ecuación de la recta que tiene el punto (3, 2) y tiene un intercepto de y de 6? 5. Para cada ecuación aquí descrita, identifica la pendiente de la recta y las coordenadas de un punto que está en la recta. Ecuación de la recta Pendiente Coordenadas y (x 78) y 5 3 x 2 y 7 7 (x 44) 6. Define una función. 37
8 7. Nombra los ejes y crea una gráfica que no sea una función. Explica tu respuesta. 8. Cuál de los siguientes describe el dominio de una función? a. El conjunto de todos los valores posibles para la variable independiente b. El conjunto de todos los valores posibles para la variable dependiente A-C1-2.2-U-1a c. f(x) d. Un número que es sustituído por una variable en una ecuación 9. Llena la información que falta en la siguente tabla. Función lineal g(2) g(x) 18, x g(x) 1 2 x 3 g(x) 2(x 2) 1 g(x) H(x) 400x 1,200 describe la altitud, en pies de un avión con respecto al tiempo en minutos, x. a. Cuál es la altitud del avión cuando x es igual a cero? b. Cuál es el promedio de cambio en altitud? c. Qué representa H(2)? d. Nombra los ejes y haz una gráfica de esta relación lineal. H(x) x 38 A-C1-2.2-U-1a
9 Investigando los patrones de crecimiento de los recién nacidos Las siguientes funciones lineales representan el patrón de h crecimiento de cuatro recién nacidos durante las primeras semanas de vida, donde h es el largo de los recién nacidos en pulgadas, y w es el tiempo en semanas Recién nacido A: h 0.50w 17 Recién nacido B: h 0.45w w Recién nacido C: h 0.30w 21 Recién nacido D: h 0.35w 20.5 A-C1-2.2-S2-1. Dibuja una gráfica de estas funciones en un conjunto de ejes. Define las escalas usadas para el eje horizontal y el vertical. Incluye suficiente tiempo para que los patrones de crecimiento del primer año de vida puedan ser observados. (Clave: Hay 52 semanas en 1 año). a. Escala horizontal: b. Escala vertical: 2. Completa la tabla para cada recién nacido basada en la ecuación de cada uno. Recién nacido Largo (pulg) Razón de crecimiento (pulg/semana) A B C D 39
10 3. Usa la tabla y las gráficas en la herramienta de graficar para responder a las siguientes preguntas. a. Qué representa el intercepto de y? b. Qué representa la pendiente? c. Qué ecuación representa el recién nacido que crece a la razón más rápida? d. Qué ecuación representa el recién nacido que crece a la razón más lenta? e. Escribe una ecuación para un posible patrón de crecimiento de un recién nacido que es (1) más pequeño que el más pequeño que se muestra y (2) crece más lento que el más lento que se muestra. 4. Haz una tabla que indica el patrón de crecimiento de un recién nacido durante sus primeras 8 semanas, comenzando en la semana 0. a. Piensas que estas ecuaciones representan tu propio crecimiento? b. Calcula el número aproximado de semanas que has vivido, y determina si este modelo predice con certeza tu altura actual. Explica tu respuesta. 40
Localizando pares ordenados
DMINI DE ÁLGEBRA: Curso I MÓDUL 2: Ecuaciones funciones lineales Localizando pares ordenados Realiza las siguientes actividades, mientras trabajas con el tutorial.. La recta numérica horizontal se conoce
Funciones constantes, lineales y afines 1.
Funciones constantes, lineales y afines 1. 1.- Rectas horizontales y verticales. Ej.1.- A continuación tienes la gráfica de la recta y = 0. Qué puntos de corte tiene con los ejes? Qué posición tiene respecto
Definición de Funciones MATE 3171
Definición de Funciones MATE 3171 Función Una función, f, es una regla de correspondencia entre dos conjuntos, que asigna a cada elemento x de D exactamente un elemento de E : x 1 x 2 x 3 y 2 y 1 Terminología
Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.
Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta
PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4
PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando la ecuación
Localizando el punto de intersección
Localizando el punto de intersección Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. En la gráfica de una función, los valores de la variable están en el eje horizontal y los
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
Sucesiones (páginas 511 515)
A NMRE FECHA PERÍD Sucesiones (páginas 5 55) Una sucesión es una lista de números en un cierto orden. Cada número se llama término de la sucesión. En una sucesión aritmética, la diferencia entre cualquier
Ejercicios resueltos de funciones
Ejercicios resueltos de funciones 1) Representa en un eje de coordenadas los siguientes puntos: A(1,5), B(-3,3), C(0, -4), D (2,0). 2) Representa en dos ejes de coordenadas las funciones siguientes: a)
CURSOS CENEVAL TOLUCA
Precálculo Propiedades de los números reales Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números
LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:
LA RECTA Recuerda: Una recta es una función de la forma y = mx + n, siendo m y n números reales m es la pendiente de la recta y n es la ordenada en el origen La ordenada en el origen nos indica el punto
PROPORCIONALIDAD. FIGURAS SEMEJANTES
TEMA PROPORCIONALIDAD. FIGURAS SEMEJANTES. FECHA SIRVE PARA: - Estudiar figuras semejantes; - Estudiar el concepto de proporcionalidad; - Introducir conceptos teóricos a través de la geometría; -Introducir
Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas
REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.
MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77
MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto
Ecuación de la Recta
PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto
Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Algebra I 8 vo grado
Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas Mapa curricular Algebra I 8 vo grado Colegio Beato Carlos Manuel Rodríguez Mapa curricular Algebra I 8 vo grado periodo 11 al 22 de agosto
Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista
Cap 9 Sec 9.1 9.3 Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista a 1, a 2, a 3, a n, Donde cada a k es un término
TEMA N 2 RECTAS EN EL PLANO
2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración
GEOMETRÍA ANALÍTICA DEL PLANO
GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del
1.- CONCEPTO DE FUNCIÓN
.- CONCEPTO DE FUNCIÓN Actividades del alumno/a Explica porqué la siguiente gráfica no corresponde a una función: Porque a un valor de x, por ejemplo x =, le corresponde más de un valor de y. .- CONCEPTO
N = {1, 2, 3, 4, 5,...}
Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus
MATEMÁTICAS 2º DE ESO
MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad
Función lineal y afín
Función lineal y afín Objetivos 1. Comprender el concepto de ejes de coordenadas 2. Comprender el concepto de función 3. Obtener información a partir de la gráfica de una función 4. Manejar la función
UNIDAD DIDÁCTICA 5: Geometría analítica del plano
UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La
Colegio Universitario Boston. Funciones
70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una
Construyamos una tabla de valores que incluya valores negativos y positivos de.
Materia: Matemáticas de 4to año Tema: Representación gráfica de una función exponencial Marco teórico Funciones exponenciales Iniciemos esta sección construyendo las gráficas de algunas funciones exponenciales.
MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.
ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la
2. SISTEMAS DE ECUACIONES LINEALES. Introducción
2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente
Nuestro primer ejemplo nos dice: Escribe la ecuación de una línea que es perpendicular a la grafica de Y= ½x + 4 y pasa por los puntos (0,-1).
CGT.5.G.3-Pam Beach-Write the equation of a line perpendicular to a line through a point. La lección de hoy es sobre escribir una ecuación de una línea perpendicular a una línea dado un punto. El cuál
UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.
República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad
Función lineal. Definición: f: R > R / f(x) = m.x+b donde m y b son números reales, es una función lineal.
Función lineal Introducción: Recordemos que una función es una correspondencia entre los elementos de un conjunto de partida, llamado Dominio, y los elementos de un conjunto de llegada, llamado Codominio,
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-
5. Al simplificar. expresión se obtiene:
ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo
LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .
LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos
1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6
ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media
P. A. U. LAS PALMAS 2005
P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica
TEMA 2: DERIVADA DE UNA FUNCIÓN
TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media
Cuaderno de Actividades 4º ESO
Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1
El plano cartesiano y Gráficas de ecuaciones Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Sistema de coordenadas rectangulares En el cap 2 presentamos la recta numérica real que resulta al establecer
Explorando el Teorema de Pitágoras
Bitácora del Estudiante Explorando el Teorema de Pitágoras Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. El satélite del tiempo recibirá energía a través de su:. 2. Cada panel
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS 1) En cada ejercicio hallar la ecuación de la circunferencia que cumple: 1) El radio es igual a 6 y las coordenadas de su centro son ( 1, 2). 2) Su centro es el origen de coordenadas
Escribe expresiones y ecuaciones
A NOMRE FECHA PERÍODO Escribe expresiones y ecuaciones (páginas 150 152) Los problemas del mundo fuera del salón de clases, por lo general, se dan en palabras. Uno traduce estos problemas en expresiones
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento
9. Rectas e hipérbolas
08 SOLUCIONARIO 9. Rectas e hipérbolas Representa gráficamente las siguientes ecuaciones. Di cuáles son funciones y clasifícalas: 8. y =. FUNCIONES CONSTANTES LINEALES PIENSA CALCULA y = Halla mentalmente
Enteros y valor absoluto (páginas 106 108)
A NOMRE FECHA PERÍODO Enteros y valor absoluto (páginas 106 108) Un entero es cualquier número del conjunto {, 3, 2, 1, 0, 1, 2, 3, }. Los enteros mayores de 0 son enteros positivos. Los enteros menores
En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253
Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían
4.3 Leyes de los logaritmos
352 CAPÍTULO 4 Funciones exponenciales y logarítmicas 83. Dificultad de una tarea La dificultad en lograr un objetivo (como usar el ratón para dar clic en un icono en la pantalla de la computadora) depende
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
ES.N.3.2, (+)ES.N.4.2, (+)ES.G.38.2 Enfoque de contenido Operaciones con números complejos. Destreza Sumar, restar y multiplicar números complejos
Semana 1 Actividades para el logro de las tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5 ES.N.3.1, ES.N.3.2, (+)ES.G.38.1 Números complejos Que existe un número complejo i tal que i 2 =-1. Cada número
www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!
CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,
El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.
Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario
Lección 10: Representación gráfica de algunas expresiones algebraicas
LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió
Clase 9 Sistemas de ecuaciones no lineales
Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama
Escribiendo números usando la notación
Unidad 2: Introducción a la notación Bitácora del Estudiante Escribiendo números usando la notación Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. La distancia al satélite es
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
Funciones y gráficas. 3º de ESO
Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo
TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES.
TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. Definición: Una función es una relación entre dos variables x e y de manera que a cada valor de la variable x le corresponde un único valor
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
1. Línea Recta 2. 2. Rectas constantes 3 2.1. Rectas horizontales... 3 2.2. Rectas verticales... 4
Líneas Rectas Contenido. Línea Recta. Rectas constantes.. Rectas horizontales.............................. Rectas verticales.............................. Rectas con ecuación y = ax.. Rectas con a > 0................................
Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.
Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades
Gráficas de las funciones racionales
Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
lineales con competencias http://udc.georgetown.org/development-manual/
Aplicación de ecuaciones lineales con competencias http://udc.georgetown.org/development-manual/ INSTRUCCIONES: http://www.iclipart.com Lee atentamente cada punto en el planteamiento del problema, porque
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar
EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com.
FUNCIONES 1- a) Dada la función:, Definida para 0, 0, encontrar el punto (x,y) que maximiza f sujeto a la restricción x+y=36. b) Calcular: Aragón 2014 Opción A Junio 2- Dada la función: Calcular: a) Dominio
Tema Contenido Contenidos Mínimos
1 Números racionales - Fracciones equivalentes. - Simplificación de fracciones. - Representación y comparación de los números fraccionarios. - Operaciones con números fraccionarios. - Ordenación de los
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
Ejercicios Resueltos de Derivadas y sus aplicaciones:
Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones
Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.
Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.
TEMA 5 FUNCIONES ELEMENTALES II
Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas
Funciones especiales
Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.
FUNCIONES y = f(x) ESO3
Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.
Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta
ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados
ECUACIÓN GENERAL DE LA RECTA
ECUACIÓN GENERAL DE LA RECTA Sugerencias para quien imparte el curso En los ejemplos que se proponen, se debe tratar en la medida de lo posible que el propio alumno encuentre las respuestas y llegue a
1.2 Funciones y grafícas. Presentación 2 MATE 3002
1.2 Funciones y grafícas Presentación 2 MATE 3002 Correspondencias entre conjuntos Una ecuación y un gráfica expresa la idea de una correspondencia entre dos conjuntos. Ejemplo: Si vemos un relámpago y
1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f)
1. Aplique el método de inducción matemática para probar las siguientes proposiciones. a) b) c) d) e) f) es divisible por 6. g) 2. Halle la solución de las siguientes desigualdades de primer orden. g)
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás
Tema II: Programación Lineal
Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución
21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?
. Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta
O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.
MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en
La Lección de hoy es sobre Escribir la Ecuación de una Línea Paralela a Una Linea Recta que Pasa Por Un Punto Dado.
La Lección de hoy es sobre Escribir la Ecuación de una Línea Paralela a Una Linea Recta que Pasa Por Un Punto Dado. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G. Veremos diferentes
TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1
Capítulo 9 TRANSFORMACIONES DE f () = 2 9.1.1 9.1.2 A fin de lograr un buen dominio de la modelación de datos relaciones en situaciones cotidianas, los alumnos deben ser capaces de reconocer transformar
Propiedades (páginas 333 336)
A NOMRE FECHA PERÍODO Propiedades (páginas 333 336) Las propiedades son enunciados abiertos que satisfacen todos los valores de las variables. Para multiplicar una suma por un número, Propiedad 3(5 2)
FUNCIONES CUADRÁTICAS. PARÁBOLAS
FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas
Bloque 15. Valor absoluto: funciones lineales y cuadráticas
Bloque 15 Valor absoluto: funciones lineales y cuadráticas Bloque 15 Valor absoluto: Funciones lineales y cuadráticas Presentación El bloque tiene como propósitos centrales (i) (ii) Determinar el dominio
AYUDAS SOBRE LA LINEA RECTA
AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:
ECUACIÓN DE LA RECTA
MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,
Deducir la ley de Hooke a partir de la experimentación. Identificar los pasos del método científico en el desarrollo de este experimento.
LABORATORIO DE FISICA I LEY DE HOOKE UNIVERSIDAD TECNOLÓGICA DE PEREIRA PEREIRA RISARALDA OBJETIVOS Verificar la existencia de fuerzas recuperadas. Identificar las características de estas fuerzas. Deducir
Precálculo 1 - Ejercicios de Práctica. 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es:
Precálculo 1 - Ejercicios de Práctica 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es: a. 2 b. 1 c. 0 d. 1 2. La ecuación de la línea (recta) con pendiente 2/5 e intercepto
Los números complejos
7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0
10 Funciones polinómicas y racionales
8966 _ 009-06.qd 7/6/08 : Página 9 0 Funciones polinómicas racionales INTRDUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos puntos por
PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 10º
COLEGIO BETHLEMITAS PLAN DE REFUERZO Fecha: Dia 25 Mes 03 Año 2015 META DE COMPRENSIÓN: La estudiante desarrolla comprensión sobre las características de localización de objetos geométricos en sistemas
LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA