9. SISTEMAS DE ECUACIONES LINEALES.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "9. SISTEMAS DE ECUACIONES LINEALES."

Transcripción

1 Prácicas de Maemáicas II con DERIVE SISTEMAS DE ECUACIONES LINEALES. En ese aparado vamos a analiar los conenidos básicos para la discusión resolución de sisemas de ecuaciones lineales. 9.1.DISCUSIÓN DE SISTEMAS LINEALES: TEOREMA DE ROUCHÉ- FRÖBENIUS. La discusión de un sisema lineal, consise en deerminar previamene la eisencia o no de soluciones. Para la discusión de sisemas se uilia el Teorema de Rouché- Fröbenius que nos deermina las condiciones necesarias suficienes para clasificar el sisema en - sisema incompaible - sisema compaible deerminado - sisema compaible indeerminado Todo ello en función del rango de la mari de coeficienes, de la mari ampliada el número de incógnias. Veamos a coninuación algunos ejemplos. EJEMPLO 9.1 Discuir el siguiene sisema de ecuaciones lineales --4u4 --5u1 --7u7 ---u-7 Solución. Definimos en DERIVE la mari ampliada ediando la epresión Mediane la función DELETE_ELEMENT, es fácil consruir la mari de coeficienes ediando la epresión siuación que podemos comprobar ediando a obenemos Para aplicar el Teorema de Rouché-Fröbenius, debemos calcular los rangos ano de la mari de coeficienes como de la mari ampliada. El rango de la mari de coeficienes se obiene ediando rank(a) resula El rango de la mari ampliada ediando rank(ma) resula Por ano se raa de un SISTEMA COMPATIBLE. Como el número de incógnias es 5 enonces se raa de un sisema compaible INDETERMINADO.

2 Sisemas de ecuaciones lineales. 17 EJEMPLO 9.. Discuir el sisema Solución: Definimos la mari ampliada ediando la mari de coeficienes se puede obener a parir de ésa eliminando la úlima columna mediane la epresión Para discuir el sisema únicamene nos resa calcular los rangos, mediane Por ano el sisema es COMPATIBLE DETERMINADO. EJEMPLO 9.. Esudiar en función de los parámeros k la compaibilidad del sisema 1 0 k -1 Solución: En ese caso enemos una mari con dos parámeros., que se puede definir de igual forma, únicamene debemos ener cuidado de que los parámeros k no engan asignado previamene ningún valor. Esa circunsancia se comprueba fácilmene sin más que ediar las variables simplificándolas: Se edia k resulan Una ve hecha la comprobación ediamos la mari ampliada igual que en los ejemplos aneriores con la salvedad de que será una mari dependiene de dos parámeros, es decir ediamos la mari de coeficienes se define en DERIVE de igual forma dependiene de los parámeros k como

3 Prácicas de Maemáicas II con DERIVE-5 18 Para esudiar los rangos de esas marices NO PODEMOS APLICAR LA FUNCION RANK; a que puede darnos errores al conener parámeros. Calculemos en primer lugar los casos en los que el sisema es INCOMPATIBLE; es decir en los que el rango de la mari ampliada sea 4. Eso se puede calcular si obenemos el deerminane de dicha mari ediando de(mc(,k)) que al simplificar da que claramene es nulo únicamene si k-1 no nulo en el oro caso. Por ano si k 1 el sisema es INCOMPATIBLE. Veamos ahora el caso k-1. En ese caso la nueva mari ampliada se obiene mediane la mari de coeficienes con Esudiemos el rango de esa úlima. Es claro que a lo sumo iene rango. Si esudiamos el menor formado por las primera, segunda cuara columnas mediane Es nulo, por ano el rango de la mari de coeficienes depende del valor de k. Esudiemos el menor formado por las res primeras filas mediane Por ano si k-1 - el rango de la mari de coeficienes es < (puede comprobarse fácilmene que es ) si k-1 el rango es. Veamos qué sucede con la mari ampliada para esos casos: Si - k-1, el rango de la mari ampliada se obiene efecuando en cuo caso el sisema es INCOMPATIBLE. Si k-1, el rango de la mari ampliada coincide con el de la mari de coeficienes por ano solo en ese caso el sisema es COMPATIBLE DETERMINADO. 9..RESOLUCION DE SISTEMAS Para la resolución de sisemas lineales se pueden uiliar varios méodos: (a) Uiliando la función ROW_REDUCE; es decir aplicando riangulación de Gauss-Jordan.

4 Sisemas de ecuaciones lineales. 19 (b) Uiliando el comando SOLVE (c) Uiliando el comando SOLUTIONS (d) Uiliando la mari inversa. Veamos algunos ejemplos: EJEMPLO 9.4. Resolver el sisema del ejemplo 9.1 del aparado anerior, es decir: --4u4 --5u1 --6u7 ---u-7 Solución. Como a enemos definido en DERIVE su mari de coeficienes en la variable a únicamene nos falaría definir el vecor de incógnias ediando inc:[,,,,u] el de érminos independiene mediane (a) Resolución por TRIANGULACIÓN DE GAUSS. La función ROW_REDUCE calcula la mari reducida de Gauss-Jordan. Esa función admie dos formas o bien inroducir como argumenos la mari de coeficienes el vecor columna de érminos independienes, es decir ediando row_reduce(a,in) se obiene o bien incluendo como único argumeno el de la mari ampliada, que en ese caso endríamos que volver a reediar:

5 Prácicas de Maemáicas II con DERIVE-5 10 ahora ediando row_reduce(ma) se obiene el mismo resulado que anes: que proporciona como sisema equivalene: 1/ -1-1/- -1/ u- es decir las soluciones : -11/, 1/, 1/, u-. (b) Uiliando el comando Resolver-sisema. Para aplicar ese comando, debemos ener epresado el sisema epresado de forma eplícia. En consecuencia enemos que inroducir el sisema con la secuencia Resolver-Sisema Si aplicamos ahora se obiene

6 Sisemas de ecuaciones lineales. 11 si aplicamos ahora se obiene eso quiere decir que no iene soluciones el sisema? Si observamos cómo hemos inroducido el sisema nos podemos fijar que en el campo Variables, hemos sombreado las variables,,,, hemos pedido al sisema que resuelva respeco de esas variables dejando como parámero la variable u. Si ahora pedimos que resuelva respeco de las variables,,,u deje como parámero, obendremos: Qué ha sucedido? Que hemos pedido en el primer caso obener una variable con parámero u, siuación que es imposible. En el segundo caso hemos indicado un parámero correco. Para eviar esos problemas en la uiliación del comando SOLVE, lo que se suele hacer es añadir una ecuación rivial, para que DERIVE elija auomáicamene el parámero. Eso se suele hacer añadiendo al sisema de ecuaciones anos 0 como sean necesarios para complear el número de ecuaciones con el de incógnias. En nuesro ejemplo con un solo 0 sería suficiene. Aplicando nuevamene Resolver-Sisema

7 Prácicas de Maemáicas II con DERIVE-5 1 Si aplicamos ahora se obiene Obsérvese que aunque no aparece la ecuación 0, esá ediada basa observar en el íulo de la venana Resolución de un sisema de 5 ecuaciones. Pues bien, si aplicamos ahora resula:

8 Sisemas de ecuaciones lineales. 1 que es un sisema equivalene cuas soluciones son: -11/, 1/, 1/, u-. (C) Uiliando la función SOLVE: Debido a la incomodidad que original ener que manejar esa secuencia Resolver- Sisema, suele ser más cómodo aplicar la función SOLVE. Esa función iene dos argumenos, en el primer debemos indicar el vecor de ecuaciones a resolver (ediar las ecuaciones enre corchees) en el segundo se indica el vecor de incógnias respeco de las cuales queremos realiar la resolución. Así por ejemplo para resolver el sisema anerior, podemos ediar la epresión solve([ecuación 1, ecuación, ecuación, ecuación 4], [,,,]) si queremos resolver respeco de las variables,,, se obiene que al simplificar con resula es decir no ha soluciones, sin embargo si ahora reedio la epresión SOLVE omando ahora como variables de resolución [,,,u] se obiene Si por el conrario lo que deseamos es obener la resolución omando odas las variables que aparecen, reediano la epresión que al simplificar nos da que es un sisema equivalene cuas soluciones son: -11/, 1/, 1/, u-. En realidad ese es el COMANDO que se uilia cuando se aplica Resolver- Sisema. Eso se puede observar si una ve ediadas las ecuaciones

9 Prácicas de Maemáicas II con DERIVE-5 14 si ahora aplicamos el boon se obiene es decir la esrucura de una insrucción que coniene el comando SOLVE. (D) Uiliando la función SOLUTIONS: Ora función que sirve para resolver sisemas en la función SOLUTIONS. Si en ve de usar la función SOLVE, usamos la función SOLUTIONS omando como variables de resolución [,,,u] se obiene que al simplificar Obsérvese que la función SOLUTIONS genera una lisa de punos mienras que cuando se usa la función SOLVE lo que se obiene es una represenación del puno inersección que no puede ser ni dibujada ni usada para realiar operaciones ales como la suma de vecores. Si ahora lo que deseamos es obener la resolución omando odas las variables que aparecen, reediando la epresión

10 Sisemas de ecuaciones lineales. 15 que al simplificar nos da que es el conjuno de soluciones parameriado donde en ese caso el parámero es el Mienras que la función SOLVE nos da un sisema equivalene. decir EJEMPLO 9.5. Resolver el sisema de ecuaciones dado en el ejemplo 9. del aparado anerior, es Solución: Si inenamos resolver uiliando el comando SOLVE, aprovechando que eníamos definida en la variable b la mari de coeficienes, el sisema se obiene ediando simplificando la epresión b.[,,][-,0,8,6] uiliando ese dao anerior podremos ahora ediar la epresión solve(b.[,,][-,0,8,6],[,,]) que al simplificar nos da la solución del sisema planeado: Como el número de ecuaciones es superior al de incógnias, no es necesario añadir ninguna ecuación rivial. Si uiliamos la función ROW_REDUCE, como a enemos definida en la variable mb la mari ampliada, basará ediar simplificar row_reduce(mb) resulando

11 Prácicas de Maemáicas II con DERIVE-5 16 de donde se deducen fácilmene las soluciones. 1, -,. La úlima fila de ceros es debida a que la cuara ecuación era redundane. 9..SISTEMAS HOMOGÉNEOS. Los sisemas homogéneos ienen un raamieno más sencillo ano en su discusión como en su resolución. En cuano a la DISCUSIÓN, únicamene debemos deerminar si es COMPATIBLE DETERMINADO, en cuo caso la única solución es la nula, o si es COMPATIBLE INDETERMINADO. Para ambos casos es suficiene con efecuar la comparación enre el rango de la mari de coeficienes el número de incógnias: si rg(a) número incógnias enonces SISTEMA COMP. DET. si rg(a)<número incógnias enonces SISTEMA COMP. INDET. La resolución se realia como hemos viso en el aparado anerior. EJEMPLO 9.6 Discuir resolver el siguiene sisema según los valores del parámero : Solución: Ediemos en primer lugar la mari de coeficienes si ahora esudiamos el rango de la mari dada a ravés de RANK, resularía que es decir el sisema endría como única solución 0. Sin embargo, a hemos comenado que la función RANK NUNCA SE DEBE UTILIZAR EN MATRICES PARAMÉTRICAS, a que puede conducirnos a errores. Los errores se provocan porque no se consideran los casos en que el parámero puede dividir por 0. Esudiemos adecuadamene el rango, calculando el deerminane de dicha mari mediane Por ano si su rango es luego SISTEMA COMP. DETERMINADO; única solución 0. Si, el rango de la mari se obiene con

12 Sisemas de ecuaciones lineales. 17 es decir su rango es, luego SISTEMA COMPATIBLE INDETERMINADO. Las soluciones en ese caso se pueden calcular mediane ROW_REDUCE; ediando row_reduce(m()) por ano -, 0. También se podría resolver usando la función SOLUTIONS. Para lo cual debemos ediar la epresión SOLUTIONS( m().[,,][0,0,0], [,,]) que al simplificar nos da el conjuno de soluciones EJERCICIO 50. Discuir resolver, cuando sea posible, los siguienes sisemas (a) (b) u u u EJERCICIO 51. Esudiar según los valores del parámero a el siguiene sisema resuélvelo cuando sea posible 1) ( 4 a a a EJERCICIO 5. Discuir según los valores de a b el siguiene sisema resolverlo cuando sea posible b b a a 8 7 ) (

9. SISTEMAS DE ECUACIONES LINEALES.

9. SISTEMAS DE ECUACIONES LINEALES. Sisemas de ecuaciones lineales. 15 9. SISTEMAS DE ECUACIONES LINEALES. En ese aparado vamos a analiar los conenidos básicos para la discusión resolución de sisemas de ecuaciones lineales. 9.1.DISCUSIÓN

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos:

1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos: Unidad 1 Marices 5 SOLUCIONES 1. Realizando las operaciones indicadas y aplicando la igualdad de marices, obenemos: Resolviendo el sisema, a = 5, b = 12, c = 6, d= 4. 2. La solución en cada caso queda:

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante MATEMÁTICAS II Examen del 8/05/0 Solución Imporane Las calificaciones se harán públicas en el aula virual el 08/06/0. La revisión será el /06/0 y el /06/0 de -3 horas en la sala D-4-. MATEMÁTICAS II 8/05/0

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES EJERCICIOS RESUELTOS DE SISTEMAS LINEALES 1. Dado el sistema de ecuaciones lineales: 2x + 3y 3 4x +5y 6 a) Escribir la expresión matricial del sistema. b) Discutir el sistema. c) Resolver el sistema por

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Unidad 1 Marices PÁGINA 7 SOLUCIONES 1. La resolución de los sisemas puede expresarse de la forma siguiene: La segunda mariz proporciona la solución x = 5,y = 6. La úlima mariz proporciona la solución

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D.

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D. MTEMÁTICS II NDLUCÍ Pruebas de acceso a la Universidad ÁLGEBR SOLUCIONES. (--) Tienen inversa las marices y D. = y D =. (-B-) a) Rango de. Si a y Si a = o Sisema = B a, ( ) R = a =, ( ) R = Si a y a, S.C.D.

Más detalles

1.1 Utilizando sistemas modulares, resolver la ecuación + =.

1.1 Utilizando sistemas modulares, resolver la ecuación + =. 5. 5. 1. Sisemas de la forma: Una ecuación con dos o más variables. 1.1 Uilizando sisemas modulares, resolver la ecuación + =. La ecuación 3 +5 =23 es equivalene a 3 23 ó.5, eso es, planeamos conocer el

Más detalles

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n:

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n: EJERCICIOS. PLICCIONES DE LOS DETERMINNTES.. Calcular el siguiene deerminane de orden n: n n n n n n n n n n n n n. Demosrar que si es una mariz al que n n, se verifica lo anerior? =, enonces. Y si es

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

Ecuaciones Matriciales y Determinantes.

Ecuaciones Matriciales y Determinantes. Ecuaciones Mariciales y Deerminanes. Ecuaciones Mariciales. Tenemos que obener la mariz incógnia, que generalmene se denoa como X, despejándola de la igualdad. Para conseguirlo enemos las siguienes reglas:

Más detalles

Unidad 4 Espacios vectoriales. Aplicaciones lineales

Unidad 4 Espacios vectoriales. Aplicaciones lineales Unidad 4 Espacios vecoriales. Aplicaciones lineales 5 6 SOLUCIONES. Las propiedades asociaiva y conmuaiva se verifican ya que la suma de números reales que se esablecen en los elemenos de las marices cumple

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS 0- y 0 - Ejercicio. (Examen Junio 0 Específico Opción A) ['5 punos] Considera las marices 0 A = 0 B = 0 0 y C = 0 Deermina, si exise, la mariz X

Más detalles

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz. Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca

Más detalles

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. TEMA 4 Ejercicios / 1 TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. 1. Tenemos un sistema homogéneo de 5 ecuaciones y 3 incógnitas: a. Es posible que sea incompatible?. Por qué? b. Es posible

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

XA + A B = A, siendo 0 0 1

XA + A B = A, siendo 0 0 1 MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA Ejercicio. (Examen Junio 202 Específico Opción A) 2 0 [2'5 punos] Considera las marices AA = 0 2, BB = 0 2 0 y CC = 0 2. 2 Deermina, si exise, la mariz

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas

Más detalles

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea: Méodo de Gauss Ejercicio nº.- Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: compaible deerminado compaible indeerminado c) incompaible Jusifica en cada caso

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3.

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3. DETERMINNTES DETERMINNTES DE ORDEN 1, 2 y 3 El deerminane de una mariz cuadrada es un número real asociado a dicha mariz que se obiene a parir de sus elemenos. Lo denoamos como de () o. Llamamos orden

Más detalles

Sistemas de ecuaciones lineales 4

Sistemas de ecuaciones lineales 4 4. SISTEMAS DE ECUACIONES LINEALES 4.1. DEFINICIONES Y CLASIFICACIÓN DE SISTEMAS. La ecuación de una recta en el plano tiene la forma ; su generalización a variables es:, y recibe el nombre de ecuación

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x ÁLGEBRA MANUEL HERVÁS CURSO - Enunciado Se considera el espacio vecorial SOLUCIONES ESPACIO EUCLÍDEO referido a la base B e, e, e coordenadas en la base dual B* f, f, f. Hallar las de la forma lineal que

Más detalles

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES Cód. 87 Avda. de San Diego, 8 Madrid Tel: 978997 98 Fa: 9789 Email: rldireccion@planalfa.es de No se auoria el uso comercial de ese Documeno. MATEMÁTICAS I. TEMA : ECUACIONES Y SISTEMAS DE ECUACIONES..

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. SISTEMAS DE ECUACIONES LINEALES

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. SISTEMAS DE ECUACIONES LINEALES FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. SISTEMAS DE ECUACIONES LINEALES 1.- Discusión de sistemas lineales: Teorema de Rouché-Fröbenius. En este apartado trataremos la discusión

Más detalles

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0 Semesre Primavera Jueves, 4 de Noviembre PAUTA SOLEMNE N ECUACIONES DIFERENCIALES Encuenre la solución general de la ecuación y + y an(x) + 3x Solución: Primero resolvamos la ecuación diferencial homogénea:

Más detalles

Lenguaje de las ecuaciones diferenciales

Lenguaje de las ecuaciones diferenciales Prof. Enrique Maeus Nieves Docorando en Educación Maemáica. Lenguaje de las ecuaciones diferenciales pare. Soluciones de una EDO Para ese curso a esamos familiarizamos con los érminos función eplicia función

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

Propiedades de la igualdad

Propiedades de la igualdad Propiedades de la igualdad El álgebra es la rama de las maemáicas que se dedica al esudio de las propiedades de objeos maemáicos. Un objeo maemáico puede ser un número, una ecuación, un vecor, ec. Por

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

Geometría del espacio

Geometría del espacio Geomería del espacio º) Dados los vecores u = (,, ) v = (,, ), calcula: a) sus módulos. b) su produco escalar. c) el coseno del ángulo que forman. d) el valor de w para que el vecor w (w,, ) sea perpendicular

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4 Marices ANTES DE COMENZAR RECUERDA resuelve esos sisemas. a) x + y + z x y z x y + z b) y + z x + y z x y z 7 a) x + y + z x x y z y z ( yz) y z x y + z yz y+ z y 7z y 7z 6z z z y z y x + y + z y, z x

Más detalles

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz Elemenos de álculo Numérico Trabajo Prácico N o Elemenos de álculo Numérico (iencias Biológicas) Trabajo Prácico N Subespacios, Rango de una mariz Deerminar cuáles de los siguienes subconjunos son subespacios

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. NOTA: En odos los ejercicios se deberá jusificar la respuesa eplicando el procedimieno seguido en la resolución del ejercicio. CURSO 10-11 JUNIO CURSO 10 11 1 Aplicando ransformadas de Laplace, hallar

Más detalles

Práctica 3 (Resolución)

Práctica 3 (Resolución) Operaciones y funciones con Derive: A ROW [n,...] A COL [n,...] APPEND(A, B) CHARPOLY(A, λ) EIGENVALUES(A) Submariz formada por las filas de A indicadas. Submariz formada por las columnas de A indicadas.

Más detalles

By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo:

By C 10. SEGMENTARIA GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES. Esta forma se obtiene a partir de la forma general. Ejemplo: GEOMETRÍA-ECUACIÓN DE LA RECTA Y POSICIONES Prof: F. Lópe- D. Legal: M-0006/009 0. SEGMENTARIA Esa forma se obiene a parir de la forma general. 0 B C Y A C C B C A C B A C B A Ejemplo: 0 Los denominadores

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

Soluciones hoja de matrices y sistemas

Soluciones hoja de matrices y sistemas Soluciones hoja de marices y sisemas 8 9 - iscuir, en función del arámero a, el siguiene sisema de x y z x y z - ecuaciones lineales x - y ( a ) z - a - x y ( a ) z - a 8 La mariz de los coeficienes es

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio, Opción Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales. Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales de la forma:

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales. Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales de la forma: Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Sistemas de Ecuaciones Lineales 1) SISTEMAS DE ECUACIONES LINEALES Un sistema de ecuaciones lineales es un conjunto de ecuaciones

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas.nb 1 Sistemas de ecuaciones lineales Práctica de Álgebra Lineal, E.U.A.T., Curso 2005 2006 En esta práctica aprenderemos a discutir y resolver sistemas de ecuaciones lineales con el ordenador.

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Universidad Simón Bolívar Deparameno de Maemáicas Puras y Aplicadas Maemáicas IV (MA-5 Sepiembre-Diciembre 8 4 ra Auoevaluación Maerial Cubiero: La presene auoevaluación versa sobre el maerial cubiero

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos I.E.S. CASTELAR BADAJOZ A. Menguiano PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 8 (RESUELTOS por Anonio Menguiano) MATEMÁTICAS II Tiempo máimo: horas minuos Se valorará la corrección

Más detalles

Tema 2 Algebra de matrices

Tema 2 Algebra de matrices Tema lgebra de marices. Efecúa odos los posibles producos enre las siguienes marices: 8 8 7 7 7 C D ; C ; D 7 ; 8 C ; 8 8 D C 7 DD hora resolveremos el problema con Wiris:. Lo primero que debemos hacer

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES ES Padre Poveda (Guadi) Maemáicas plicadas a las SS EJEROS UNDDES : MTRES Y DETERMNNTES (-M--) Sean las marices D a) ( punos) Resuelva la ecuación maricial D ( D) b) ( puno) Si las marices D son las marices

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

SEGUNDO EXAMEN EJERCICIOS RESUELTOS

SEGUNDO EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G I T I SEGUNDO EXAMEN 13 1 EJERCICIOS RESUELTOS EJERCICIO 1 Considera el cuerpo de revolución que se genera al girar alrededor del eje OX la gráfica de la función x α f(x = x (, + (x +

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante MATEMÁTICAS II Examen del /09/006 Soluciones Imporane Las calificaciones se harán públicas en la página web de la asignaura y en el ablón de anuncios del Dpo. de Méodos Cuaniaivos en Economía y Gesión,

Más detalles

IES Fernando de Herrera Curso 2013 / 14 Primer trimestre - Primer examen 2º Bach CCSS NOMBRE:

IES Fernando de Herrera Curso 2013 / 14 Primer trimestre - Primer examen 2º Bach CCSS NOMBRE: IES ernando de Herrera Curso / Primer rimesre - Primer eamen º Bach CCSS NOMBRE: ) Clasifique el siguiene sisema de ecuaciones resuélvalo, si es posible. Además, si uviera más de una solución, diga dos

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos Hoja 7. Problema 1 1. Sea A=( 1 1 1 1. Calcula: a A 1 b (5A 1 c

Más detalles

2) Hallar las coordenadas del vértice D del paralelogramo ABCD sabiendo que A(1, 0), B(2, 3) y C(3, -2).

2) Hallar las coordenadas del vértice D del paralelogramo ABCD sabiendo que A(1, 0), B(2, 3) y C(3, -2). Álgebra Geomería Analíica Prof. Gisela Saslas Vecores en R en R. Recas planos en el espacio Verifique los resulados analíicos mediane la resolución gráfica usando un sofware de Maemáica. ) Sabiendo que

Más detalles

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m . Primeras definiciones Una mariz es un conjuno de elemenos (números) ordenado en filas y columnas. En general una mariz se nombra con una lera mayúscula y a sus elemenos con leras minúsculas indicando

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Soluciones modelo (Sepiembre de 009) Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f( ) -+. Deermina la asínoa de la gráfica Evidenemene, la función no iene asínoas vericales,

Más detalles

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones.

Sistemas sobredeterminados. Aproximación de cuadrados mínimos. Sistemas subdeterminados. Solución de mínima norma. Aplicaciones. Méodos Numéricos 0 Prácica 3 Sisemas sobredeerminados. Aproximación de cuadrados mínimos. Sisemas subdeerminados. Solución de mínima norma. Aplicaciones. Resolución de sisemas sobredeerminados por cuadrados

Más detalles

rango( A ) = 3 porque A tiene sólo 3 filas y A contiene a A Es un SI A = F3 F Página 1

rango( A ) = 3 porque A tiene sólo 3 filas y A contiene a A Es un SI A = F3 F Página 1 º BACHILLERATO B MATEMÁTICAS II RESOLUCIÓN EJERCICIOS DE ÁLGEBRA SELECTIVIDAD 5 (Profesor: Rafael Núñez) Considera el sisema dado por AX = B α x A = B = α y X = y 3 4 α 3 z a) [ 75 punos] Deermina, si

Más detalles

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n.

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n. En un artículo anterior dijimos que el rango de una matriz A, ra), es el número de filas que son linealmente independientes. También se hizo uso del método de Gauss para calcular el rango de una matriz:

Más detalles

Solución de un caso particular del problema de valor de frontera en términos de la función de Green sobre un intervalo

Solución de un caso particular del problema de valor de frontera en términos de la función de Green sobre un intervalo Solución de un caso paricular del problema de valor de fronera en érminos de la función de Green sobre un inervalo Objeivos. Mosrar que un caso muy especial del problema de valor de fronera: x () = f(),

Más detalles

CÁLCULO DE INTEGRALES. Solución: Todas ellas se resuelven por partes y la fórmula del método es

CÁLCULO DE INTEGRALES. Solución: Todas ellas se resuelven por partes y la fórmula del método es CÁLCULO DE NTEGRALES.-Calcula las siguienes inegrales: a) d ; b) sen d ; c) Ld ; e Todas ellas se resuelven por pares y la fórmula del méodo es u. dv u. v v. du a) e d. u du d dv e. d v e d e e e d e e

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRCIÓN POR CMBIO DE VRIBLE Dada la inegral f( ) d, si consideramos como una función de ora variable, = g(), enonces d = g'() d, y susiuyendo en la inegral inicial se obiene f( g( )) g'( ) d. En el

Más detalles

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C.

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C. EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. Para resolverla planeamos la susiución, de la que se sigue que d. Por ano,. 5 5.986 d d d C C. 5 5.986 Ln 5.986 C.. arcg C.. 5 5. 5 6 5 5 6 5 5 arcg5 C.

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 6 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. MATRICES 1.- Introducción de vectores y matrices. Con Derive los vectores se pueden introducir de dos formas distintas: a) Mediante

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

MATRICES. c) Asigna subíndices a las entradas con valor superior a 60 e inferior a 100. d) Cuántos cursan 2ºBACH.?

MATRICES. c) Asigna subíndices a las entradas con valor superior a 60 e inferior a 100. d) Cuántos cursan 2ºBACH.? MTRICES Inroducción 1 En un IES hay 107 alumnos en 3ºESO, y 110 alumnas En 4ºESO hay 84 alumnos y 95 alumnas En 1ºBCH hay 69 alumnos y 68 alumnas, y en ºBCH hay 46 alumnos y 48 alumnas a) Represena mediane

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 217

10Soluciones a los ejercicios y problemas PÁGINA 217 PÁGIN 217 Pág 1 P RCTIC 1 a) Represena en papel cuadriculado la figura H 1 obenida a parir de H mediane la raslación del vecor 1 (3, 2) b) Dibuja la figura H 2 ransformada de H 1 mediane la raslación 2

Más detalles

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis.

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis. Marices Mariz: Es el ordenamieno recangular de escalares en filas y columnas, encerradas en un corchee ó parénesis. Las marices se designan así: æa11 a1 a13 a1 n ö a1 a a3 an a31 a3 a33 a 3n am 1 am am3

Más detalles

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición.

( ) [ ab, ] definidas como ( ) ( ) ( ) 1.2. Curvas paramétricas. funciones continuas de R R para un intervalo. Definición. 1.. urvas paraméricas. Definición. Sean x 1, x,, xn funciones coninuas de R R para un inervalo [ ab, ] definidas como con [ a, b]. ( ( ( x1 = f1, x = f,, xn = fn El conjuno de punos ( x1, x,, xn = ( f1(,

Más detalles

La función generatriz para B k. Polinomios de Bernoulli

La función generatriz para B k. Polinomios de Bernoulli La función generariz para B. Polinomios de Bernoulli Alexey Beshenov cadadr@gmail.com 8 de Febrero de 017 La función generariz para B Teorema. Los números de Bernoulli pueden ser definidos por e e 1 =

Más detalles

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS Maemáicas Problemas resuelos por el Méodo de Gauss PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS ) Resolver el siguiene sisema por Gauss Para resolver el sisema por el méodo de Gauss, hemos de riangulariarlo.

Más detalles