DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL"

Transcripción

1 DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL Pablo Olvera Araa Cetro Nacioal de Metroloía, CENAM Resume E el esamble istó cilidro de ua balaza de resió debemos tomar e cueta el efecto de los cambios dimesioales roveietes de la distorsió elástica causada or la resió a la cual el esamble es sometido y la cual es fució de la resió alicada. E altas resioes este factor se vuelve crítico y afecta la calibració de la balaza y or lo tato su determiació es imortate ara establecer la otecial exactitud de la balaza de resió. Las balazas de resió idustriales ormalmete o cotemla la correcció de la resió or este factor, e este documeto se reseta ua estimació del coeficiete de deformació elástico ara balazas idustriales ara diferetes alcaces de medició, determiado exerimetalmete or el método de flotació cruzada. Itroducció Las balazas de resió so amliamete usadas como atroes de resió ara la calibració de maómetros u otras balazas de resió. Cuado el esamble istó cilidro está sometido a resió, el esacio etre istó y cilidro se icremeta e ua catidad que varía a lo laro de la loitud del esamble. Existe comercialmete 2 tios de balazas de resió, aquellas que se basa e riciios fudametales ara la determiació de la resió y las de tio idustrial, las cuales roorcioa valores de resió redefiidos bajo ciertas codicioes de referecia. E las balazas de resió tio idustrial el riciio de oeració es el mismo que el de las balazas tio rimario, ero la resió ya está redefiida bajo ciertas codicioes de referecia. Aceleració ormal de la ravedad, = 9,86 65 m/s2 Desidad ormalizada del aire, ρa =,2 k/m3 Temeratura de referecia, tr = 2 ºC ó 23 C El siuiete modelo se utiliza ara el cálculo de la resió y cosiste e covertir la resió redefiida bajo las codicioes de referecia establecidas or el fabricate a la resió bajo las codicioes reales e que se efectúa las medicioes. El modelo corrie la resió omial or aceleració de la ravedad local, temeratura del istó cilidro y flotació de las esas e el aire. c = Dode: ρ a l ρ a ( + α ( )) c t t r - Ec. P c resió de la balaza idustrial correida. resió omial de la balaza bajo las codicioes de referecia. l aceleració local de la ravedad. ρ a Desidad del aire al mometo de la calibració. ρ m Desidad de las masas. α -c exasió térmica del istó - cilidro. t temeratura del istó - cilidro. temeratura de referecia t r Codicioes de referecia: Reroducido de: Memorias del Coreso Nacioal de Metroloía, Normalizació y Certificació. Moterrey, N. L., México. 29, 3 y 3 de octubre de 23. /5

2 Método de calibració de balazas. Flotació cruzada Cuado las fuerzas e las dos balazas de resió ha sido ajustadas hasta que ambas está e equilibrio, la relació de sus fuerzas totales rereseta la relació de sus dos áreas efectivas a esa resió. Por medio de la calibració se determia exerimetalmete, e las balazas tio rimario, el área efectiva Ao a resió cero. Se realiza ua serie de medicioes a lo laro de su alcace de medició ara obteer el área esecífica del istó cilidro calibrado a diferetes resioes. Ao se obtiee or extraolació a resió cero. E la balaza tio idustrial, la calibració or el método de flotació cruzada se utiliza ara determiar el error de la balaza y la resió e ésta se calcula de acuerdo a la ecuació 2, si cosiderar eeralmete el efecto or la deformació elástica. deformació elástico Los cambios e los diámetros del istó y cilidro, bajo resió alicada, so muy equeños y su medició directa e el iterior del esamble es muy comlicada. Para el caso de ciertos tios de esambles simles, el efecto de distorsió elástica es ua fució lieal de la resió alicada y se uede determiar a artir de las roiedades elásticas de los materiales E el caso de balazas tio idustrial co esamble tio simle eeralmete o se corrie la resió omial or el efecto de la distorsió elástica del esamble istó cilidro. Exerimetalmete se uede determiar el coeficiete de deformació a artir de los resultados obteidos e la calibració or el método de flotació cruzada, de acuerdo al modelo resetado e la ecuació No. 2. Dode: = Ec. 2 ( + b) es la resió correida or el coeficiete de deformació elástico, es la resió correida de acuerdo a la ecuació, Desejado b, b = Ec. 3 2 Al estimar el coeficiete de deformació elástico, de acuerdo a la ecuació 3 e las balazas tio idustrial, el modelo ara correir la resió omial sería: Ecuació 4 * c = Resultados ρ a l ρ a ( + α ( ))( + ) c t tr b - Se aalizaro los resultados de varias calibracioes de balazas idustriales. Las fiuras, 2, 3, 4, 5 y 6 ilustra los resultados de la calibració de balazas idustriales ara diferetes tios de esamble. Las series rereseta el error de acuerdo a la ecuació 4, alicado la correcció or el coeficiete de deformació. Las series 2 rereseta el error de acuerdo al modelo corresodiete a la ecuació, si correir or el coeficiete de deformació elástico. Reroducido de: Memorias del Coreso Nacioal de Metroloía, Normalizació y Certificació. Moterrey, N. L., México. 29, 3 y 3 de octubre de 23. 2/5

3 Calibració de u istó hidráulico tio simle, alta resió Calibració de u esamble hidráulico tio reetrate e baja resió Error/kPa resió/mpa Fi. Alicació del coeficiete de resió a u esamble tio simle, alta resió Calibració de u esamble hidráulico tio reetrate e alta resió Fi. 2 Alicació del coeficiete de resió a u esamble tio reetrate, alta resió Fi. 4 Alicació del coeficiete de resió a u esamble hidráulico tio reetrate, baja resió Calibració de u esamble eumático tio simle e baja resió Fi. 5 Alicació del coeficiete de resió a u esamble eumático tio simle, baja resió Calibració de u esamble hidráulico tio simle e baja resió Calibració de u esamble tio esfera e baja resió co as ,,2,4,6 - Fi. 3 Alicació del coeficiete de resió a u esamble tio simle, baja resió Fi. 6 Alicació del coeficiete de resió a u esamble eumático tio esfera, baja resió Reroducido de: Memorias del Coreso Nacioal de Metroloía, Normalizació y Certificació. Moterrey, N. L., México. 29, 3 y 3 de octubre de 23. 3/5

4 Las fiuras 7, 8, 9,, y 2 ilustra la variació del coeficiete de deformació a lo laro del itervalo de medició, ara diferetes tios de esambles. dedormació/pa - deformació e esamble tio simle 4E-2 3E-2 2E-2 E-2 E+ 5 5 Fi. 7 deformació e u esamble tio simle, alta resió deformació/pa - deformació e esamble hidráulico tio reetrate e baja resió E+ -2E E- -6E- -8E- -E- -E- Fi. deformació e u esamble tio reetrate, baja resió deformació e esamble eumático tio simle e baja resió deformació/pa - deformació e esamble tio reetrate e alta resió E+ -5E E- -2E- -2E- -3E- deformació/pa - 4E- 3E- 3E- 2E- 2E- E- 5E- E E- Fi. deformació e u esamble tio simle, baja resió Fi. 8 deformació e u esamble tio simle, alta resió deformació/pa - deformació e esamble hidráulico tio simle e baja resió 3E-9 2E-9 2E-9 E-9 5E- E deformació/pa - deformació e esamble tio esfera e baja resió co as 3E- 2E- E- E+ -E-,,,2,3,4,5-2E- -3E- -4E- -5E- -6E- -7E- -8E- Fi. 9 deformació e u esamble tio simle, baja resió Fi. 2 deformació e u esamble tio esfera, baja resió Reroducido de: Memorias del Coreso Nacioal de Metroloía, Normalizació y Certificació. Moterrey, N. L., México. 29, 3 y 3 de octubre de 23. 4/5

5 La tabla reseta los valores romedio y la desviació estádar de los coeficietes de deformació elástica obteidos e las medicioes ara los diferetes tios de esamble: Tios de esamble:. Simle, hidráulico, resió a MPa, 2. Reetrate, hidráulico, resió a 7 MPa 3. Simle, hidráulico, resió a 6 MPa 4. Reetrate, hidráulico, resió a 7 MPa 5. Simle, eumático, resió a 3 MPa 6. Simle, esfera, resió a 4 kpa Tio de esamble deformació Desviació estádar 7,8 x -3 9,8 x ,9 x -2, x ,7 x -,2 x - 4-5,3 x - 3,5 x - 5 5, x - 2,5 x - 6 -,5 x - 3, x - Tabla Coclusioes De los resultados obteidos odemos cocluir que la correcció or el coeficiete de deformació es recomedada ara esambles de tio simle y co alcace de medició relativamete alto, alrededor de 7 MPa y el coeficiete de deformació estimado ermaece más o meos costate a artir de medicioes mayores al % de su alcace de medició. E térmios eerales se recomieda utilizar la correcció del coeficiete de resió cuado la relació etre su valor romedio y su desviació estádar sea mayor a 4. Otra coclusió a la que odemos llear es que efectivamete, el efecto de distorsió elástica es ua fució lieal de la resió alicada ara esambles tio simle co alcaces de medició relativamete altos, Para esambles co eometrías más comlejas el modelo o es válido. Para las balazas de resió hidráulicas co esambles tio simle, ero co alcace de medició relativamete bajo, alrededor de 7 MPa, el efecto de la fricció rovocada or el fluido uede ser muy alto e imide que el coeficiete de deformació ermaezca costate ya que la fuerza de fricció o se cuatifica. E el caso de las balazas eumáticas co esamble tio simle, equeñas irreularidades eométricas uede rovocar u efecto adicioal. Referecias. Dadso S. Robert, Lewis L. Sylvia ad Pes N. Graham. The Pressure Balace, Theory ad Practice. NPL, OIML, R-, Pressure Balace, 994 La tabla No. 2 reseta la relació, e valor absoluto, etre el coeficiete de deformació del esamble resecto a su desviació estádar y el tio de esamble. Tio de esamble Relació etre b y su desviació estádar ,8 4, ,5 Tabla 2 Reroducido de: Memorias del Coreso Nacioal de Metroloía, Normalizació y Certificació. Moterrey, N. L., México. 29, 3 y 3 de octubre de 23. 5/5

14. Técnicas de simulación mediante el método de Montecarlo

14. Técnicas de simulación mediante el método de Montecarlo 4. Técicas de simulació mediate el método de Motecarlo 4. Técicas de simulació mediate el método de Motecarlo Qué es la simulació? Proceso de simulació Simulació de evetos discretos Números aleatorios

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = -

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = - IES Fco Ayala de Graada Sobrates de 004 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A - 0 0 - - - Sea las matrices A=, B= y C= - 0 0 - ( puto) Calcule (A I ) B, siedo I la matriz idetidad

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2012 (COMÚN MODELO 3) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2012 (COMÚN MODELO 3) OPCIÓN A IES Fco Ayala de Graada Sobrates de 01 (Septiembre Modelo ) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 01 (COMÚN MODELO 3) OPCIÓN A EJERCICIO 1_A ( 5 putos) U empresario

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL FORMULAS Y EJEMLOS ARA EL CÁLCULO DE NERESES DE UN DEÓSO A LAZO FJO CONVENCONAL 1. GLOSARO DE ÉRMNOS a. Depósito a plazo fijo: roducto e el que el cliete podrá depositar ua catidad de diero a ua tiempo

Más detalles

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas

Las funciones de Cobb-Douglas como base del espacio vectorial de funciones homogéneas Las fucioes de Cobb-Douglas como base del esacio vectorial de fucioes homogéeas Zuleyka Díaz Martíez Mª Pilar García Pieda José Atoio Núñez del Prado Uiversidad Comlutese de Madrid Facultad de Ciecias

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

Propuesta de un modelo para la gestión de los neumáticos de una flota de vehículos

Propuesta de un modelo para la gestión de los neumáticos de una flota de vehículos 5 th Iteratioal oferece o Idustrial Egieerig ad Idustrial Maageet XV ogreso de Igeiería de Orgaizació artagea, 7 a 9 de Setiebre de 2 Prouesta de u odelo ara la gestió de los euáticos de ua flota de vehículos

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

Parámetros de tiempo para

Parámetros de tiempo para Parámetros de tiempo para cotrol y diagóstico INTRODUCCIÓN. Ua de las actividades importates a ivel de sistemas que se debe desarrollar e toda etidad que cuete co u recurso computacioal de soporte para

Más detalles

Modelos para el cálculo de consumo y emisiones gaseosas de la flota de autobuses de Madrid

Modelos para el cálculo de consumo y emisiones gaseosas de la flota de autobuses de Madrid Modelos para el cálculo de cosumo y emisioes gaseosas de la flota de autobuses de Madrid Agélica Areas J.T.P D.E 1, Facultad de Igeiería, IIDISa 2, Uiversidad Nacioal de Salta, Argetia Pablo Argeti Salguero

Más detalles

MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA 1.2µm. A. Herrera-Favela y F. Sandoval-Ibarra

MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA 1.2µm. A. Herrera-Favela y F. Sandoval-Ibarra MODELADO SIMPLE DEL TRANSISTOR MOS PARA TECNOLOGIA.2µm A. Herrera-Favela y F. Sadoval-Ibarra Electroics Desig Grou CINESTA, Guadalajara Uit Prol. Lóez-Mateos Sur 590, 45235 Guadalajara JAL. (México) aherrera@gdl.civestav.mx

Más detalles

Comarativo de roductos gama MÚTUA SALUT Urgecias Domiciliarias E Cetro Hositalario Ambulacia Medicia Primaria Medicia Geeral Pediatría Servicios de Efermería Esecialidades Médicas Podología Técicas comlemetarias

Más detalles

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

7 Energía electrostática Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 7 Eergía electrostática Félix Redodo Quitela y Roberto Carlos Redodo Melchor Uiersidad de alamaca Eergía electrostática de ua distribució de carga eléctrica Hasta ahora hemos supuesto distribucioes de

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Señales en Tiempo Discreto

Señales en Tiempo Discreto Señales e Tiempo Discreto Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció.. Señales e tiempo discreto.3. Clasificació de las señales

Más detalles

Un comentario sobre New exact solutions for the combined sinh-cosh-gordon equation

Un comentario sobre New exact solutions for the combined sinh-cosh-gordon equation Lecturas Mateáticas Volue 32 (2011), págias 23 27 ISSN 0120 1980 U coetario sobre New exact solutios for the cobied sih-cosh-gordo equatio Jua Carlos López Carreño & Rosalba Medoza Suárez Uiversidad de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 3, Parte II, Opció A Juio, Ejercicio 3, Parte II, Opció B Reserva

Más detalles

Análisis de un indicador de gestión: el tiempo de respuesta.

Análisis de un indicador de gestión: el tiempo de respuesta. FCByF UNR. Area Tecología e Salud Pública. Asigatura Salud Pública. Aálisis de u idicador de gestió: el tiempo de respuesta. Año: 2007. Autora: Bioq. Laura Valeti. o Itroducció. El laboratorio puede ifluir

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2015 MODELO 3 OPCIÓN A EJERCICIO 1 (A) 8-4 1 2 Sea las matrices A = -1 2, B = 1 2 2-1 -1 2, C = 12 8. -8 4 (0 5 putos) Calcule A 2. (1 7 putos) Resuelva

Más detalles

Teorías de falla bajo cargas estáticas

Teorías de falla bajo cargas estáticas Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

El Transistor de Juntura Bipolar (BJT)

El Transistor de Juntura Bipolar (BJT) l Trasistor de Jutura iolar (JT) J,I. Huircá, R.A. arrillo Uiversidad de La Frotera December 9, 2011 Abstract l Trasistor de Jutura iolar (JT) es u disositivo activo de tres termiales, ase, olector y misor,

Más detalles

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES L. GENERALIZACIÓN DEL A.F.C. : ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES 1. Itroducció Las «ecuestas» se

Más detalles

El Transistor de Efecto de Campo (FET)

El Transistor de Efecto de Campo (FET) El Trasistor de Efecto de Camo (FET) J.I.Huirca, R.A. Carrillo Uiversidad de La Frotera. ecember 10, 2011 Abstract El FET es u disositivo activo que oera como ua fuete de corriete cotrolada or voltaje.

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua

Más detalles

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases Ejercicios sobre la aplicació de las diferetes leyes que caracteriza a los gases 1. g de oxígeo se ecuetra ecerrados e u recipiete de L, a ua presió de 1,5 atm. Cuál es la temperatura del gas si se supoe

Más detalles

TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA. - 4) Calculo de la potencia demandada por cada tipo de receptor

TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA. - 4) Calculo de la potencia demandada por cada tipo de receptor TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA Coteido - 1) Clasificació de los receptores - 2) Tesioes Nomiales Normalizadas - 3) Cosideracioes geerales - 4) Calculo de la potecia demadada por cada

Más detalles

Artículo técnico CVM-NET4+ Cumple con la normativa de Eficiencia Energética. Nuevo analizador de redes y consumos multicanal Situación actual

Artículo técnico CVM-NET4+ Cumple con la normativa de Eficiencia Energética. Nuevo analizador de redes y consumos multicanal Situación actual 1 Artículo técico Joatha Azañó Divisió Gestió Eergética y Calidad de Red CVM-ET4+ Cumple co la ormativa de Eficiecia Eergética uevo aalizador de redes y cosumos multicaal Situació actual Las actuales ormativas

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES Mercedes Ferádez mercedes@upucomillas.es CONTENIDO El valor temporal del diero. Selecció de iversioes CONTENIDO El valor temporal del

Más detalles

TEORÍA DE LÍNEAS DE ESPERA (COLAS)

TEORÍA DE LÍNEAS DE ESPERA (COLAS) TEORÍA DE ÍEAS DE ESERA COAS Cojuto de modelos matemáticos ue describe sistemas específicos de líeas de espera o colas, usados e la toma de decisioes al ecotrar el estado estable o estacioario del sistema

Más detalles

INTERPRETACIÓN DE CERTIFICADOS DE CALIBRACIÓN

INTERPRETACIÓN DE CERTIFICADOS DE CALIBRACIÓN INTERPRETACIÓN DE CERTIFICADOS DE CALIBRACIÓN Roberto Arias Romero Centro Nacional de Metrología División de Flujo y Volumen km 4,5 Carretera a Los Cués; El Marqués, Qro. rarias@cenam.mx definiciones calibración

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo

Más detalles

RENDIMIENTO INTRODUCCIÓN BALANCE DE ENERGÍA RENDIMIENTO DE COMBUSTIÓN TABLAS DE COMBUSTIBLES RENDIMIENTO ESTACIONAL TECNOLOGÍA DE LA COMBUSTIÓN

RENDIMIENTO INTRODUCCIÓN BALANCE DE ENERGÍA RENDIMIENTO DE COMBUSTIÓN TABLAS DE COMBUSTIBLES RENDIMIENTO ESTACIONAL TECNOLOGÍA DE LA COMBUSTIÓN RENDIMIENTO INTRODUCCIÓN BALANCE DE ENERGÍA RENDIMIENTO DE COMBUSTIÓN TABLAS DE COMBUSTIBLES REAL DECRETO 275/1995 DE 24 DE FEBRERO DIRECTIVA DEL CONSEJO 92/42/CEE RENDIMIENTO ESTACIONAL 1 INTRODUCCIÓN

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

TRANSMISIÓN DEL MOVIMIENTO

TRANSMISIÓN DEL MOVIMIENTO 6 TRANSMISIÓN DEL MOVIMIENTO GENERALIDADES: La trasmisió del movimieto desde u mecaismo o elemeto de máquia a otro se puede realiar e forma directa, como por ejemplo el caso de u egraaje motado sobre el

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

UN MODELO DE ESTUDIO PARA DEFINIR NIVELES DE CONFIABILIDAD EN UNA LÍNEA DE PRODUCCION.

UN MODELO DE ESTUDIO PARA DEFINIR NIVELES DE CONFIABILIDAD EN UNA LÍNEA DE PRODUCCION. FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA UN MODELO DE ESTUDIO PARA DEFINIR NIVELES DE CONFIABILIDAD EN UNA LÍNEA DE PRODUCCION. FERNANDO ESPINOSA FUENTES INTRODUCCION. U sistema productivo

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

Protocolo de Auditoría Energética

Protocolo de Auditoría Energética EFICIENCIA Y AHORRO ENERGÉTICO Agricultura Ahorro y Eficiecia Eergética e la Agricultura Protocolo de Auditoría Eergética e Comuidades de Regates GOBIERNO DE ESPAÑA MINISTERIO DE INDUSTRIA, TURISMO Y COMERCIO

Más detalles

COJINETES (RODAMIENTOS)

COJINETES (RODAMIENTOS) COJINETES (RODAMIENTOS) Teoría y aplicacioes Proyectos de Igeiería Mecáica Ig. José Carlos López Areales Primeros rodamietos Fricció Es la resistecia que hay etre dos objetos al mometo de mover uo sobre

Más detalles

12. LUBRICACIÓN. 12.1 Finalidad de la Lubricación. 12.2 Métodos de Lubricación. Tabla 12.1 Comparación de Lubricación por Grasa y Aceite

12. LUBRICACIÓN. 12.1 Finalidad de la Lubricación. 12.2 Métodos de Lubricación. Tabla 12.1 Comparación de Lubricación por Grasa y Aceite 1. LUBRICACIÓN 1.1 Fialidad de la Lubricació La fialidad pricipal de la lubricació es reducir la fricció y el desgaste e el iterior de los rodamietos que podría causar fallos prematuros. Los efectos de

Más detalles

CUÁLES SON LAS LIMITACIONES DE LAS ESTADÍSTICAS

CUÁLES SON LAS LIMITACIONES DE LAS ESTADÍSTICAS CUÁLES SON LAS LIMITACIONES DE LAS ESTADÍSTICAS DE POBREZA EN ARGENTINA? SONIA INÉS GONTERO Istituto de Ecoomía y Fiazas Facultad de Ciecias Ecoómicas Uiversidad Nacioal de Córdoba E los últimos años las

Más detalles

CAPITULO VI CALCULO DE CANALES. 6.1 Condiciones normales

CAPITULO VI CALCULO DE CANALES. 6.1 Condiciones normales Capítulo VI Cálculo de caales CAPITULO VI CALCULO E CANALES 6. Codicioes ormales Los aspectos teóricos más importates del flujo uiforme e caales ha sido a presetados e los capítulos I II. Ahora, e este

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Revisión de conceptos: S 2 p ( 1 p ) Distribución binomial: Programa de Efectividad Clínica 2003 Bioestadística Vilma E. Irazola.

Revisión de conceptos: S 2 p ( 1 p ) Distribución binomial: Programa de Efectividad Clínica 2003 Bioestadística Vilma E. Irazola. Programa de Efectividad Clíica 003 Bioestadística Vilma E. Irazola DATOS CATEGORICOS COMPARACION DE PROPORCIONES Revisió de coceptos: Cotiuos Tipos de datos Discretos Categóricos Ejemplo: Variable a a

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O FUNDACIÓN VEDRUNA S E V I L L A COLEGIO SANTA JOAQUINA DE VEDRUNA MATEMÁTICAS I LÍMITES Y CONTINUIDAD DE FUNCIONES Límite finito de una función en un

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA ESCUELA DE QUIMICA FACULTAD DE CIENCIAS INSTRUMENTAL ANALITICO GUIA DE CROMATOGRAFÍA

UNIVERSIDAD CENTRAL DE VENEZUELA ESCUELA DE QUIMICA FACULTAD DE CIENCIAS INSTRUMENTAL ANALITICO GUIA DE CROMATOGRAFÍA UNIVESIDD CENTL DE VENEZUEL ESCUEL DE QUIMIC FCULTD DE CIENCIS INSTUMENTL NLITICO GUI DE COMTOGFÍ Caracas 2008 Tabla de Coteido DEFINICIONES IMPOTNTES...3 Cromatografía...3 Clasificació de los Métodos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 214 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 7: CONTRASTE DE HIPÓTESIS Juio, Ejercicio 4, Oció B Reserva 2, Ejercicio 4, Oció B Reserva 4, Ejercicio

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

Midiendo el Desempeño

Midiendo el Desempeño Midiedo el Desempeño Prof. Mariela J. Curiel H. Midiedo el Desempeño Qué variables se desea medir Cuáles so las herramietas dispoibles Qué tecicas se utiliza para calcular los parámetros de etrada de u

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Notas Docentes. Estadística para Economistas. Carlos Casacuberta. Nota Docente No. 08

Notas Docentes. Estadística para Economistas. Carlos Casacuberta. Nota Docente No. 08 Notas Docetes Estadística para Ecoomistas Carlos Casacuberta Nota Docete No. 08 Diploma e Ecoomía 004 Departameto de Ecoomía Facultad de Ciecias Sociales Estadística Notas de clase. Itroducció La estadística

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMÁTICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B).

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

GENERACIÓN DE NIVELES DE RUIDO DEL GRAN SANTIAGO 1989 2001. Unidad de Acústica Ambiental Secretaría Regional Ministerial de Salud R.M.

GENERACIÓN DE NIVELES DE RUIDO DEL GRAN SANTIAGO 1989 2001. Unidad de Acústica Ambiental Secretaría Regional Ministerial de Salud R.M. GENERACIÓN DE NIVEES DE RUIDO DE GRAN SANTIAGO 1989 2001 Secretaría Regioal Miisterial de Salud R.M. Noviembre de 2011 Ídice geeral Pág. Presetació 1. Estudio Base de Geeració de Niveles de Ruido del

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

MATEMÁTICAS I 1º Bachillerato Capítulo 9: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es MATEMÁTICAS I 1º Bachillerato Capítulo 9: 393 Ídice 1. ESTADÍSTICA DESCRIPTIVA UNIDIMENSIONAL 1.1. INTRODUCCIÓN 1.. MÉTODO ESTADÍSTICO 1.3. CONCEPTOS BÁSICOS 1.4. TIPOS DE VARIABLES 1.5. DISTRIBUCIONES

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles

E2 - INDICADORES DE FRAGMENTACIÓN DE LOS ECOSISTEMAS

E2 - INDICADORES DE FRAGMENTACIÓN DE LOS ECOSISTEMAS Defiició: Se ha formulado cuatro idicadores que mide la fragmetació de los ecosistemas: a. Número de fragmetos de u ecosistema ( N P ) : Es el úmero de fragmetos j e que se ecuetra dividido u ecosistema

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció B Reserva, Ejercicio 4,

Más detalles

6. La energía y su transferencia: trabajo y calor

6. La energía y su transferencia: trabajo y calor 6 La Actividades eergía y su trasferecia: trabajo y calor U motor de 500 W ha estado fucioado durate 8 h. Qué eergía habrá cosumido? La potecia está defiida como: P E t Expresado el tiempo e segudos, la

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS

ANÁLISIS Y RESOLUCIÓN DE CIRCUITOS NÁLSS Y ESOLCÓN DE CCTOS. Las Leyes de Kirchhoff..- Euciado de las Leyes de Kirchhoff. Defiició de Nodo y Lazo Cerrado. Las Leyes de Kirchhoff so el puto de partida para el aálisis de cualquier circuito

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

USO RACIONAL DE LA ENERGÍA

USO RACIONAL DE LA ENERGÍA USO RACIONAL DE LA ENERGÍA Ahorros mediate Aislamieto Térmico e la Costrucció Ig. V. L. Volatio, Arq. P. A. Bilbao Uidad Técica Habitabilidad Higrotérmica INTI Costruccioes Arq. P. E. Azqueta, Ig. P. U.

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito.

MATEMÁTICAS 1214, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES. 1. Para cada sucesión infinita abajo, determine si converge o no a un valor finito. MATEMÁTICAS 24, PARCIAL 3 PROBLEMAS PARA PRACTICAR SOLUCIONES JOHN GOODRICK. Para cada sucesió ifiita abajo, determie si coverge o o a u valor fiito. (a) {! } e = (a): No coverge. El úmero e está etre

Más detalles