Tema 4. Relatividad especial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 4. Relatividad especial"

Transcripción

1 ma 4. latividad spial Pima pat: latividad d Galilo. Pinipio d latividad as lys d la mánia son las mismas n dos sistmas d fnia, si s muvn d modo qu su vloidad lativa sa onstant.+ S dfin un sistma inial omo l sistma d fnia n l qu una patíula, n ausnia d fuzas, s muv on vloidad onstant. 2. ansfomaión d Galilo Considamos dos sistmas inials S y S, uya vloidad lativa stá diigida sgún l j Ox. S supon qu l plano yz s paallo al plano y'z', y los js x, x' son oinidnts. as uaions qu laionan las oodnadas d los dos sistmas x x + t y y z z ibn l nomb d tansfomaión d Galilo paa S y S. Po tanto, po l pinipio d latividad, las lys d la mánia son las mismas si alizamos sob l sistma una tansfomaión d Galilo. a ly d tansfomaión paa la vloidad y la alaión s v v + a a mos así qu la alaión no dpnd dl sistma d fnia lgido. 3. Efto Doppl no lativista. Coiminto d l Est fto laiona la funia mdida d una onda on las vloidads lativas dl tansmiso, l mdio y l pto. Suponindo qu l tansmiso mit ondas ada sgundos, qumos dtmina l píodo d la onda obsvado po l pto. a onda viaja n l mdio on una vloidad. El tansmiso s muv on vloidad haia l pto, y l pto s muv on vloidad haia l tansmiso.

2 Po tanto, n vitud d la adiión no lativista d vloidads, la distania nt tansmiso y pto disminuy + mtos n ada sgundo, y la onda llga al pto on la vloidad lativa +. El tansmiso mit una onda d píodo, sindo t 0 l instant n l qu mit l pim fnt d onda y t l instant n l qu mit l último fnt d onda, y finaliza la misión. Si ambos obsvados, l tansmiso y l pto, stuvian n poso lativo 0, l intvalo d timpo tansuido nt la pión dl pim fnt d onda y la pión dl último fnt d onda sía. Duant diho intvalo d timpo, la distania nt l tansmiso y l pto disminuy, on lo ual l último fnt d onda db o una distania mno paa llga al pto, qu la distania qu db o l pim fnt d onda. as distanias oidas po l pim y último fnt d onda difin n la antidad d + ( ) Ya qu la vloidad on qu s aa la onda al pto s +, la difnia nt l timpo d vulo dl pim fnt d onda y l timpo d vulo dl último fnt d onda s d + t + + Po tanto, l píodo d la onda obsvado po l pto sá igual al píodo mitido mnos la difnia d timpo ganada dbida al moviminto d aaminto dl tansmiso y pto. Es di, + t + + Intoduindo la funia ν d la sñal ν obtnmos la laión busada + ν ν Es l fto Doppl no lativista. a funia mdida d una onda dpnd d la vloidad lativa dl pto y tansmiso spto a la vloidad d las ondas n l mdio. El aso qu más no intsa s fi a un pto n poso (ada n la supfii tst), y un tansmiso (galaxia n misión sptal) moviéndos on una vloidad pquña fnt a la vloidad d las ondas n l mdio stla. Con sto, l ambio d funia po fto Doppl pud apoximas al valo ν ν + ν

3 D aquí, podmos alula la vaiaión lativa n la funia mdida po l obsvatoio tst ν ν ν ν En l aso más gnal, las ondas luminosas qu llgan a la ia podnts d galaxias ljanas s studian a tavés d su spto d longituds d onda. a longitud d onda s dfin n la foma λ ν a vaiaión d la longitud d onda dbido al fto Doppl, n sta apoximaión, s λ λ λ λ Cuando una galaxia s alja d la ia, < 0, obtnmos λ > λ. a luz qu ibimos podnt d sa galaxia suf un oiminto haia longituds d onda mayos, s l llamado oiminto al ojo. Si la galaxia s aa a la ia, > 0, obtnmos λ < λ, y s podu un oiminto haia longituds d onda mnos. Es l llamado oiminto al azul. 4. loidad lativa d las galaxias. Edad dl Univso Sgún hmos visto n l punto antio, midindo l dsplazaminto n longitud d onda dl spto qu llga a la supfii tst mitido po ualqui galaxia, podmos stima uál s la vloidad lativa d sa galaxia spto a la ia. Paa stima la distania qu nos spaa d lla nos basamos n l modlo osmológio más aptado atualmnt. Diho modlo apta qu l univso s nunta n ontinua xpansión, y qu diha xpansión s unifom n ualqui diión y spto a ualqui punto dl univso. Po tanto, spto a la ia, todas las galaxias s aljan d foma unifom, po lo qu una galaxia situada a una distania d la ia, s db alja d nosotos a una vloidad g α sindo α un valo d fnia qu val apoximadamnt 8 - α 0 sg Podmos stima admás on st modlo osmológio la dad τ dl Univso, y su tamaño, aatizado po un ito adio. a fonta dl Univso stá fomada po los ayos d luz qu s mition n su naiminto, y s aljan d ualqui punto on una vloidad igual a la vloidad d la luz. a distania qu han oido s igual al adio dl univso, qu satisfa

4 8 0 0 sg-luz 3 0 años-luz α y la dad dl univso sá igual al timpo nsaio paa qu los ayos d luz oan sta distania 8 0 τ 0 sg 3 0 años α 4. a vloidad d la oint d un ío s a, y l ío tin anhua. Una lanha s dsplaza on vloidad spto al agua n poso. Qué diión db toma la lanha paa llga a la ota oilla n l mno timpo posibl? Calula l punto d ataqu. Esogmos l j x n la diión d la oint dl ío, paalla a la oilla, y l j ppndiula y a la oilla dl ío. Po la ly d omposiión d vloidads, la vloidad d la lanha spto a la oilla s igual a a + ó + snφ x a y osφ sindo φ l ángulo qu foma la taytoia d la lanha on la ppndiula a la oilla dl ío. Si las vloidads son onstants, la intgal d la ly dl moviminto d la lanha s x + snφ t ( ) a y osφ t Cuando y la lanha s nontaá n la ota oilla dl ío. El timpo qu tada n uza l ío vin dado po t osφ y la posiión n la qu llga n la ota oilla stá dada po a + sn φ x osφ El timpo d u s mínimo uando la taytoia sigu la lína ta dfinida po l a valo φ 0. En st aso, la posiión dl punto d llgada s x, y.

5 4.2 Un nadado qu pat d A, s dsplaza on vloidad onstant n spto al agua sob un ío d anhua d uyas aguas stán animadas d una oint d vloidad onstant. a) El nadado ftúa taytos, d longitud d, d ida y vulta: uzando la oilla, AAA, n un timpo t y d foma paalla a la oilla, AA2 A, n un timpo t 2. Calula l valo dl oint t / t 2 b) El nadado dja l bod A, uando s nunta a una distania d d la poa d una motoa, d anhua, qu s dsplaza d foma paalla a la oilla on una vloidad onstant u spto dl agua. Dtmina la diión y magnitud d la vloidad absoluta mínima dl nadado paa qu no hoqu on la mbaaión. A a) b) d α A n d A 2 a ly d omposiión d vloidads s + n sindo la vloidad absoluta dl nadado spto a la oilla. Paa i d A a A l nadado db foma un ángulo α on la nomal a la oilla, d foma qu sa ppndiula a la oilla, ppndiula ntons a la vloidad dl ío. Así, s db satisfa n + on lo ual la vloidad absoluta dl nadado s 2 2 n El timpo t qu tada n uza l ío d anhua d y volv stá dado po d d d t osα 2 2 n n En l viaj AA 2, d longitud d, la vloidad dl nadado spto a la oilla s, y n l viaj d vulta, AA, 2 d longitud d, la vloidad s +. El timpo qu tada n o la distania AA2 A s u d A α B

6 d d 2d t El oint d timpos nos quda t t omamos l instant iniial t 0 uando l nadado sal d A. En s instant, la motoa s nunta n x d y viaja on vloidad u spto dl agua. El nadado vita la mbaaión si llga al punto B, a una distania ppndiula a la oilla, n pim luga. El timpo qu tada l nadado n llga a B s tn osα sindo α l ángulo qu foma l nadado on la nomal a la oilla. El timpo qu tada la motoa n llga al mismo punto s d + tanα tm u sindo u la vloidad absoluta d la motoa spto d la oilla. El nadado vita la olisión on la motoa, si tn < tm. a vloidad dl nadado paa onsgui sto satisfa, po tanto u ( ) ( u ) > d + tanα osα dosα + snα ( ) El mínimo d sta vloidad s alanza uando d n 0 dα ó dsnα osα 0 tanα d Esto s, uando l nadado s diig n lína ta haia B. a vloidad mínima s, ntons, u ( ) 2 2 d +

7 4.3 Una lína sptal qu apa on una longitud d onda d 5000 Å n l laboatoio s obsva on Å n l spto d la luz mitida po una galaxia ljana. Calula su vloidad y posiión dsd la ia. Si λ s la longitud d onda mitida po la galaxia y λ, la longitud d onda ibida n la ia, l oiminto po fto Doppl vin dado po λ λ λ g λ λ Intoduindo los datos, obtnmos λ λ g 4 0 λ a galaxia s alja d la ia. a distania dsd la ia satisfa g α sindo α un valo d fnia qu val apoximadamnt α 0 sg 3 0 años Obtnmos 5 0 años-luz as vloidads d las galaxias lativas a la ia no son isótopas n l fimamnto, ya qu dpndn d la diión d obsvaión. a anisotopía s onsunia dl moviminto dl Sol spto al nto d nusta galaxia, on una vloidad d 300 km/s. Examinamos todas las galaxias situadas a una distania d 3.26 x 0 7 años-luz. En l laboatoio la lína α d misión dl hidógno tin una longitud d onda d 6563 Å. Calula los valos máximo y mínimo d la longitud d onda ibida n la ia, y la diión d obsvaión n qu s podun. En st poblma dbmos supon qu la ia no stá n poso, sino qu s muv on una vloidad d aast, dbido al moviminto dl Sol, qu val 300 km/s0-3, y stá diigida sgún una ita diión qu lgimos omo l j z. En st aso l dsplazaminto Doppl vin dado po + λ λ g sindo g la vloidad d aljaminto d las galaxias α Con sto, Con los datos dl poblma, λ g λ + α +

8 ,26 0 0,00326 g a vloidad d la ia s d 300 Km/s si la diión d obsvaión oinid on la diión d su moviminto (j z), y s d -300 km/s si la diión d obsvaión s opusta a la diión d su moviminto. Cuando la diión d obsvaión foma un ángulo β on la diión dl moviminto d la ia, la vloidad d taslaión d la ia val 300osβ km/s Po tanto, l máximo n la longitud d onda ibida s podu uando s mínima, s di, n la diión -z, y l mínimo n la longitud d onda s podu uando s máxima, s di, n la diión +z. Con los datos dl poblma, + 0,00326 λmax λ 659,0 A 0,00 y + 0,00326 λmin λ 6577,8 A + 0, Un astonauta dsa ono su vloidad d apoximaión a la una. Paa llo nvía una sñal d funia 5000 MHz y ompaa sta funia on su o, obsvando una difnia d 86 Hz. Calula la vloidad dl astonauta spto a la una. Suponmos un pto n poso (la una), y l tansmiso apoximándos on una vloidad (l astonauta). a funia ibida po la una suf un dsplazaminto po fto Doppl n la foma ν ν ν + xpsión válida si, sindo la vloidad d la luz, vloidad a la qu s popaga la sñal nviada po l astonauta. a funia fljada po la una s ν ν Esta sñal llga d nuvo al astonauta on una funia ν ν ν +

9 En sta pión, l astonauta stá n poso y la una s aa a él on vloidad. a laión nt las funias d la sñal mitida y dl o ibido s, ntons 2 ν ν + mos qu la funia dl o simp sá mayo qu la funia mitida, ya qu l astonauta s aa a la una. Con los datos dl poblma, nontamos la vloidad d apoximaión dl astonauta a la una 5000,086 ν 2,58km/s ν 5000

Facultad de Ingeniería Física 1 Curso 5

Facultad de Ingeniería Física 1 Curso 5 Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d

Más detalles

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado.

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado. EJECCO DE OTENCA EN TEMA TFÁCO. EJECCO 1.- n sistma tifásico tifila d 40 V y scuncia T, alimnta una caga tifásica quilibada conctada n tiángulo, fomado po impdancias d valo 0 80º Ω. Halla la lctua d dos

Más detalles

2.1 ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN CON COEFICIENTES CONSTANTES.

2.1 ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN CON COEFICIENTES CONSTANTES. . ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN CON COEFICIENTES CONSTANTES. Una uaión difnial d sgundo odn s d la foma: p( q( g( Si g ( s llama E ua ió n ho m o g é n a aso ontaio; s di, si g ( s llama E

Más detalles

DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO

DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO Rvista Iboamiana d Ingniía Mánia. Vol. 11, N.º 3, pp. 39-51, 007 DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO BORIS F. VORONIN, JESÚS A. ÁLVAREZ SÁNCHEZ, JOSÉ ANTONIO

Más detalles

I.E.S. Mediterráneo de Málaga Modelo6_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1

I.E.S. Mediterráneo de Málaga Modelo6_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1 I.E.S. Mditáno d Málaga Modlo6_9_Solucions Juan Calos Alonso Gianonatti - Sa f:r R la función dfinida po f ( ) =+. Opción A Ejcicio 1 [ 7 puntos] Dtmina los intvalos d cciminto y dcciminto d f, así como

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO Docnt: Ángl Aita Jiménz SEGUNDO TALLER DE REPASO EJERCICIOS DE LEY DE GAUSS 1. Una sfa aislant d adio R tin una dnsidad d caga unifom ρ y una caga positiva total Q. Calcula l campo léctico n las gions.

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x . Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)

Más detalles

SOBRE EL CAMPO GRAVITATORIO

SOBRE EL CAMPO GRAVITATORIO OBRE EL CAMPO GRAVITATORIO CARLO CHINEA 999 OBRE EL CAMPO GRAVITATORIO El ao gaitatoio: Dfinios l ao o su uadiotnial y o la dnsidad d aión n aío Un ao gaitatoio s dfin o la ondiión d qu l uadiotnial in

Más detalles

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2006

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2006 I.E.S. Al-Ándalus. Aahal. Svilla. Dpto. Física y Química. Slctividad Andalucía. Física. unio 6 - UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. UNIO 6 OPCIÓN A. San dos conductos ctilínos

Más detalles

Transformador VALORES NOMINALES Y RELATIVOS

Transformador VALORES NOMINALES Y RELATIVOS Tasfomado VAORE NOMNAE Y REATVO Nobto A. mozy VAORE NOMNAE as picipals caactísticas d las máquias vi dadas po los fabicats la domiada placa o chapa d caactísticas; dod s spcifica, t otas cosas, la potcia

Más detalles

El sistema formado por [1] y [2] nos permiten determinar la velocidad v del satélite y el radio de la órbita r. ( ) 9,8 10 6,37 10

El sistema formado por [1] y [2] nos permiten determinar la velocidad v del satélite y el radio de la órbita r. ( ) 9,8 10 6,37 10 Solución dl poblma P.1 a) El satélit s muv bajo la influncia d la fuza gavitatoia tst qu s cntal y po tanto l momnto angula s consva. Como l momnto angula 14 1 s fijo L = p = 1, 45 1 k (kg m s ), sntido

Más detalles

VECTORES EN TRES DIMENSIONES

VECTORES EN TRES DIMENSIONES FÍSIC PR TODOS 1 CRLOS JIMENEZ HURNG VECTORES EN TRES DIMENSIONES Los vetoes pueden epesase en funión de oodenadas, de la siguiente manea: a; b; ) o de ota foma: a i + b j + k donde: i, j, k, son vetoes

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTEAR BADAJOZ PRUEBA DE ACCESO (OGSE) UNIVERSIDAD DE A RIOJA JUNIO (GENERA) (RESUETOS po Antonio Mnguiano) MATEMÁTICAS II Timpo máimo: hoas y minutos El alumno contstaá a los jcicios d una d las

Más detalles

LA RIOJA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

LA RIOJA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO LA RIOJA / SPIBR 04. LOGS / ÍSICA / XAN COPLO XAN COPLO l alumno lgiá una sola d las opcions d poblmas, así como cuato d las cinco custions popustas. No dbn solvs poblmas d opcions difnts, ni tampoco más

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

Guía 0: Repaso de Análisis Matemático

Guía 0: Repaso de Análisis Matemático ÍSICA II A/B Pim Sgundo Cuatimst d 009 Guía 0: Rpaso d Análisis Matmático ). Calcula n coodnadas sféicas la intgal f,, d sindo,, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo f,, ) ) g

Más detalles

GUÍA III : FUERZAS ELECTROMAGNÉTICAS

GUÍA III : FUERZAS ELECTROMAGNÉTICAS Sitma Elctomcánico, Guía III: Fuza Elctomagnética GUÍA III : FUERZAS EECROMAGÉICAS. El núclo d la figua tin una pmabilidad dl fio infinita y cción tanval d 9 [cm ]. El dvanado tin 5 [vulta] y una itncia

Más detalles

dt Igualando la fuerza de inercia en el satélite con la fuerza gravitacional, tenemos:

dt Igualando la fuerza de inercia en el satélite con la fuerza gravitacional, tenemos: ECUACIONES DE LA ORBITA LAS ECUACIONES DE LA ORBITA Lys d Kpl Las óbitas son planas y l satélit dscib una lips con un foco n l cnto d masa d la Tia. El adio vcto dscib áas iguals n timpos iguals. Los cuadados

Más detalles

LA VISIÓN NECESARIA PARA LA EXPRESIÓN DE LA VIDA EN LOS GRUPOS CON VIDA, PARTE III 2 CORINTIOS 4.1; EFESIOS 4.12

LA VISIÓN NECESARIA PARA LA EXPRESIÓN DE LA VIDA EN LOS GRUPOS CON VIDA, PARTE III 2 CORINTIOS 4.1; EFESIOS 4.12 LA VISIÓN NCSAIA PAA LA XPSIÓN D LA VIDA N LOS GUPOS CON VIDA, PAT III 2 COINTIOS 4.1; FSIOS 4.12 NCSITAMOS S: *AVIVADOS *FVOIZADOS *Y FUCTÍFOS. Y LOS GUPOS PODÁN S GUPOS CON VIDA QU TASMITN VIDA. L CUPO

Más detalles

5. INTRODUCCIÓN A ELEMENTOS A COMPRESIÓN. comportamiento inicial de acortamiento proporcional al esfuerzo generado por la carga que

5. INTRODUCCIÓN A ELEMENTOS A COMPRESIÓN. comportamiento inicial de acortamiento proporcional al esfuerzo generado por la carga que 5. INTRODUCCIÓN A LMNTOS A COMPRSIÓN 5.1 Compsión simpl Los lmntos a ompsión (olumnas), bajo la aión d una aa aial, tndán un ompotaminto iniial d aotaminto popoional al sfuzo nado po la aa qu atúa n su

Más detalles

Soluciones Problemas Capítulo 1: Relatividad I

Soluciones Problemas Capítulo 1: Relatividad I Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera

Más detalles

Tema 5: Campo Gravífico

Tema 5: Campo Gravífico Ta 5 Ta 5: Capo Gavífico 5..- Potncial y Capo d la Gavdad. Goid Podos v la Tia coo un sólido con otación unifo. D sta foa, todo punto atial d stá staá sotido a una fuza gavitatoia dbida a la asa tst y

Más detalles

Relación de problemas: Tema 2

Relación de problemas: Tema 2 laión d poblmas: Tma.- Una vailla dlgada AB d masa m y longitud l, stá sujta po una bisaga oloada n l sulo n su xtmo A. Si iniialmnt stá n posiión vtial y ominza a a, uando llga a la posiión hoizontal,

Más detalles

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en ÍSICA II A/B/8.0 Sgundo Cuatimst d 06 última vsión: o C.06) Guía 0: Rpaso d Análisis Matmático. Calcula n coodnadas sféicas la intgal f, ),, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo,

Más detalles

RESUMEN CORRIENTE ALTERNA

RESUMEN CORRIENTE ALTERNA ESUMEN OENTE TEN.- TENDO EEMENT Mdant un altnado lmntal obtnmos una fuza lctomotz snusodal cuyo ogn s la vaacón d flujo magnétco n l tmpo sgún: B S BS cos α BS cosωt d ξ BSωsnωt dt V Vmsnωt.-EY DE OHM

Más detalles

CINEMÁTICA (TRAYECTORIA CONOCIDA)

CINEMÁTICA (TRAYECTORIA CONOCIDA) 1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra

Más detalles

DEFORMACIONES. 1. Sean x, y, z la posición inicial de una partícula cuyo movimiento está descrito en un sistema lagrangiano por:

DEFORMACIONES. 1. Sean x, y, z la posición inicial de una partícula cuyo movimiento está descrito en un sistema lagrangiano por: Facltad d Cincias Epimntals Univsidad d Almía DEFORMACIONES. San,, la posición inicial d na patícla co moviminto stá dscito n n sistma lagangiano po: t X ( )( t Y ( )( + ( )( + ( )( + + Z Encnt: a) l vcto

Más detalles

Reacciones en disolución. Efecto del disolvente en la constante de velocidad

Reacciones en disolución. Efecto del disolvente en la constante de velocidad 3/05/06 Raions n disoluión Efto dl disolvnt n la onstant d vloidad El orign dl fto pud dbrs a: Distinto grado d solvataión Modifiaión dl manismo d raión Distinta onstant dilétria Enuntros En disoluión

Más detalles

Tema 4. Relatividad especial

Tema 4. Relatividad especial 1. Masa relativista Tema 4. Relatividad espeial Terera parte: Dinámia relativista La ineria de un uerpo es onseuenia de su resistenia al ambio en su estado de movimiento, y se identifia usualmente on la

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.

SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla. UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h

Más detalles

v = (área de la base)(altura) = (ab)h

v = (área de la base)(altura) = (ab)h El volumn dl paallpípdo d la figua siguint s v = (áa d la bas)(altua) = (ab)h IGURA El volumn dl cilindo cicula cto d la figua 4, a) siguint s (m )h. h a) ~---------------v~---------------- IGURA 4 TI

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller. 7.1 Conceptos generales sobre transformación de coordenadas

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller. 7.1 Conceptos generales sobre transformación de coordenadas Unisidad Simón Bolía Consión d Engía Eléctica - Pof José Manul All Tansfomación d Coodnadas 71 Concptos gnals sob tansfomación d coodnadas El sistma d cuacions difncials 61, qu modla l compotaminto d la

Más detalles

Opción A Ejercicio 1 opción A, modelo Septiembre 2011

Opción A Ejercicio 1 opción A, modelo Septiembre 2011 IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si

Más detalles

Experimentos factoriales con factores aleatorios

Experimentos factoriales con factores aleatorios Expimntos factoials con factos alatoios Intoducción Si considamos la situación d xpimntos factoials n los cuals s studian dos factos A y B, s pudn psnta dos modlos altnativos: MODELO DE EFECTOS ALEATORIOS:

Más detalles

6.2 Conductores. E r 6.2.1 MATERIALES CONDUCTORES.

6.2 Conductores. E r 6.2.1 MATERIALES CONDUCTORES. 6. Conuctos. 6.. MATIALS CONDCTOS. n gnal, los matials son lécticamnt nutos, s ci sus átomos continn tantas cagas positivas n l núclo, como lctons n la cotza, sin mbago, n los mtals los lctons pun tn movilia

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

EXÁMEN TIPO DE ACÚSTICA APLICADA

EXÁMEN TIPO DE ACÚSTICA APLICADA EXÁMEN PO DE ACÚCA APLCADA P.. - El uido n los alddos dl áa d taao d una cotadoa d mtal fu analizado n andas d octava dando como sultado los valos d la siguint tala: Fcuncia cntal n Hz Nivl d ntnsidad

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Físia Físia COMUNIDAD DE MADRID CONVOCATORIA JUNIO 008 SOLUCIÓN DE LA RUEBA DE ACCESO AUTOR: Tomás Caballeo Rodíguez imea pate Expeienia : Expeienia : A x A x a) En el MAS: x A sen(t 0 ) dx v A os(t 0

Más detalles

CATALUÑA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CATALUÑA / JUNIO 02. LOGSE / FÍSICA / EXAMEN COMPLETO Resuelva el poblema P1 y esponda a las uestiones C1 y C Esoja una de las opiones (A o B) y esuelva el poblema P y onteste a las uestiones C3 y C4 de la opión esogida (En total hay que esolve dos poblemas

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato DEPARTAMENTO DE FÍSICA E QUÍMICA Ondas y gavitación 14/1/07 Nombe: Poblema 1. Un satélite de 100 kg tada 100 minutos en descibi una óbita cicula alededo de la Tiea. Calcula: a) La enegía

Más detalles

Examen Reserva Septiembre2009

Examen Reserva Septiembre2009 Eamn Rsva ptimb009 1. La validz d los tsts hac fncia a: a) la quivalncia nt las puntuacions obsvadas y las vdadas, b) la adcuación d las infncias qu s hagan a pati d las puntuacions obsvadas al objtivo

Más detalles

Ejemplo 1: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

Ejemplo 1: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 . CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando l signo d la divada pima podmos sab cuando una función s ccint o dccint. Esto s llama también l studio d la monotonía d la función. Popidad: - Si

Más detalles

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas UNIVESIDD USTL DE CILE INSTITUTO DE CIENCI Y TECNOLOGI DE LOS LIMENTOS (ICYTL) / SIGNTU: INGENIEI DE POCESOS III (ITCL 34) POESO: Elton. Moals Blancas UNIDD : TNSEENCI DE CLO PO CONDUCCION (ESTDO ESTCIONIO)

Más detalles

OPCION A OPCION B CURSO 2013-2014. Universidades de Andalucía. Selectividad Junio 2014. Examen de Física (Resuelto)

OPCION A OPCION B CURSO 2013-2014. Universidades de Andalucía. Selectividad Junio 2014. Examen de Física (Resuelto) Univsidads d ndalucía. Slctividad unio 4. Examn d Física (Rsulto) CURSO 3-4 OPCION. a) Expliqu las caactísticas dl campo gavitatoio d una masa puntual. b) Dos patículas d masas m y m stán spaadas una cita

Más detalles

II. Electrostática tica en el vacío

II. Electrostática tica en el vacío II. Elctostá n l vacío 7. Engía a lctostá Gabil Cano Gómz, G 9/ Dpto. Física F plicada III (U. Svilla) Campos Elctomagnéticos ticos Ingnio d Tlcomunicación II. Elctostá n l vacío Gabil Cano G Gómz, 9/.

Más detalles

TRANSMISIÓN DE CALOR POR CONDUCCIÓN

TRANSMISIÓN DE CALOR POR CONDUCCIÓN ERMODINAMICA ÉCNICA Y RANSMISIÓN DE CAOR RANSMISIÓN DE CAOR POR RANSMISIÓN DE CAOR POR EN ESACIONARIO. Intoducción.. Balanc d ngía n una supfici plana. 3. Balanc d ngía n supficis cilíndicas y sféicas.

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física º Bachaelato Gavitación 19/01/10 DEPARAMENO DE FÍSICA E QUÍMICA Nombe: 1. Calcula la pimea velocidad obital cósmica, es deci la velocidad que tendía un satélite de óbita asante.. La masa de la Luna

Más detalles

4πε. q r 2. q r C 2 2

4πε. q r 2. q r C 2 2 . ) A un distnci d. cm dl cnto d un sf conducto con cg cuyo dio s d. cm, l cmpo léctico s d 48 N/. uál s l cmpo léctico.6 cm dl cnto d l sf? ) A un distnci d. cm dl j d un cilindo conducto muy lgo con

Más detalles

PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA

PROBLEMAS DEL TEOREMA FUNDAMENTAL DE LAS INTEGRALES DE LÍNEA ROBLEMAS DEL TEOREMA UNDAMENTAL DE LAS INTEGRALES DE LÍNEA. Indpndncia dl camino n una ingal d lína. alcula l abajo llvado a cabo po l campo d ua al llva un objo dsd A hasa B siguindo a un camino compuso

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 6/7 Energía electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 6/7 Energía electrostática Tm : Pincipios d l lctostátic, Antonio Gon nzálz Fná ándz Antonio Gonzálz Fnándz Dptmnto d Físic Aplicd III nivsidd d Svill Pt 6/7 Engí lctostátic Engí, tbjo y clo: l pim pincipio i i d l tmodinámic i

Más detalles

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR

UNIVERSIDAD NACIONAL DE FRONTERA CEPREUNF CICLO REGULAR CURSO: FISICA SEMANA 3 TEMA: CINEMATICA I V1 V t v v 1 Cinmática Es una part d la mcánica qu s ncarga d studiar única y xclusivamnt l moviminto d los curpos sin considrar las causas qu lo originan. ELEMENTOS

Más detalles

Tu libro Cálculo está organizado en cuatro partes, cada una de las cuales corresponde a un bimestre académico. Tema 1. Tema 2. Tema 3. Tema 4.

Tu libro Cálculo está organizado en cuatro partes, cada una de las cuales corresponde a un bimestre académico. Tema 1. Tema 2. Tema 3. Tema 4. Cono tu libo Tu libo Cálulo stá oganizado n uato pats, ada una d las uals ospond a un bimst aadémio. Pa t Pnsamintos numéio vaiaional Tma Los númos als... Tma Gáias modlos... 8 Tma Las unions sus gáias...

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

< 0, entonces la función f es estrictamente decreciente en x

< 0, entonces la función f es estrictamente decreciente en x UNIDAD.- Aplicacions d las divadas (tma dl libo). CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando l signo d la divada pima podmos sab cuando una función s ccint o dccint. Esto s llama también l studio

Más detalles

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta.

Estas pruebas permiten verificar que la población de la cual proviene una muestra tiene una distribución especificada o supuesta. PRUEBAS DE BONDAD DE AJUSTE Estas prubas prmitn vrificar qu la población d la cual provin una mustra tin una distribución spcificada o supusta. Sa X: variabl alatoria poblacional f 0 (x) la distribución

Más detalles

Examen de Psicometría 1ª Prueba Personal 2ª Semana Febero de 2003 Duración: DOS HORAS Material permitido: Formulario sin anotaciones y calculadora

Examen de Psicometría 1ª Prueba Personal 2ª Semana Febero de 2003 Duración: DOS HORAS Material permitido: Formulario sin anotaciones y calculadora FACULTAD DE PICOLOGÍA Dpatamnto d Mtodología d las Cincias dl Compotaminto Eamn d Psicomtía ª Puba Psonal ª mana Fbo d 003 Duación: DO HORA Matial pmitido: Fomulaio sin anotacions y calculadoa. El Instituto

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:

Más detalles

Dinámica relativista - Efecto Compton

Dinámica relativista - Efecto Compton Dinámia rlativista - Efto Compton Niolás Di Fiori Fdrio Foiri Matías Rodríguz niolasdf@fibrtl.om.ar, fdfoiri@hotmail.om, srv@labs.df.uba.ar Laboratorio 5 FCEyN UBA, Otubr d S analizó l fto Compton produido

Más detalles

Una onda es una perturbación que se propaga y transporta energía.

Una onda es una perturbación que se propaga y transporta energía. Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

Dieléctricos lineales. Tipos de dieléctricos lineales. Dieléctricos no lineales. Medios homogéneos Medios inhomogéneos. Gómez, 10/11.

Dieléctricos lineales. Tipos de dieléctricos lineales. Dieléctricos no lineales. Medios homogéneos Medios inhomogéneos. Gómez, 10/11. IV. Compotaminto dil 4. opidads d dils. mitividad diléctica bil Cano Gómz, 21/11 pto. Física Aplicada III (U. Svilla) Campos Elctomagnéticos Ingnio d Tlcomunicación IV. Compotaminto dil d la matia Gómz,

Más detalles

TEMA 7 APLICACIONES DE LA DERIVADA

TEMA 7 APLICACIONES DE LA DERIVADA Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f

Más detalles

Solución de la ecuación de Schödinger para una partícula libre.

Solución de la ecuación de Schödinger para una partícula libre. Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo

Más detalles

EXAMEN FINAL DE ANÁLISIS DESCRIPTIVO DE DATOS ECONÓMICOS. 15-FEBRERO-2002.

EXAMEN FINAL DE ANÁLISIS DESCRIPTIVO DE DATOS ECONÓMICOS. 15-FEBRERO-2002. EXMEN FINL DE NÁLII DECRIPTIVO DE DTO ECONÓMICO. 5-FERERO-00. PELLIDO: NOMRE: D.N.I.: FIRM: GRUPO: - - C - D Rod con un cículo lo qu pocda Los alumnos qu apobaon l pim pacial sólo tinn qu spond a las pguntas

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

FÍSICA APLICADA. EXAMEN EXTRAORDINARIO 26/Junio/2012

FÍSICA APLICADA. EXAMEN EXTRAORDINARIO 26/Junio/2012 FÍSI ID. EMEN ETODINIO 6/Junio/01 TEOÍ (.5 p). a) oncpto d campo léctrico y potncial léctrico. b) S tinn dos cargas léctricas puntuals dl mismo valor y signos contrarios sparadas una distancia d (dipolo

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA SCULA ÉCNCA SUPROR D NGNROS D LCOMUNCACÓN UNRSDAD POLÉCNCA D ALNCA ANNAS 7-no-3 PROBLMA Una antna conocia po los aioaficionaos como W8JK, consta n su configuación más simpl os ipolos mu póimos longitu

Más detalles

9 Aplicaciones de las derivadas

9 Aplicaciones de las derivadas 9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones

Método de los Elementos Finitos para Análisis Estructural. Alisado de tensiones Método d los Elmntos Finitos para Análisis Estructural Alisado d tnsions Campo d tnsions Tnsions n cualquir punto dl lmnto, sgún l MEF: = Dε= DBδ Matriz B contin las drivadas d las N: no son continuas

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

Tensor de inercia. Tensor de inercia. I pzx. I pxx. I pxy. = I pyz. I pxz. I. Leyes de Newton. II. Cinemática

Tensor de inercia. Tensor de inercia. I pzx. I pxx. I pxy. = I pyz. I pxz. I. Leyes de Newton. II. Cinemática Univesidad Simón Bolíva. ees de Newton. Cinemátia. Dinámia Sist. de atíulas Definiiones a le da le Tenso de ineia a le Es. de agange Tenso de ineia ( + ) Momentos de ineia: (Sieme ositivos) ( + ) Poiedades

Más detalles

Unidad 11 Derivadas 4

Unidad 11 Derivadas 4 Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no

Más detalles

Solución Tarea de Aproximaciones y errores de redondeo

Solución Tarea de Aproximaciones y errores de redondeo Métodos numéicos y álgb linl CB0085 Apoximcions y os d dondo T d Apoximcions y os d dondo. Clcul l o bsoluto y l o ltivo si p y p 2.78 dond p s l vlo clculdo. : vlo l vlo clculdo 2.78 o bsoluto : vlo clculdo

Más detalles

IES Al-Ándalus. Arahal. Dpto. Física y Química. Física 2º Bachillerato. - 1

IES Al-Ándalus. Arahal. Dpto. Física y Química. Física 2º Bachillerato. - 1 IS l-ándalus. ahal. Dpto. Física y Química. Física º achillato. - LGUOS PROLMS Y USTIOS TÓRIS DL TM 3. ITRIÓ LTROSTÁTI Poblma dl boltín.. Una patícula d caga - s ncunta n poso n l punto (,). S aplica un

Más detalles

Efecto del gavitomagnetismo sobre el periodo orbital de un satélite

Efecto del gavitomagnetismo sobre el periodo orbital de un satélite 11 Efto dl gavitomagntismo sobr l priodo orbital d un satélit 1.11 Sistmas d oordnadas S trata d alular las prturbaions gravitomagnétias qu sufr l priodo orbital d un satélit qu gira n torno a la Tirra.

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR ísia Geneal 1 Poyeto PMME - Cuso 007 Instituto de ísia aultad de Ingenieía UdelaR DINÁMICA DE LA PARTÍCULA MOVIMIENTO CIRCULAR EN UN PLANO VERTICAL abiana Andade Juan Pablo Balaini Pablo Doglio Intoduión:

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

Para un par de moléculas no polares el único térmico atractivo es el de dispersión. Si la molécula 1 y 2 son iguales. a) Ne-Ne.

Para un par de moléculas no polares el único térmico atractivo es el de dispersión. Si la molécula 1 y 2 son iguales. a) Ne-Ne. SR.- alcula la ngía d intacción d dispsión paa dos moléculas situadas a 5 Å, n los siguints casos. Molécula (cm I(Kcal/mol T b (K.9 97. 7... 87. K..7 9.9 X. 79 5. ompaa l sultado obtnido con la tmpatua

Más detalles

AMPLIFICADORES CON BJT

AMPLIFICADORES CON BJT AMPFADOS ON BJT FUNONAMNTO D BJT PAA SÑA AMPFADOS ON BJT uando s opla una tnsión altrna a la bas d un transistor apar una tnsión altrna a través dl diodo bas-misor. sta orrt altrna d misor t la misma frunia

Más detalles

CURSO 2004-2005 - CONVOCATORIA: Junio

CURSO 2004-2005 - CONVOCATORIA: Junio ubomisión de mateia de Físia de º De ahilleato Coodinaión P..U. 005-006 PU D CCO L UNIVIDD. LOG L.O.G... FÍIC CUO 00-005 - CONVOCOI: Junio OLUCION De las dos opiones popuestas, sólo hay que desaolla una

Más detalles

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable Instuccions a) Duación: 1 oa y 3 minutos b) Db dsaolla las custions y poblmas d una d las dos opcions c) Pud utiliza calculadoa no pogamabl d) Cada custión o poblma s calificaá nt y,5 puntos (1,5 puntos

Más detalles

Taller 1 cálculo integral: Integral Indefinida. Profesor Jaime Andrés Jaramillo. UdeA dx 2. x 1.

Taller 1 cálculo integral: Integral Indefinida. Profesor Jaime Andrés Jaramillo. UdeA dx 2. x 1. Tallr álulo ingral: Ingral Indfinida. Profsor Jaim Andrés Jaramillo. jaimaj@onpoompuadors.om. UdA. 07-. Calul la ingral manipulando l ingrando para obnr una forma qu orrsponda on las fórmulas básias a)

Más detalles

Solución: Cuando el ángulo que forman el vector fuerza y el vector desplazamiento es nulo, dado que: cos 0 = 1

Solución: Cuando el ángulo que forman el vector fuerza y el vector desplazamiento es nulo, dado que: cos 0 = 1 IES Menéndez olosa ísia y Químia - º Bah Enegía inétia y potenial I Explia el onepto de tabajo. Cuando una ueza onstante atúa sobe un uepo y lo desplaza, se denomina tabajo al poduto de diha ueza po el

Más detalles

r r r r r µ Momento dipolar magnético

r r r r r µ Momento dipolar magnético A El valo φ180 o es una posición de equilibio inestable. Si se desplaza un poco especto a esta posición, la espia tiende a tasladase aún más de φ180 o. τ F ( b/ )sinϕ ( a)( bsinϕ) El áea de la espia es

Más detalles

Perturbaciones orbitales producidas por la gravitoelectricidad Planetary perturbations caused by gravitoelectricity

Perturbaciones orbitales producidas por la gravitoelectricidad Planetary perturbations caused by gravitoelectricity Ptubacions obitals poducidas po la gavitolcticidad Plantay ptubations causd by gavitolcticity Wncslao Sgua Gonzálz -mail: wncslaosguagonzalz@yahoo.s Sinopsis. Hay numosos studios sob los fctos dl gavitomagntismo,

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 3, Oión B Junio, Ejeriio 6, Oión B Reserva 1, Ejeriio 5, Oión B Reserva, Ejeriio 3, Oión A Reserva 3, Ejeriio

Más detalles

Univerdidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática

Univerdidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Univdidad d unos is - Facultad d incias Exactas y Natuals - Dpatamnto d Matmática LGER I - Páctica N - Pim cuatimst d 00. onjuntos: nocions lmntals Ejcicio. Dcidi, n cada uno caso d los siguints casos,

Más detalles

, bien definida, que es mayor que la longitud de onda λ. de los rayos incidentes.

, bien definida, que es mayor que la longitud de onda λ. de los rayos incidentes. Físia 3- Rayos X El fto Comton Comton (93 Sa un az d rayos X d longitud d onda λ qu s disrsado n un ángulo θ, al asar a través d una lámina disrsora. Entons la radiaión disrsada ontin una omonnt d longitud

Más detalles