1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano."

Transcripción

1 CAPÍTULO El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C..... El espacio vectorial de los vectores Definición. Vectores fijos Dado dos puntos cualesquiera A e del espacio nos definirán un vector fijo que designaremos por A (A recibe el nombre de origen e extremo del vector). Al conjunto de todos los vectores fijos que podamos construir en P se le denomina P P El hecho de que A sea el origen e el extremo determina sobre la recta un sentido de A a que es el sentido del vector. La dirección es la recta determinada por los puntos A e y el módulo es la distancia entre A e. Definición. Los vectores fijos AA,,... que tienen el mismo origen y extremo reciben el nombre de vectores fijos nulos. Definición.3 Dos vectores fijos A y CD tienen el mismo módulo si d(a,) = d(c,d). Escribiremos : A = CD Definición.4 Dos vectores fijos A y CD tienen la misma dirección si están en la misma recta o en rectas paralelas. Escribiremos: A CD Definición.5 Dos vectores fijos A y CD que tienen la misma dirección tienen el mismo sentido A CD si. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.. Si están situados en una misma recta, existe otro vector fijo situado en una recta paralela tal que respecto de los dos vectores, aplicando el apartado anterior, mantiene el mismo sentido. Definición.6 Vectores equipolentes Dos vectores fijos del espacio son equipolentes ( y se denota por : XY A), si verifican una de las tres condiciones siguientes:. Si no son nulos y están situados en rectas diferentes, son equipolentes si al unir sus orígenes (A y X) y sus extremos ( e Y ) se forma un paralelogramo.

2 D A C D E C A F A EF y CD EF = A CD Figura.: Vectores del mismo sentido. Si están sobre la misma recta existe otro vector MN que cumple con ambos la misma condición. 3. Si ambos vectores son nulos. Teorema. Dos vectores: XY A si y sólo si tienen la misma dirección, el mismo sentido y el mismo módulo. La relación de equipolencia es de equivalencia ya que cumple las propiedades reflexiva, simétrica y transitiva. Podemos formar por tanto el conjunto cociente que nos clasifica el conjunto P. Cada una de las clases de equivalencia es un vector libre y su conjunto se designa por V : V = E. v V v = [ A] = { CD CD A} El vector libre nulo es: 0 = { AA,,...} Propiedad. Elegido un punto O del espacio que llamaremos origen y un vector libre cualesquiera [ A] del espacio, éste tiene un único representante con origen en O. (Fig..) A u = [ A] u = [ OP] P O Figura.: Vector libre con origen O Departament de matemàtiques - - I.E.S. Joan Ramon enaprès

3 ... Operaciones con vectores libres En el conjunto V se establecen dos operaciones: Definición.7 Ley interna, adición de vectores: Sean v = [ A] y v = [ CD] dos vectores libres de V 3. Se define la suma de vectores como otro vector libre v3,que viene determinado por una de las formas siguientes:. Método del paralelogramo. Método del polígono u + v v u Figura.3: Suma de vectores libres. Método paralelogramo Propiedad. La suma de vectores es uniforme, es decir no depende de los vectores que se tomen como representantes. Propiedad.3 El conjunto V 3 con la operación así definida cumple las siguientes propiedades ( Dados u, v, w V ):. Asociativa u + ( v + w) = ( u + v) + w) = u + v + w. Conmutativa : u + v = v + u 3. Elemento neutro : El vector cero Elemento simétrico: [ A] + [ A] = 0 Todo ello quiere decir que (V,+) es un grupo abeliano. Definición.8 Ley externa Sean v = [ A] y λ R un escalar. Definimos la siguiente operación externa: tal que a cada par (λ, v) λ v verificando:. El vector λ v tiene la misma dirección que v : R V V. El sentido del vector será el mismo que v si λ > 0 y el contrario a v si λ < El módulo será el producto de λ por el módulo de v Propiedad.4 El conjunto V con la operación externa así definida, cumple las siguientes propiedades:. Distributiva de los escalares respecto a la suma de vectores: λ ( u + v) = λ u + λ v Departament de matemàtiques - 3- I.E.S. Joan Ramon enaprès

4 . Distributiva de los vectores respecto la suma de escalares: (λ + µ) u = λ u + µ v 3. Asociativa de los escalares: (λ µ) u = λ (µ u) 4. Elemento unidad: v = v Todo ello quiere decir que (V,+, ) es un espacio vectorial sobre R. Definición.9 (Familia de vectores) Un conjunto de vectores del espacio vectorial V recibe el nombre de familia de vectores: F = { u, u, u 3,, u n } Definición.0 (Combinación lineal de vectores) Un vector u V es combinación lineal de los vectores de una familia F = { u, u, u 3,, u n }, si existen n escalares, α,α,,α n R, tal que: u = α u + α u + + u n α n = n α k u k Definición. (Sistema generador) Una familia G = { u, u, u 3,, u n } es un sistema generador del espacio V si todo vector es combinación lineal de los vectores de la familia: v V, α,α,,α n R tal que v = α u + α u + + n u n α n = α i u i Definición. (Vectores linealmente independientes o familia libre de vectores) Una familia de vectores F es libre o los vectores son linealmente independientes si NINGÚN VECTOR de la familia se puede expresar como combinación lineal de los restantes. La definición es equivalente a: Definición.3 (Vectores linealmente independientes o familia libre de vectores) Una familia de vectores F es libre o los vectores son linealmente independientes si PARA TODA COMINACIÓN lineal de los vectores de F igualada al vector nulo, TODOS LOS ESCALARES deben ser cero. Para toda combinación lineal: α u +α u + + u n α n = 0 entonces α = α = α 3 = = α n = 0 Las familias de vectores que no son linealmente independientes son linealmente dependientes. Definición.4 (ase de un espacio vectorial) Una familia = { u, u, u 3,, u n } es una base del espacio V si verifica simultáneamente las siguientes condiciones: La familia es sistema generador. La familia es libre (los vectores son linealmente independientes) Definición.5 (Dimensión de un espacio vectorial) Dado un espacio vectorial se llama dimensión del espacio al número de vectores de la base. Proposición. (ase y dimensión del espacio vectorial) Dos vectores, no nulos, de distinta dirección, { u, v } de V siempre forman una base de los vectores libres del plano. Demostración: Para que sea base debe verificar las dos condiciones: sistema generador y libre: Linealmente independientes Por reducción al absurdo: supongamos que los vectores son linealmente dependientes, por definición uno será combinación lineal del otro: α R tal que u = α v, por lo tanto los vectores u y v están en la misma dirección. Contradice la hipótesis de no estar en la misma dirección, es decir, son linealmente independientes Sistema generador asta hacer la construcción geométrica: se deja como ejercicio. k= i= Departament de matemàtiques - 4- I.E.S. Joan Ramon enaprès

5 Consecuencias. Todas las base de V están formadas por dos vectores de distinta dirección.. La dimensión del e.v. V, por lo tanto, es. Definición.6 (Coordenadas de un vector) Dada una base = { u, u } y un vector v cualquiera de V, como forman un sistema generador α,β R tal que v = α u + β u. A la dupla (α,β) se les denomina coordenadas del vector v respecto de la base. Por ser base los vectores son linealmente independientes y conlleva que las coordenadas (α,β) SON ÚNICAS respecto de cada base. Efectivamente: si las coordenadas no fuesen únicas entonces: v = α u + β u = α u + β u = α u + β u α u β u = 0 (α α ) u + (β β ) u = 0 Por la definición de vectores linealmente independientes, al estar igualado al vector nulo, TODOS los escalares son cero: { α α = 0 = α = α β β = 0 = β = β Es decir las coordenadas de un vector respecto de una base dada SON ÚNICAS En general se tomará como base de V a la base canónica e = (,0) y e = (0,). Ejemplo Si nos dan el vector u = (3,4) significa: 5 u = 3 e + 4 e. Gráficamente: 4 3 u w e 0 - e Figura.4: u = 3 e + 4 e y w = ( ) e + 3 e Departament de matemàtiques - 5- I.E.S. Joan Ramon enaprès

6 ... Plano afín Definición.7 Sea P el conjunto que llamamos plano intuitivo y V (R) el e.v. real de dimensión de los vectores libres y f una aplicación de P P sobre V (R) que verifica los axiomas siguientes:. A,,C P f(a,c) = f(a,) + f(,c) AC = A + C. A P y v V (R) un único P tal que f(a,) = v A = v Se denomina plano afín asociado a V (R) y se designa por E (R) a la terna (P, V (R), f). Definición.8 (Dimensión) Sea E (R) el espacio afín asociado a V (R), se llama dimensión del espacio afín a la dimensión del espacio vectorial asociado. dim E (R) = dim V (R) = Definición.9 (Vector de posición) Supongamos elegido un punto O del espacio afín que llamaremos origen. Consideremos la aplicación h 0 : P V (R) tal que a cada punto del espacio afín A P le hacemos corresponder el vector OA. A este vector se le denomina vector de posición del punto A. Definición.0 (Sistema de referencia afín) Se denomina sistema de referencia afín del espacio E al par (O, ) donde O es un punto fijo y es una base del espacio vectorial asociado. Al punto O se le denomina origen de coordenadas. Definición. (Coordenadas afines de un punto) Se llaman coordenadas afines de un punto A de E respecto a la referencia afín, a las coordenadas del vector OA respecto de la base de V (R). OA = x e + y e Considerando la base canónica: (0, c ) donde O = (0,0), e = (,0), e = (0,) 5 A 4 3 e O e Figura.5: Las coordenadas de los puntos: A(3,5) y ( 3, ) Departament de matemàtiques - 6- I.E.S. Joan Ramon enaprès

7 Propiedad.5 (Coordenadas de un vector) Dado el vector u = [ A] se llaman coordenadas del vector u respecto de una referencia, a las coordenadas del extremo del vector, el punto, MENOS las coordenadas del extremo, el punto A. Efectivamente: Sean A = (x,y ) y = (x,y ) los extremos del vector fijo A Entonces: O = OA + A = A = O OA en componentes A = (x e + y e ) (x e + y e ) = (x x ) e + (y y ) e = (x x, y y ) A O Figura.6: Coordenadas un vector Propiedad.6 (Vectores equipolentes) Dos vectores u, v son equipolentes si y sólo si sus coordenadas son iguales. Ejercicios. Hallar las coordenadas del vector de extremos A( 3,) y (5,3).. Si el vector u = (,4) y su origen es el punto A(3, ), hallar las coordenadas del extremo del vector. 3. Los puntos A(,), (3,5) y C(7, ) son tres vértices consecutivos de un paralelogramo. Hallar las coordenadas del cuarto vértice, D. Departament de matemàtiques - 7- I.E.S. Joan Ramon enaprès

8 Propiedad.7 (Coordenadas del punto medio de un segmento) Las coordenadas del punto medio, M, de un segmento de extremos A y son igual a la media aritmética de las coordenadas de los extremos de dicho segmento (Fig..7): Como OM = OA + AM y AM = A = OM = OA + A Si las coordenadas de los extremos son A(x,y ) y (x,y ), y las del punto medio, M = (x m,y m ), entonces: (x m,y m ) = (x,y ) + ( (x x,y y ) = x + x x,y + y ) y = ( x + x, y ) + y M 3 A O Figura.7: Coordenadas del punto medio Ejercicios. Hallar las coordenadas de los puntos medios del paralelogramo ACD.. Dividir el segmento A en tres partes iguales si A(,) y (7,0) Departament de matemàtiques - 8- I.E.S. Joan Ramon enaprès

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

PUNTOS Y VECTORES EN EL PLANO

PUNTOS Y VECTORES EN EL PLANO PUNTOS Y VECTORES EN EL PLANO PUNTOS EN EL PLANO Tomando como referencia los ejes cartesianos del plano, un punto se representa mediante un par ordenado (a, b) de números reales, es decir, mediante un

Más detalles

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica

Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores

Más detalles

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO.

ESPACIO AFÍN 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. ESPACIO AFÍN 1.- CONCEPTO DE ESPACIO AFÍN. 2.- SISTEMAS DE REFERENCIA: COORDENADAS DE UN PUNTO. 3.- VARIEDAD LINEAL: ECUACIONES DE LA RECTA Y EL PLANO. 4.- PROBLEMAS DE INCIDENCIA. 5.- POSICIONES RELATIVAS

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

Tema 4: Los vectores en el espacio

Tema 4: Los vectores en el espacio Tema 4: Los vectores en el espacio 1. El conjunto R 3 Este conjunto está formado por todas las ternas de números reales (x, y, z) 2. Vectores fijos Un vector es un segmento orientado que parte de A (origen)

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

Estructuras algebraicas

Estructuras algebraicas Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B

Más detalles

Cálculo vectorial en el plano.

Cálculo vectorial en el plano. Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores

Más detalles

V 2 : vectores libres en el plano

V 2 : vectores libres en el plano V 2 : vectores libres en el plano Egor Maximenko ESFM del IPN 8 de agosto de 2009 Egor Maximenko (ESFM del IPN) V 2 : Vectores libres en el plano 8 de agosto de 2009 1 / 13 Contenido 1 Conjunto V 2 2 Operaciones

Más detalles

Topología de R n. Beatriz Porras

Topología de R n. Beatriz Porras Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de innovación didáctica Departamento de Matemáticas Universidad de Extremadura Índice Puntos y vectores en En R 3, conviene distinguir

Más detalles

TEMA 1. NÚMEROS REALES Y COMPLEJOS

TEMA 1. NÚMEROS REALES Y COMPLEJOS TEMA 1. NÚMEROS REALES Y COMPLEJOS 1.1 DEFINICIÓN AXIOMATICA DE LOS NÚMEROS REALES 1.1.1 Axiomas de cuerpo En admitimos la existencia de dos operaciones internas la suma y el producto, con estas operaciones

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes.

16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes. TEMA 5. VECTORES 5.1. Vectores en el plano. - Definición. - Componentes de un vector. - Módulo. - Vectores equivalentes. 5.2. Operaciones con vectores. - Suma y resta. - Multiplicación por un número real.

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

Dependencia e independencia lineal

Dependencia e independencia lineal CAPíTULO 3 Dependencia e independencia lineal En este capítulo estudiaremos tres conceptos de gran importancia para el desarrollo del álgebra lineal: el concepto de conjunto generador, el concepto de conjunto

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.

RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97. RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

SESIÓN 4: ESPACIOS VECTORIALES

SESIÓN 4: ESPACIOS VECTORIALES SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA 1 MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA Ejercicio 1. (Junio 2006-A) Considera el plano π de ecuación 2x + y z + 2 = 0 y la recta r de ecuación x 5 z 6 = y =. 2 m (a) [1 punto] Halla la posición

Más detalles

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2014 Olalla (Universidad de Sevilla) El anillo de

Más detalles

TEMA 4: Espacios y subespacios vectoriales

TEMA 4: Espacios y subespacios vectoriales TEMA 4: Espacios y subespacios vectoriales 1. Espacios vectoriales Sea K un cuerpo. Denominaremos a los elementos de K escalares. Definición 1. Un espacio vectorial sobre K es un conjunto V cuyos elementos

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

10. 1 Definición de espacio euclídeo.

10. 1 Definición de espacio euclídeo. ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS 10. ESPACIOS EUCLÍDEOS 10. 1 Definición de espacio euclídeo. Producto escalar

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.

O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura. MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en

Más detalles

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j,

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j, Ecuaciones de rectas y planos. Coordenadas en el espacio. Planos coordenados. El vector OP tiene unas coordenadas( x, y, z ) respecto de la base B, que se pueden tomar como coordenadas del punto P respecto

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 GEOMETRÍA (Selectividad 014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 014 1 Aragón, junio 014 Dados el punto P (1, 1, 0), y la recta: x+ z 1= 0 s : 3x y 3= 0 Ax + By

Más detalles

1. NUMEROS COMPLEJOS.

1. NUMEROS COMPLEJOS. Apunte de Números complejos o imaginarios: Representación gráfica. Complejos conjugados y opuestos. Forma trigonométrica, de De Moivre, exponencial. Operaciones. Raíces.Fórmula de Euler. 1. NUMEROS COMPLEJOS.

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc.

Es trivial generalizar la definición al caso de varios conjuntos: A B C, etc. Tema 1 Espacios Vectoriales 1.1 Introducción Estas notas están elaboradas pensando simplemente en facilitar al estudiante una guía para el estudio de la asignatura, y en consecuencia se caracterizan por

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

Capítulo 8. Geometría euclídea. 8.1 Problemas métricos

Capítulo 8. Geometría euclídea. 8.1 Problemas métricos Capítulo 8 Geometría euclídea 81 Problemas métricos Espacios vectoriales El plano: R 2 = { (x,y : x,y R } El espacio: R 3 = { (x,y, z : x, y, z R } Si u = λv para algún λ 0 diremos que son proporcionales:

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

8.- GEOMETRÍA ANÁLITICA

8.- GEOMETRÍA ANÁLITICA 8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),

Más detalles

Teoría Tema 5 Producto escalar. Ángulo entre vectores

Teoría Tema 5 Producto escalar. Ángulo entre vectores página 1/8 Teoría Tema 5 Producto escalar. Ángulo entre vectores Índice de contenido Ángulo de dos vectores...2 Producto escalar de dos vectores...5 Obtener ángulo formado por dos vectores a partir de

Más detalles

Espacios geométricos E 2 y E 3

Espacios geométricos E 2 y E 3 Tema IV Espacios geométricos E 2 y E 3 1. El espacio afín. 1 Definición y propiedades. Definición 1.1 Sea E un conjunto no vacío. Se dice que E está dotado de estructura de espacio afín asociado a un espacio

Más detalles

Conjuntos relaciones y grupos

Conjuntos relaciones y grupos Matemáticas NS Conjuntos relaciones y grupos Tema opcional 2 Índice 1. Conjuntos y relaciones 5 1.1. Introducción.......................................... 5 1.2. Operaciones con conjuntos..................................

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

4 Vectores en el espacio

4 Vectores en el espacio 4 Vectores en el espacio ACTIVIDADES INICIALES 4.I. Efectúa las siguientes operaciones en R³ a) + 5,, 4, 7, b),, c) 6(,, ) + 4(, 5, ) 4 6 5 a),, 6 9 b) 6,, c) (6,, ) 4 4.II. Calcula los valores de a, b

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

Teoría elemental de números

Teoría elemental de números Teoría elemental de números Matemática discreta 1 Resultados previos Axioma: todo subconjunto no vacío de N tiene mínimo, con el orden usual en N. Toda sucesión decreciente en N converge. 2 Divisibilidad

Más detalles

CAPITULO 0. LOS NUMEROS REALES. 1. Axiomática de los números reales

CAPITULO 0. LOS NUMEROS REALES. 1. Axiomática de los números reales CAPITULO 0. LOS NUMEROS REALES 1. Aiomática de los números reales Sea un conjunto R, que verifica las siguientes propiedades conocidas como aiomas de los números reales Aioma I. En R hay definidas dos

Más detalles

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares

Más detalles

Resumen de álgebra vectorial y tensorial

Resumen de álgebra vectorial y tensorial Apéndice A Resumen de álgebra vectorial y tensorial Se resumen aquí algunos conceptos y definiciones importantes de vectores y tensores, con pretensión de sencillez y brevedad. En aras de esta sencillez,

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

TEMA II TEORÍA INTUITIVA DE CONJUNTOS

TEMA II TEORÍA INTUITIVA DE CONJUNTOS TEMA II TEORÍA INTUITIVA DE CONJUNTOS Policarpo Abascal Fuentes TEMA II Teoría intuitiva de conjuntos p. 1/4 TEMA II 2. TEORÍA INTUITIVA DE CONJUNTOS 2.1 CONJUNTOS 2.1.1 Operaciones con conjuntos 2.2 RELACIONES

Más detalles

Aplicaciones lineales y matrices.

Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 2.1. Introducción. Supondremos al alumno familiarizado con la idea de matriz o tabla de orden n, m con n, m números naturales que denotan el número de filas y columnas,

Más detalles

Introducción. El plano, puntos y rectas.

Introducción. El plano, puntos y rectas. Introducción. El plano, puntos y rectas. Estas notas, elaboradas para el curso Matemática III del Ciclo de Iniciación Universitaria (CIU) de la Universidad Simón Bolívar, están basadas en el material de

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

Determinar, para la suma, el elemento neutro y el elemento opuesto de (x, y) Probar que R 2 con dichas operaciones es un espacio vectorial.

Determinar, para la suma, el elemento neutro y el elemento opuesto de (x, y) Probar que R 2 con dichas operaciones es un espacio vectorial. .- Se considera R con la suma habitual y con el producto por un escalar que se indica en los casos siguientes. Prueba que en ninguno de ellos, (R, +, ) es espacio vectorial señalando alguna propiedad del

Más detalles

3. 2. Pendiente de una recta. Definición 3. 3.

3. 2. Pendiente de una recta. Definición 3. 3. 3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio vectorial. 4.2. Espacio vectorial... - 2 -

Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso. Espacio vectorial. 4.2. Espacio vectorial... - 2 - 4.1. Introducción: los conjuntos Espacio ectorial R y R.... - - 4.. Espacio ectorial.... - - 4.. Vectores libres del espacio tridimensional.... - - 4.4. Producto escalar... - 4-4.5. Producto ectorial....

Más detalles

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE . LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian 40 Matemáticas I Parte II Álgebra Lineal 41 Matemáticas I : Álgebra Lineal Tema 4 Espacios vectoriales reales 4.1 Espacios vectoriales Definición 88.- Un espacio vectorial real V es un conjunto de elementos

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

Teórico para el práctico Nº6 CIRCUNFERENCIA

Teórico para el práctico Nº6 CIRCUNFERENCIA Teórico para el práctico Nº6 IRUNFERENIA Definición: Dados un punto fijo O y un número real no negativo r, llamamos circunferencia de centro O y radio r, lo notaremos, al lugar geométrico de los puntos

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

Tema 4.- Espacios vectoriales. Transformaciones lineales.

Tema 4.- Espacios vectoriales. Transformaciones lineales. Ingeniería Civil Matemáticas I -3 Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 4- Espacios vectoriales Transformaciones lineales 4- Espacios y subespacios

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

ÁNGULOS. Definición: Un ángulo convexo es la intersección de dos semiplanos cuyos bordes son rectas secantes.

ÁNGULOS. Definición: Un ángulo convexo es la intersección de dos semiplanos cuyos bordes son rectas secantes. ÁNGULOS Definición: Un ángulo convexo es la intersección de dos semiplanos cuyos bordes son rectas secantes. Dos rectas secantes determinan en el plano 4 regiones llamadas ángulos convexos 1 Elementos

Más detalles

TRA NSFORMACIO N ES LIN EA LES

TRA NSFORMACIO N ES LIN EA LES TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican

Más detalles

Números enteros. 1. En una recta horizontal, se toma un punto cualquiera que se señala como cero.

Números enteros. 1. En una recta horizontal, se toma un punto cualquiera que se señala como cero. Números enteros Son el conjunto de números naturales, sus opuestos (negativos) y el cero. Se dividen en tres partes: enteros positivos o números naturales (+1, +2, +3,...), enteros negativos (-1, -2, -3,.)

Más detalles

1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par.

1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par. Sesión 1 Demostraciones Demostración directa 1.1 Si n es un número entero impar, entonces n 2 es impar. 1.2 Si a y b son enteros impares, entonces a + b es par. Demostración indirecta 1.3 Si n 2 es par,

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Geometría Afín de un Espacio Vectorial

Geometría Afín de un Espacio Vectorial Capítulo VIII Geometría Afín de un Espacio Vectorial Como en capítulos anteriores, E será un espacio vectorial sobre un cuerpo k 1 Subvariedades Afines Definición 11 Dado un subespacio vectorial F de E,

Más detalles

Apuntes Trigonometría. 4º ESO.

Apuntes Trigonometría. 4º ESO. Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al

Más detalles