1 Números racionales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 Números racionales"

Transcripción

1 8 _ 0-0.qxd //0 : Página Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que ofrecen las fracciones, las diferencias de interpretación de fracciones positivas y negativas, y la diferencia entre fracciones propias e impropias. A lo largo de la unidad se resolverán operaciones tales como sumas, restas, multiplicaciones, divisiones y obtención del común denominador de varias fracciones, que pondrán de manifiesto su utilidad para resolver problemas de la vida diaria. Conviene hacer reflexionar a los alumnos sobre la presencia de las fracciones en distintos contextos. Además, se trabajará la relación entre los números racionales y los números decimales, aprendiendo a pasar de unos a otros. Se practicará la lectura y escritura de números decimales exactos y su expresión en forma de fracciones decimales. RESUMEN DE LA UNIDAD a d Dos fracciones y son equivalentes b c si se cumple que a c b d. racción irreducible es aquella que no se puede simplificar. Para comparar, sumar y/o restar fracciones, estas deben tener igual denominador. El producto de dos fracciones es otra fracción cuyo numerador es el producto de los numeradores, y con denominador, el producto de los denominadores. Para dividir fracciones se realiza el producto cruzado de los términos de cada una de ellas. El conjunto de los números racionales lo forman los números enteros y los números fraccionarios. OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Reconocer las formas de representación que tiene una fracción. Numerador y denominador. Representación escrita, numérica, gráfica y en la recta. Utilización de dibujos y expresiones. Identificación de una fracción. Representación de una fracción.. Reconocer y obtener fracciones equivalentes a una dada. Obtención de fracciones equivalentes a una dada. Obtención de fracciones equivalentes. Determinación de si dos fracciones son equivalentes.. Amplificar y simplificar fracciones. Amplificación de fracciones. Simplificación de fracciones. racción irreducible. Obtener fracciones equivalentes por amplificación y simplificación. Reconocimiento de la fracción irreducible.. Reducir fracciones a común denominador.. Sumar, restar, multiplicar y dividir fracciones.. Obtener la forma decimal de una fracción.. Reconocer los diferentes tipos de números decimales. Obtención del común denominador de varias fracciones. Comparación de fracciones. Suma y resta de fracciones. Multiplicación y división de fracciones. Expresión de fracciones en forma decimal. Decimal exacto. Decimal periódico puro. Decimal periódico mixto. Búsqueda del denominador común de dos fracciones. Ordenación de un conjunto de fracciones. Operaciones con fracciones. Operaciones combinadas. Obtención de la expresión decimal de una fracción. Distinción de los números decimales exactos, periódicos puros y periódicos mixtos. ADAPTACIÓN CURRICULAR 8. Obtener fracciones a partir de números decimales. Expresión de números decimales como fracciones. Cálculo de la expresión fraccionaria de un número decimal exacto o periódico. MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

2 8 _ 0-0.qxd //0 : Página RECONOCER OBJETIVO LAS ORMAS DE REPRESENTACIÓN QUE TIENE UNA RACCIÓN NOMBRE: CURSO: ECHA: Una fracción está compuesta por un numerador y un denominador. Denominador Partes en que se divide la unidad. Numerador Partes que tomamos de la unidad. racción: NUMERADOR DENOMINADOR Denominador Dividimos la unidad en cuatro partes iguales. Numerador Tomamos tres partes del total. ORMAS DE REPRESENTACIÓN DE UNA RACCIÓN Una fracción se puede representar de distintas formas: Representación escrita. Representación gráfica. Representación numérica. Representación en la recta numérica. REPRESENTACIÓN ESCRITA REPRESENTACIÓN NUMÉRICA REPRESENTACIÓN GRÁICA REPRESENTACIÓN EN LA RECTA NUMÉRICA Dos quintos 0 Cuatro séptimos 0 Cuatro tercios 0 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

3 8 _ 0-0.qxd //0 0:9 Página Completa la siguiente tabla. REPRESENTACIÓN ESCRITA REPRESENTACIÓN NUMÉRICA REPRESENTACIÓN GRÁICA REPRESENTACIÓN EN LA RECTA NUMÉRICA Cuatro quintos Siete quintos Partiendo del dibujo, halla la fracción que representa y escribe cómo se lee. a)... octavos b) c)... medios d) Cuál es la respuesta correcta? Rodéala. a) c) 8 ADAPTACIÓN CURRICULAR b) d) MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

4 8 _ 0-0.qxd //0 : Página OBJETIVO RECONOCER Y OBTENER RACCIONES EQUIVALENTES A UNA DADA NOMBRE: CURSO: ECHA: a c Dos fracciones y son equivalentes cuando el producto cruzado de numeradores y denominadores b d es igual. a c a d b c b d Las fracciones y son equivalentes, ya que. Dibuja las siguientes fracciones. a) c) e) 8 b) d) f) 0 Observando el ejercicio anterior vemos que algunas fracciones, a pesar de ser diferentes, nos dan el mismo resultado. Coloca en dos grupos estas fracciones. Grupo racciones que representan la mitad de la tarta. Grupo racciones que representan dos tercios de la tarta. Calcula tres fracciones equivalentes. a) 9 b) c) d) Halla el número que falta para que las fracciones sean equivalentes. 8 a) x b) c) 0 x x 0 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

5 8 _ 0-0.qxd //0 : Página OBJETIVO AMPLIICAR Y SIMPLIICAR RACCIONES NOMBRE: CURSO: ECHA: AMPLIICACIÓN DE RACCIONES Para obtener una fracción equivalente a otra fracción dada multiplicamos el numerador y el denominador de dicha fracción por un número distinto de cero. Este método se llama amplificación. Observa que podemos obtener tantas fracciones amplificadas como queramos. Obtén una fracción equivalente y amplificada de. Las fracciones son equivalentes, es decir, representan el mismo número. y Calcula fracciones equivalentes por amplificación. a) b) Halla dos fracciones equivalentes. a) ADAPTACIÓN CURRICULAR b) c) d) 9 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

6 8 _ 0-0.qxd //0 : Página SIMPLIICACIÓN DE RACCIONES Simplificar una fracción es encontrar otra fracción equivalente a ella dividiendo numerador y denominador por un factor común. Observa que el proceso, al contrario que en la amplificación, no se puede realizar indefinidamente. Se termina al encontrar una fracción que no se puede simplificar. Esta fracción se llama fracción irreducible. Simplifica las siguientes fracciones. 0 : 0 : 0 y son equivalentes : 0 0 : y son equivalentes Amplifica y simplifica la siguiente fracción. Amplificar: Simplificar: : : Haz lo mismo con estas fracciones. a) Amplificar: Simplificar: : : b) 0 Amplificar: 0 Simplificar: 0 : : 0 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

7 8 _ 0-0.qxd //0 : Página OBJETIVO REDUCIR RACCIONES A COMÚN DENOMINADOR NOMBRE: CURSO: ECHA: COMPARAR RACCIONES Qué fracción es mayor, o? Representamos las fracciones con un dibujo y lo vemos fácilmente: El dibujo, sin embargo, no siempre es tan claro. Por tanto, vamos a aprender a hacerlo creando una fracción equivalente de cada fracción, con común denominador, es decir, tenemos que conseguir que el denominador de las dos fracciones sea el mismo. es el común denominador. Ahora, en lugar de comparar con, comparamos con. Como el denominador es común, comparamos los numeradores de y para saber cuál de las fracciones es mayor: > ; por tanto, > Recuerda que, dadas dos fracciones con igual denominador, es mayor la que tiene mayor numerador. Ordena estas fracciones COMÚN DENOMINADOR > > > > > > ADAPTACIÓN CURRICULAR MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

8 8 _ 0-0.qxd //0 : Página 8 BUSCAR EL DENOMINADOR COMÚN Queremos comparar las siguientes fracciones:, y. 0 Cuáles son los denominadores?, 0 y El común denominador será un número mayor que 0, y, pero que tenga a 0, y como divisores, por ejemplo: a) El número es mayor que 0, y, pero tiene a todos ellos como divisores? 0?? No tiene a 0 ni a como divisores, solo a. Por tanto, no sirve. b) El número es también mayor que 0, y. Pero veamos qué pasa cuando lo utilizamos: 0? Tampoco sirve, ya que no tiene a 0 como divisor. c) Probamos con el número El número 0 sirve como común denominador, aunque no es el único. Si continuásemos buscando encontraríamos más: 0, 90, Vamos a hallar fracciones equivalentes a las dadas, con denominador común 0: Qué número hay que multiplicar para que el denominador sea 0 si partimos de 0? 0? Qué número hay que multiplicar para que el denominador sea 0 si partimos de?? Qué número hay que multiplicar para que el denominador sea 0 si partimos?? 0 Por tanto:,, 0 0,, Ahora ordenamos las fracciones de mayor a menor: > > > > MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

9 8 _ 0-0.qxd //0 : Página 9 Ordena las siguientes fracciones:,,, y. Nos fijamos en los denominadores:...,...,...,...,... Queremos encontrar un número que contenga a todos los denominadores como divisores. El número más adecuado es. Cómo se calcula este número? : Cómo se calcula este número? : Ahora ordenamos de mayor a menor: REDUCIR RACCIONES A COMÚN DENOMINADOR 8 Reduce a común denominador estas fracciones: y. 9 Hallamos el m.c.m. de los denominadores. 9 m.c.m. (, 9) 9 El m.c.m. de los denominadores es el nuevo denominador de las fracciones. Completa la tabla. : RACCIONES REDUCIDAS A COMÚN DENOMINADOR ORDENADAS DE MENOR A MAYOR 8 9 : ADAPTACIÓN CURRICULAR,,,, MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 9

10 8 _ 0-0.qxd //0 : Página 0 SUMAR, OBJETIVO RESTAR, MULTIPLICAR Y DIVIDIR RACCIONES NOMBRE: CURSO: ECHA: SUMA (O RESTA) DE RACCIONES CON IGUAL DENOMINADOR La suma (o resta) de fracciones con igual denominador es otra fracción con el mismo denominador y cuyo numerador es la suma (o resta) de los numeradores. + Dibújalas + Un tercio más cuatro tercios son cinco tercios. SUMA (O RESTA) DE RACCIONES CON DISTINTO DENOMINADOR Para sumar (o restar) fracciones con distinto denominador, reducimos primero a denominador común y, después, sumamos (o restamos) sus numeradores. Haz esta suma de fracciones: +. Para sumar las fracciones hay que obtener fracciones equivalentes con el mismo denominador. Nos interesa obtener el mínimo común denominador de y, en este caso. Ahora sumamos las fracciones con igual denominador: Realiza las siguientes operaciones. a) + b) MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

11 8 _ 0-0.qxd //0 : Página MULTIPLICACIÓN DE RACCIONES El producto de dos fracciones es otra fracción cuyo numerador es el producto de los numeradores y el denominador es el producto de los denominadores: a b c d a c b d 0 Realiza las multiplicaciones de fracciones. a) e) b) 0 f) c) g) 8 d) 8 h) 0 DIVISIÓN DE RACCIONES La división de dos fracciones es otra fracción cuyo numerador es el producto del numerador de la primera por el denominador de la segunda fracción, y cuyo denominador es el producto del denominador de la primera fracción por el numerador de la segunda: a b c a d : d b c : Realiza las siguientes divisiones de fracciones. a) 8 8 : e) : 8 b) 9 : f) : c) : g) : 8 d) h) 8 : : 0 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. ADAPTACIÓN CURRICULAR

12 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. Recuerda que, cuando se realizan operaciones combinadas, es decir, sumas, restas, multiplicaciones y divisiones a la vez: Se hacen primero las operaciones de los paréntesis. Luego se resuelven las multiplicaciones y divisiones, de izquierda a derecha. Por último, se operan las sumas y restas, en el mismo orden. En este caso, la operación queda divida en tres BLOQUES. + Realizamos las operaciones de cada bloque antes de sumar o restar: A B C A: Hacemos la multiplicación. B: Hacemos la división. C: No se puede operar. + Ahora realizamos las sumas y las restas: Solución : + : + : Realiza estas operaciones:. Tenemos dos bloques con los que debemos operar por separado: Como no hay sumas o restas fuera de los paréntesis, tiene prioridad el producto: Común denominador A: B: + A B No se puede operar. Tenemos que operar por partes, volviendo a dividir en bloques la operación. + I: No se puede operar. II: Realizamos la suma: + + I II 8 _ 0-0.qxd //0 0:0 Página

13 8 _ 0-0.qxd //0 : Página OBJETIVO OBTENER LA ORMA DECIMAL DE UNA RACCIÓN NOMBRE: CURSO: ECHA: Para obtener la forma decimal de una fracción o número racional se divide el numerador entre el denominador , 00 ORMA RACCIONARIA: ORMA DECIMAL: 0, 00, ORMA RACCIONARIA: ORMA DECIMAL:,, 0, ORMA RACCIONARIA: ORMA DECIMAL:,, Expresa en forma decimal estas fracciones y ordénalas. 9 a) c) e) 0 ADAPTACIÓN CURRICULAR b) d) f)... <... <... <... <... < <... <... <... <... <... MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

14 8 _ 0-0.qxd //0 :8 Página RECONOCER OBJETIVO LOS DIERENTES TIPOS DE NÚMEROS DECIMALES NOMBRE: CURSO: ECHA: Al dividir el numerador entre el denominador de una fracción para obtener su expresión decimal pueden darse estos casos. Si el resto es cero: Cuando el cociente no tiene parte decimal, tenemos un número entero. Cuando el cociente tiene parte decimal, decimos que es un decimal exacto. Si el resto no es cero: las cifras del cociente se repiten, la expresión decimal tiene infinitas cifras. Se obtiene un decimal periódico. Cuando la parte que se repite comienza desde la coma, se llama decimal periódico puro. Cuando la parte que se repite no comienza desde la coma, se llama decimal periódico mixto. Decimal 0,, exacto Decimal periódico puro, Decimal periódico mixto Completa la tabla, clasificando la expresión decimal de las fracciones en exactas, periódicas puras o periódicas mixtas. ORMA RACCIONARIA 9 0 ORMA DECIMAL DECIMAL EXACTO DECIMAL PERIÓDICO PURO DECIMAL PERIÓDICO MIXTO, No Sí No Escribe en cada número las cifras necesarias para completar diez cifras decimales. a), e), b), f) 0, c), g), d) 0, h), MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

15 8 _ 0-0.qxd //0 : Página OBJETIVO 8 OBTENER RACCIONES A PARTIR DE NÚMEROS DECIMALES NOMBRE: CURSO: ECHA: Todo número decimal exacto o periódico se puede expresar en forma de fracción. Para ello hay que multiplicarlo por la potencia de 0 adecuada y realizar una serie de operaciones hasta obtener una fracción. NÚMEROS DECIMALES EXACTOS 0, Llamamos x a 0,. x 0, Multiplicamos por la unidad seguida 00x 00 0, de tantos ceros como cifras decimales tiene el número. 00x Simplificamos, si es posible. Completa la operación. x 00 x 8 0, x 0, 00x 00 0, 00x x 00 0, 8 Halla la forma fraccionaria de este número decimal. Por qué hemos multiplicado por 0 y no por 00? x 0, x 0, 0x 0 0, 0, ADAPTACIÓN CURRICULAR x 0, MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

16 8 _ 0-0.qxd //0 : Página Expresa estos números decimales como fracción. a) 0,0 Por qué valor multiplicamos? x 0,0 x 0, 0 b) 0, x 0, c) 0, x 0, d) 0, x 0, Expresa mediante un número decimal la parte gris de la figura. Escribimos de forma fraccionaria la parte gris de la figura. Pasamos a forma decimal. MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

17 8 _ 0-0.qxd //0 : Página NÚMEROS DECIMALES PERIÓDICOS PUROS Queremos obtener la forma fraccionaria del número decimal,,. Si, no tuviera infinitas cifras decimales, podríamos obtener la forma fraccionaria como en el caso de los números decimales exactos. Por tanto, no podemos actuar de esta manera., x, 0x 0, 0x, x,... 0,, 0 Tenemos que eliminar las infinitas cifras decimales., Multiplicamos por la unidad seguida de tantos ceros como cifras tiene el período. x, 0x 0, 0x, Simplificamos. 0x, x, 9x x 9 Realizando esta resta eliminamos la parte decimal. ADAPTACIÓN CURRICULAR x, Siempre hay que simplificar, si se puede, la fracción resultante. MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

18 8 _ 0-0.qxd //0 : Página 8 Completa las siguientes operaciones. a),, x, 0x 0x 0x x, 9x x, b),8,888 x,888 0,888 8,888 8,888 x,888 x,8 c), x x x, 8 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

19 8 _ 0-0.qxd //0 : Página 9 Calcula la forma fraccionaria de los números decimales. a), Multiplicamos por 00. x, 00x 00, 00x 00x x, 99x x, b), x, x c) 0, x 0,, ADAPTACIÓN CURRICULAR x 0, MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. 9

20 8 _ 0-0.qxd //0 : Página 0 NÚMEROS DECIMALES PERIÓDICOS MIXTOS Queremos obtener la forma fraccionaria del número decimal,,. Si actuamos como en el caso de los decimales puros, tenemos que: x, 0x 0, 0x, 0x, x, 9x 9, 9, x 9 No obtenemos una fracción. Hay que utilizar otro procedimiento., Multiplicamos por la unidad seguida de tantos ceros como cifras tiene su parte periódica y no periódica. x, 00x 00, Multiplicamos por la unidad seguida de tantos ceros como cifras tiene su parte decimal no periódica. 00x, 0x, 00x, 0x, 90x 9 Realizando esta resta eliminamos los decimales. Simplificamos. x 9 90 x, 0 MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

21 8 _ 0-0.qxd //0 : Página Expresa estos números decimales en forma de fracción. a),, x, 00x 00, 00x 0x 00x 0x, 90x x, b),8,888 x,888 x,8 c) 0, x ADAPTACIÓN CURRICULAR x 0, MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

22 8 _ 0-0.qxd //0 0:0 Página 8 Completa la siguiente operación., Multiplicamos por x,.000x.000,.000x.,.00x,.000x., 0x 00., 990x x, 9 Expresa como una fracción. x, x, Hay números decimales que no se pueden expresar como una fracción.,,,0 Estos números reciben el nombre de números irracionales. 0 Clasifica los siguientes números. a) 0, b), c), d), e), f), DECIMAL EXACTO DECIMAL PERIÓDICO PURO DECIMAL PERIÓDICO MIXTO IRRACIONAL MATEMÁTICAS. ESO MATERIAL OTOCOPIABLE SANTILLANA EDUCACIÓN, S. L.

1 Números racionales

1 Números racionales Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que ofrecen las fracciones,

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

UNIDAD 5. FRACCIONES Y OPERACIONES

UNIDAD 5. FRACCIONES Y OPERACIONES UNIDAD. FRACCIONES Y OPERACIONES. FRACCIONES.. LA FRACCIÓN COMO OPERADOR Y COMO NÚMERO.. FRACCIONES EQUIVALENTES.. REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR.. OPERACIONES CON FRACCIONES.. FRACCIONES

Más detalles

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales.

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. 1. LA FRACCIÓN Y SUS TÉRMINOS TEMA 6. LAS FRACCIONES Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. Fracción es una o varias partes iguales

Más detalles

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama

3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama 3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,

Más detalles

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad.

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad. Teoría er Ciclo Primaria Página 9 FRACCIONES FRACCIÓN es una o varias partes iguales en que se divide la unidad. La fracción está formada por dos números naturales a y b colocado uno encima del otro y

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

LAS FRACCIONES. Si el numerador es menor que el denominador, la fracción es menor que

LAS FRACCIONES. Si el numerador es menor que el denominador, la fracción es menor que LAS FRACCIONES 1. Las fracciones y sus términos.. Nº mixto.. La fracción de un número.. Cálculo de una cantidad, cuando sabemos la fracción de ella.. Fracciones equivalentes.. Fracción irreducible.. Reducción

Más detalles

IV NÚMEROS FRACCIONARIOS.

IV NÚMEROS FRACCIONARIOS. IV NÚMEROS FRACCIONARIOS.. Qué es una fracción?. Fracciones equivalentes. Definición. Reconocimiento. Obtención.. Simplificación de fracciones.. Comparación de fracciones.. Operaciones con fracciones.

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de

Más detalles

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales

Ámbito Científico y Tecnológico. Repaso de números enteros y racionales Ámbito Científico y Tecnológico. Repaso de números enteros y racionales 1 Prioridad de las operaciones Si en una operación aparecen sumas, o restas y multiplicaciones o divisiones, el resultado varía según

Más detalles

Victoria Aguilera Fernández

Victoria Aguilera Fernández Victoria Aguilera Fernández G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Fracciones.- / 1 FRACCIÓN Una fracción es la expresión numérica que representa la división de un todo

Más detalles

3.- LOS NÚMEROS FRACCIONARIOS

3.- LOS NÚMEROS FRACCIONARIOS 3.1 Las fracciones. 3.- LOS NÚMEROS FRACCIONARIOS Una fracción es la representación de un reparto, y la utilizamos comúnmente más de lo que parece, por ejemplo: en la compra, cuando decimos medio kilo

Más detalles

Unidad 1. Las fracciones.

Unidad 1. Las fracciones. Unidad 1. Las fracciones. Ubicación Curricular en España: 4º, 5º y 6º Primaria, 1º, 2º y 3º ESO. Objetos de aprendizaje. 1.1. Concepto de fracción. Identificar los términos de una fracción. Escribir y

Más detalles

Las fracciones y sus términos

Las fracciones y sus términos Las fracciones Las fracciones y sus términos Comparación de fracciones con la unidad Comparación de fracciones entre sí Fracciones decimales La fracción de una cantidad Fracciones equivalentes Simplificar

Más detalles

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones

Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones Unidad fraccionaria Concepto de fracción La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Concepto de fracción Una fracción es el cociente de dos

Más detalles

Tema 6: Fracciones. Fracciones

Tema 6: Fracciones. Fracciones Fracciones Un quebrado o número fraccionario se expresa por dos números naturales, el denominador que indica en cuántas partes se ha dividido la unidad y el numerador, que indica cuántas partes de esta

Más detalles

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación.

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación. FRACCIONES TEMA 2 INTRODUCCIÓN Para aplicar esta unidad didáctica es conveniente que ya se hayan estudiado las fracciones en clase de forma tradicional, es decir, empleando la pizarra, el papel y el lápiz.

Más detalles

Tema 1 Conjuntos numéricos

Tema 1 Conjuntos numéricos Tema 1 Conjuntos numéricos En este tema: 1.1 Números naturales. Divisibilidad 1.2 Números enteros 1.3 Números racionales 1.4 Números reales 1.5 Potencias y radicales 1.7 Logaritmos decimales 1.1 NÚMEROS

Más detalles

FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador.

FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador. FRACCIONES FRACCION Una fracción es una epresión formada por dos números separados por una raa horizontal, al número de abajo se le llama denominador nos indica el número de partes iguales en que se divide

Más detalles

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales.

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales. ESCUELA SECUNDARIA No. 264 MIGUEL SERVET GUÍA PARA EL EXAMEN DE MATEMÁTICAS DE 1 A, 1 B, 1 C, 1 D, CORRESPONDIENTE AL PRIMER BIMESTRE. La siguiente información te servirá para que estudies, sólo deberás

Más detalles

5 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Números negativos y positivos. Números enteros.

5 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Números negativos y positivos. Números enteros. 826464 _ 0289-0300.qxd 12/2/07 09:47 Página 289 Números enteros INTRODUCCIÓN El concepto de número entero negativo implica la inclusión en el sistema numérico de unos números que superan el concepto de

Más detalles

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador. FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos

Más detalles

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006 LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas

Más detalles

SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS

SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS I. CONTENIDOS: 1. Introducción: de la aritmética al álgebra. 2. Números reales y recta numérica. 3. Operaciones aritméticas básicas con

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un

Más detalles

MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES

MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES OBJETIVOS Concepto de número mixto. Identificar gráficamente fracciones equivalentes y comprobar si dos fracciones son equivalentes. Obtener fracciones equivalentes

Más detalles

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11 RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES º B CURSO 00- Expresa las siguientes fracciones en forma decimal e indica de qué tipo es dicho cociente / /0 0/ / Entero, Decimal exacto 0 0, Periódico puro,

Más detalles

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario: Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

UNIDAD IV CONTENIDO TEMÁTICO

UNIDAD IV CONTENIDO TEMÁTICO UNIDAD IV CONTENIDO TEMÁTICO OPERACIONES CON FRACCIONES ALGEBRAICAS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD IV Conceptos Mínimo común múltiplo OPERACIONES CON FRACCIONES

Más detalles

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos

Más detalles

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban. DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad.

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. UNIDAD 6: FRACCIONES 6. Conocimiento de fracciones Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. 6.. Términos Los términos

Más detalles

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL. 2. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA

Más detalles

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES 1. PARTES DE UN NÚMERO DECIMAL. 2. LECTURA Y ESCRITURA DE DECIMALES. 3. DESCOMPOSICIÓN DE NÚMEROS. DECIMALES Y VALOR RELATIVO DE LAS CIFRAS. 4. COMPARACIÓN Y ORDENACIÓN

Más detalles

Capítulo 1. El Conjunto de los números Reales

Capítulo 1. El Conjunto de los números Reales Capítulo El Conjunto de los números Reales Contenido. El conjunto de los números Naturales................................. 4. El conjunto de los números Enteros................................... 4. El

Más detalles

Tema 1: Números Reales.

Tema 1: Números Reales. Tema 1: Números Reales. En este tema, estudiaremos lo que son los números reales, el conjunto de los números reales y los distintos subconjuntos (Naturales, Enteros, Racionales e Irracionales), así como

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas 1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS NÚMEROS NATURALES: Son los que utilizamos para contar Ejemplo: Contar el número de alumnos de la clase, escribir el número de la matrícula de un coche Se representan N{0,1,2, } Ejercicio:

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES

EXPRESIONES ALGEBRAICAS RACIONALES Epresiones Algebraicas Racionales EXPRESIONES ALGEBRAICAS RACIONALES Llamaremos epresiones algebraicas racionales a las de la forma A() donde A() y B() son B() polinomios de variable, y B() 0. Por ejemplo,

Más detalles

Los Números Racionales y Decimales. Operaciones.

Los Números Racionales y Decimales. Operaciones. Módulo Uno. Tema 3. Los Números Racionales y Decimales. Operaciones. Ámbito Científico y Tecnológico. Módulo Uno. Tema 3 Versión: Febrero 2013 Los Números Racionales y Decimales. Operaciones. Educación

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

SIGNIFICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS

SIGNIFICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS OBJETIVO 1 SIGNIICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS NOMBRE: CURSO: ECHA: NÚMEROS NEGATIVOS En nuestra vida diaria observamos, leemos y decimos expresiones del tipo: a) Hemos dejado el coche

Más detalles

Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. = 4: 8 = 0,5

Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. = 4: 8 = 0,5 TEMA FRACCIONES. FRACCIONES EQUIVALENTES Dos fracciones son equivalentes cuando expresan la misma porción de la unidad. 8 Dos fracciones equivalentes tienen el mismo valor numérico. = : = 0, = : 8 = 0,

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

TEMA 2 NÚMEROS ENTEROS

TEMA 2 NÚMEROS ENTEROS TEMA 2 NÚMEROS ENTEROS Criterios De Evaluación de la Unidad 1. Utilizar de forma adecuada los números enteros. 2. Representar sobre la recta los números enteros. 3. Hallar el valor absoluto de cualquier

Más detalles

Fracciones. Objetivos. Antes de empezar. 1. Fracciones...pág. 24 Fracciones Equivalentes Simplificación de Fracciones

Fracciones. Objetivos. Antes de empezar. 1. Fracciones...pág. 24 Fracciones Equivalentes Simplificación de Fracciones Fracciones Objetivos En esta quincena aprenderás a Ver si dos fracciones son equivalentes. Simplificar fracciones. Reducir fracciones a igual denominador. Sumar restar fracciones. Multiplicar dividir fracciones.

Más detalles

Fracciones. 5.1. Cuentas y problema del día. 2. Realiza la siguiente operación: 849,37 + 28,395. 1. Realiza la siguiente operación: 530,98 38,923

Fracciones. 5.1. Cuentas y problema del día. 2. Realiza la siguiente operación: 849,37 + 28,395. 1. Realiza la siguiente operación: 530,98 38,923 Fracciones.1. Cuentas y problema del día 1. Realiza la siguiente operación: 2. Realiza la siguiente operación: 849,7 + 28,9 0,98 8,92 8 4 9, 7 0, 9 8 +. Completa la siguiente operación: 8 92,7 Ò 6, 8 9

Más detalles

33 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático

33 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático «Es imposible aprender matemáticas sin resolver ejercicios» ESO Godement. Matemático ÍNDICE: MI QUESITO DIARIO 1. FRACCIONES QUÉ SON?. EQUIVALENCIA Y SIMPLIFICACIÓN. LA FRACCION COMO OPERADOR 4. OPERACIONES

Más detalles

Operaciones con fracciones I

Operaciones con fracciones I Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período Los números Decimales, esas comas SISTEMA DE NUMERACIÓN DECIMAL Relación Fracción-Nº Decimal. Parte entera Parte decimal 2.533 Ante período Período Toda fracción se puede escribir en forma decimal, para

Más detalles

OBJETIVO 1 EL CONCEPTO DE FRACCIÓN. IDENTIFICAR SUS TÉRMINOS NOMBRE: CURSO: FECHA:

OBJETIVO 1 EL CONCEPTO DE FRACCIÓN. IDENTIFICAR SUS TÉRMINOS NOMBRE: CURSO: FECHA: COMPRENDER OBJETIVO EL CONCEPTO DE RACCIÓN. IDENTIICAR SUS TÉRMINOS NOMBRE: CURSO: ECHA: Para expresar una cantidad de algo que es incompleto o partes de un total sin usar números o expresiones numéricas,

Más detalles

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES

MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES MATEMÁTICAS 5º PRIMARIA DIVISIBILIDAD: MÚLTIPLOS Y DIVISORES 1 2 MÚLTIPLOS DE UN NÚMERO Un número es múltiplo de otro si se obtiene multiplicando este número por otro número natural. Ejemplo: 12 es múltiplo

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Operaciones básicas con números enteros y con fracciones

Operaciones básicas con números enteros y con fracciones Curso de Acceso CFGS Operaciones básicas con números enteros y con fracciones OPEACIONES CON NÚMEOS ENTEOS Suma de números enteros Cuando tienen el mismo signo Se suman los valores y se deja el signo que

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica.

3 Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Significado de los números decimales. Representación en la recta numérica. 829485 _ 024-008.qxd 12/9/07 15:10 Página 27 Números decimales INTRODUCCIÓN RESUMEN DE LA UNIDAD En esta unidad estudiamos el sistema de numeración decimal, e introducimos las denominaciones de la parte

Más detalles

1 Números naturales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Sistema de numeración decimal. Orden, equivalencia y posición de los números.

1 Números naturales OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Sistema de numeración decimal. Orden, equivalencia y posición de los números. 826464 _ 0237-0248.qxd 2/2/07 09:8 Página 237 Números naturales INTRODUCCIÓN El estudio de los números naturales implica el conocimiento y la comprensión del sistema de numeración decimal que actualmente

Más detalles

APU TES Y EJERCICIOS DEL TEMA 2 FRACCIO ES (Q)

APU TES Y EJERCICIOS DEL TEMA 2 FRACCIO ES (Q) APU TES Y DEL TEMA FRACCIO ES (Q) -T --ºESO FRACCIONES (Q): Son divisiones entre números. Se reconocen porque veo un nº encima de una raya y debajo de ella hay otro nº. Al nº de la parte de abajo se le

Más detalles

Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes :

Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : Las fracciones Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : En un partido de baloncesto, que está dividido en cuatro tiempos

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #3: jueves, 2 de junio de 2016. 3 Decimales 3.1 Sistema de numeración

Más detalles

EL CONCEPTO DE FRACCIÓN. IDENTIFICAR SUS TÉRMINOS

EL CONCEPTO DE FRACCIÓN. IDENTIFICAR SUS TÉRMINOS COMPRENDER OBJETIVO EL CONCEPTO DE RACCIÓN. IDENTIICAR SUS TÉRMINOS NOMBRE: CURSO: ECHA: Para expresar una cantidad de algo que es incompleto o partes de un total sin usar números o expresiones numéricas,

Más detalles

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS) UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos. NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden

Más detalles

UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN

UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN 86 _ 087-098.qxd 7//07 : Página 88 IDENTIICAR OBJETIVO UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN NOMBRE: CURSO: ECHA: Dado el polinomio P(x) x +, ya sabemos cómo se calcula su valor numérico: x P() + x P( )

Más detalles

Unidad 1. Números naturales

Unidad 1. Números naturales Unidad 1. Números naturales Matemáticas Múltiplo 1.º ESO / Resumen Unidad 1 NÚMEROS NATURALES USOS QUE TIENEN CÓMO SE EXPRESAN OPERACIONES Contar Ordenar Medir Codificar... Sistema de numeración decimal

Más detalles

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y

Números Reales. 87 ejercicios para practicar con soluciones. 1 Ordena de menor a mayor las siguientes fracciones: y Números Reales. 8 ejercicios para practicar con soluciones Ordena de menor a mayor las siguientes fracciones: y 8 Reducimos a común denominador: 0 80 0 00 0 y 0 0 0 0 0 0 8 0 El orden de las fracciones,

Más detalles

Trabajo Práctico N 1: Números enteros y racionales

Trabajo Práctico N 1: Números enteros y racionales Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0

Más detalles

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Números Naturales (N)

Números Naturales (N) Teoría de Conjuntos Números Naturales (N) Recuerda que: Un conjunto es una colección o agrupación de personas, animales o cosas. Los conjuntos generalmente se simbolizan con letras mayúsculas y sus elementos

Más detalles

Hay dos excepciones: - con el 2, por ejemplo: 1/2: Un medio - con el 3, por ejemplo:1/3: Un tercio

Hay dos excepciones: - con el 2, por ejemplo: 1/2: Un medio - con el 3, por ejemplo:1/3: Un tercio Las FRACCIONES son números que representan trozos o partes de la unidad. Los números enteros y las fracciones forman el conjunto de los NÚMEROS RACIONALES (Q). Se leen comenzando por el número de arriba

Más detalles

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS RACIONALES. INTRODUCCIÓN NÚMEROS ENTEROS Y OPERACIONES Al principio, las cantidades sólo se expresaban con palabras, se contaban cosas concretas. El símbolo para los números aparece mucho más tarde

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

Números Naturales (N)

Números Naturales (N) Teoría de Conjuntos Números Naturales (N) Recuerda que: Un conjunto es una colección o agrupación de personas, animales o cosas. Los conjuntos generalmente se simbolizan con letras mayúsculas y sus elementos

Más detalles

Utiliza los números ordinales al resolver problemas planteados de manera oral.

Utiliza los números ordinales al resolver problemas planteados de manera oral. T G CONTENIDOS APRENDIZAJES ESPERADOS ESTÁNDARES 1.2.1 Identificación y uso de los números ordinales para colocar objetos o para indicar el lugar que ocupan dentro de una colección de hasta 10 elementos.

Más detalles

7 Sistemas de ecuaciones

7 Sistemas de ecuaciones 89485 _ 0309-0368.qxd 1/9/0 15:3 Página 31 Sistemas de ecuaciones INTRODUCCIÓN Aunque no es el objetivo de este curso, los alumnos deben ser capaces de reconocer ecuaciones con dos incógnitas y obtener

Más detalles

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES

IES Juan García Valdemora NÚMEROS REALES Departamento de Matemáticas NÚMEROS REALES NÚMEROS REALES. NÚMEROS RACIONALES Desde la aparición de las sociedades humanas los números desempeñan un papel fundamental para ordenar y contar los elementos de un conjunto. Así surgen, en primer lugar,

Más detalles

Qué fracción se representa en este conjunto? Tres subconjuntos pintados en un conjunto formado por cuatro subconjuntos: 3 4

Qué fracción se representa en este conjunto? Tres subconjuntos pintados en un conjunto formado por cuatro subconjuntos: 3 4 INTRODUCCIÓN A LAS FRACCIONES Observa el siguiente dibujo: Hay 2 banderas que tienen franjas amarillas en un total de banderas, o sea, Hay 1 bandera verde en un total de banderas: 1 Hay 3 banderas que

Más detalles

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes:

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes

Más detalles

Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS

Números decimales OBJETIVOS CONTENIDOS PROCEDIMIENTOS 8 _ 0-088.qxd //0 09: Página Números decimales INTRODUCCIÓN El estudio de los números decimales comienza recordando el sistema de numeración decimal, que es la base de la expresión escrita de los números

Más detalles

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2 Instituto Raúl calabrini Ortiz Matemática º año NUMERO RACIONALE En la ecuación 0, todos los números que aparecen son enteros in embargo, cuando tratamos de resolverla, vemos que la ecuación no tiene solución

Más detalles

CUADERNO Nº 5 NOMBRE:

CUADERNO Nº 5 NOMBRE: Fracciones Contenidos 1. Concepto de fracción Las fracciones en nuestra vida. Elementos de una fracción. Cómo se lee una facción. El valor de una fracción. Pasar una fracción a un decimal. 2. Fracciones

Más detalles

MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad

MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad MATEMÁTICA MÓDULO 1 Eje temático: Números y proporcionalidad 1. CONJUNTOS NUMÉRICOS Empezaremos este curso de preparación PSU revisando los diferentes conjuntos numéricos con los que has trabajado tanto

Más detalles

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro)

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro) UNIDAD 4. INECUACIONES Y SISTEMAS (tema 4 del libro) 1. INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Definición: Se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

UNIDAD 3: NÚMEROS DECIMALES

UNIDAD 3: NÚMEROS DECIMALES UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

Recordar las principales operaciones con expresiones algebraicas.

Recordar las principales operaciones con expresiones algebraicas. Capítulo 1 Álgebra Objetivos Recordar las principales operaciones con expresiones algebraicas. 1.1. Números Los números naturales se denotarán por N y están constituidos por 0, 1, 2, 3... Con estos números

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

EL CONJUNTO DE LOS NÚMEROS REALES

EL CONJUNTO DE LOS NÚMEROS REALES MÓDULO 1 Curso: Matemática EL CONJUNTO DE LOS NÚMEROS REALES UNIVERSIDAD DE PANAMÁ CENTRO REGIONAL UNIVERSITARIO DE BOCAS DEL TORO Introducción Los estudiantes que inician el curso de Matemática a nivel

Más detalles

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles