PASO 1: Poner el problema en forma estandar.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PASO 1: Poner el problema en forma estandar."

Transcripción

1 MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad PASO 4 Elegir una variable de entrada PASO 5 Elegir la variable de salida PASO 6 Actualizar la base y la solución básica factible PASO 7 Volver al PASO 3

2 PASO : Poner el problema en forma estandar Supongamos que tenemos el siguiente problema de programación lineal PPL: maximizar 3x + 5x 2 sujeto a x + x x + x 2 3 x, x 2 4 Necesitamos que la función objetivo # sea de minimización, y que todas las restricciones sean igualdades #2,#3 La última restricción se denomina restricción no negativa #4, y no varía Este PPL no está en forma estandar Entonces hay dos pasos que tenemos que realizar: Cambiar de maximización a mimización: Multiplicamos la función objetivo # por - En este caso, la función objetivo será minimizar 3x 5x 2 sujeto a x + x x + x 2 3 x, x 2 4 Convertir las inequaciones en ecuaciones: Añadimos variables de holgura Consideremos la desigualdad # 2 Tenemos la desigualdad Como x +x 2 tiene que se menor que 5, podemos añadir una variable x 3 positiva que nos hace alcanzar el 5 Ahora tenemos x + x 2 + x 3 = 5 y x 3 Cuando añadimos variables a las restricciones, tenemos que tener en cuenta la función objetivo El coste asociado a estas nuevas variables será minimizar 3x 5x 2 sujeto a x + x 2 + x 3 = 5 2 x + x 2 3 x, x 2, x 3 4 La siguiente desigualdad es del tipo y actuaremos de forma similar: x + x 2 es mayor que, necesitamos restar una variable positiva x 4 para obtener Su coste asociado será donde x 3 y x 4 son variables de holgura minimizar 3x 5x 2 sujeto a x + x 2 + x 3 = 5 2 x + x 2 x 4 = 3 x, x 2, x 3, x 4 4

3 PASO 2: Encontrar una solución básica factible SBF El método del simplex empieza en un vértice de la región factible, es decir, un punto extremo Después, en cada iteración, el método se mueve a lo largo de una arista hacía otro punto extremo Con este método, moviéndonos de vértice en vértice, hay que encontrar un punto extremo inicial de la región factible Los puntos extremos se corresponden con las soluciones básicas factibles Un PPL dado en forma estandar se puede escribir en forma matricial minimizar sujeto a z Ax = b x En el ejemplo que estamos considerando Tendremos A =, x = x x 2 x 3 x 4, b = 5 Tenemos 2 ecuaciones y 4 variables, más variables que ecuaciones Como resultado tenemos infinitas soluciones para estas restricciones De hecho, cada punto de la región factible es una solución del sistema Nosotros sólamente necesitamos los vértices de la región factible, y estos puntos se corresponden con las soluciones básicas factibles del sistema Cuando un sistema Ax = b tiene m ecuaciones y n incógnitas con m n, debemos seleccionar, B, una submatriz de A no singular m m deta Esta submatriz B se denomina matriz básica Las variables que generan la matrix B sus columnas estan en B, se denominan variables básicas y se denotan por x B Las otras n m variables serán variables no básicas, x N, y siempre se le asociará el valor En nuestro ejemplo podemos escoger como matriz básica a B = = a a 3 Las variables básicas serán x, x 3 y las no básicas x 2, x 4 El valor de las variables básicas se obtiene con el sistema Bx B = b x B = B b La solución obtenida se denomina solución básica Una solución básica es una solución básica factible si x B El valor de la solución básica enterior será x x B = = B x b = 3 x N = También podríamos escoger como matriz básica a B = Id = x B = x3 x 4 = B b = x 4 = <, no está dentro de la región factible 5 =, pero no es factible pues 5 5 =

4 PASO 3: Testar la optimalidad Tomaremos x otra solución básica Veamos la relación existente con nuestra solución: xb b = Ax = B N = Bx B + Nx N Multiplicando por B a la izquierda y despejando x B tenemos: x N x B = B b B Nx N Si comparamos el valor de la función objetivo de la solución básica factible inicial, z, con la nueva,z, tenemos xb z = c B c N = c B x B + c N x N = C B B b c B B Nx N + c N x N y Entonces x N z = c B c N z = z c B B N c N x N = z x j no básica donde a j es la columna de x j en A y z j = c B B a j B b = C B B b c B B a j c j x j = z x j no básica z j c j x j La solución básica factible tiene el costo óptimo cuando no existe un costo mejor Es decir, cuando z j c j para todo x j variable no básica Comprobaremos si la solución obtenida en el apartado anterior es óptima Para ello calcularemos z 2 c 2 y z 4 c 4 : z 2 c 2 = c B B a 2 c 2 y z 4 c 4 = c B B a 4 c 4 c B son los coeficientes de coste de las varables básicas Es decir, c B = c c 3 = 3 a 2 es la columna de A correspondiente a la variable x 2 : a 2 = Y a 4 = c 2 es el coeficiente de coste de x 2 : c 2 = 5 Y c 4 = z 2 c 2 = 3 z 4 c 4 = 3 La solución no es óptima tanto z 2 c 2 como z 4 c 4 son positivos 5 = = 2 = 3 + = 3

5 PASO 4: Elegir una variable de entrada Si la solución que tenemos no es óptima significa que tenemos alguna variable no básica x j que verifica que z j c j > Queremos buscar una nueva solución básica factible, y su coste asociado es z = z z j c j x j x j no básica El método del simplex consiste en modificar la solución obtenida cambiando una variable básica por una no básica Si queremos mejorar el coste, la variable no básica elegida deberá cumplir que z j c j > Tomaremos x k variable no básica cuyo valor z k c k sea mayor En el ejemplo tenemos que z 2 c 2, z 4 c 4 > Escogeremos el valor mayor, por lo tanto la variable que entra es x 4 PASO 5: Elegir una variable de salida Una vez elegida la variable de entrada x k, sabemos que el resto de las variables no básicas seguirán siendo no básicas y su valor asociado será Además tenemos que x B = B b B Nx N = B b B a k x k = b b 2 b m y k y 2k y mk x k Teniendo en cuenta que las variables básicas tienen que ser positivas: Si y ik, x Bi crece si x k crece Por lo tanto x Bi sigue siendo positivo Si todos los y ik, las variables x B crecen si x k crece La solución es no acotada Si y ik <, x Bi decrece si x k crece Necesitamos que las x B ; así que aumentaremos x k hasta que la primera x B sea Esta será la variable que salga: x k = { bi min i m y ik } y ik > La variable que sale, x r, es la que hace que se alcance el mínimo: x k = b r y rk Siguiendo con el ejemplo tenemos que x = B x b B a 4 x 4 = 3 = x 4 Entonces x 4 = min { } La variable que sale es x 3 5 x 4

6 PASO 6: Actualizar la base y la solución básica factible La nueva base es básicamente la base inicial, solamente se permutan dos variables, una básica se convierte en no básica y viceversa La variable x k era no básica y ahora es básica La variable x r era básica y ahora es no básica Luego nosotros tenemos como variables básicas a x, x 4 y las no básicas son x 2, x 3 Los nuevos valores son x k = x B = b r y rk b b 2 y k y 2k x k b m y mk Y los valores de la nueva solución son x 4 =, x 2 = x 3 = por ser no básicas y x se calcula por la fórmula: x = x x 3 4 = 5 = x = 5 PASO 7: Volver al PASO 3 Ahora tenemos una solución básica factible mejor que la inicial Necesitamos saber si ésta es la óptima Para ello necesitamos aplicar el test de optimalidad, el paso 3

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual 7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal

Más detalles

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue: Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I

Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I Universidad acional de Ingeniería Sede: UI-orte Investigación de Operaciones I Método Simple Revisado Ejemplo. Resolver el siguiente problema de P.L. s. a: Ma, z 6 Para resolver por el método simple revisado,

Más detalles

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización.

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización. Tema El método simplex Los modelos lineales con dos o tres variables se pueden resolver gráficamente. En el Tema hemos visto la solución gráfica de modelos lineales de dos variables. Sin embargo, este

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

DUALIDAD EN PROGRAMACION LINEAL

DUALIDAD EN PROGRAMACION LINEAL DUALIDAD EN PROGRAMACION LINEAL Relaciones primal-dual Asociado a cada problema lineal existe otro problema de programación lineal denominado problema dual (PD), que posee importantes propiedades y relaciones

Más detalles

En el siguiente capítulo se hará un repaso de algunas propiedades básicas de conjuntos convexos, para después explicar el método simplex.

En el siguiente capítulo se hará un repaso de algunas propiedades básicas de conjuntos convexos, para después explicar el método simplex. Capitulo 2 Método Simplex Para explicar el método de generación de columnas se explicaran a continuación conceptos básicos de la programación lineal y el método simplex. En especial, el concepto de costo

Más detalles

Método Simplex: Encontrado una SBF

Método Simplex: Encontrado una SBF Método Simplex: Encontrado una SBF CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas () Método Simplex: Encontrado una SBF euresti@itesm.mx 1 / 31 Determinación de SBF Determinación de SBF El método

Más detalles

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados.

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. Programación lineal La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. El nombre de programación no se refiere a la

Más detalles

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)

Más detalles

Programación Lineal. Unidad 1 Parte 2

Programación Lineal. Unidad 1 Parte 2 Programación Lineal Unidad 1 Parte 2 Para la mayoría de los problemas modelados con programación lineal, el método gráfico es claramente inútil para resolverlos, pero afortunadamente y gracias a la dedicación

Más detalles

METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2

METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2 METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ Max Z= 12X 1 + 15X 2 Sujeto a: 2X 1 + X 2

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado IO04001 Investigación de Operaciones I Tema # 6 Introducción al método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex Matricial para

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte.

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte. Dirección de Operaciones SESIÓN # 5: El método simplex. Segunda parte. Contextualización Qué más hay que conocer del método simplex? En la sesión anterior dimos inicio a la explicación del método simplex.

Más detalles

4. Método Simplex de Programación Lineal

4. Método Simplex de Programación Lineal Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción

Más detalles

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1 M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX (2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX FORMA CANÓNICA DE UN SISTEMA Ax = b Forma Standard y Base factible (repaso). Expresión de las v. básicas en función de las no básicas. Forma

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura

Más detalles

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

3. Métodos clásicos de optimización lineal

3. Métodos clásicos de optimización lineal 3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema

Más detalles

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO Estandarización Tradicional

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO Estandarización Tradicional MÉTODO SIMPLE POFESOA: LILIANA DELGADO HIDALGO Lilianadelgado@correounivalleeduco Minimizar 4x + x Sueto a: x + x 4x + x 6 x + x 4 x, x Estandarización Tradicional Minimizar 4x + x Sueto a: x + x 4x +

Más detalles

PLs no acotados El método símplex en dos fases PLs no factibles. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

PLs no acotados El método símplex en dos fases PLs no factibles. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 PLs no acotados El método símplex en dos fases PLs no factibles Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs no acotados Necesidad de obtener un vértice

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

EL MÉTODO SIMPLEX. los redondos. Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo.

EL MÉTODO SIMPLEX. los redondos. Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo. EL MÉTODO SIMPLEX Hasta ahora, la única forma que conocemos de resolver un problema de programación lineal, es el método gráfico. Este método es bastante engorroso cuando aumenta el número de restricciones

Más detalles

Ejemplo : PROGRAMACIÓN LINEAL

Ejemplo : PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL Los problemas de Programación Lineal son aquellos donde se trata de encontrar el óptimo de una función, por ejemplo máximo de beneficios, o mínimo de costos, siendo esta función lineal.

Más detalles

Nelson Devia C Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulo 3

Nelson Devia C Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulo 3 IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulo 3 Contenidos

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

PROGRAMACIÓN LINEAL ENTERA

PROGRAMACIÓN LINEAL ENTERA PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,

Más detalles

El algoritmo del Simplex. Forma tabular

El algoritmo del Simplex. Forma tabular El algoritmo del Simplex. Forma tabular 1 Soluciones básicas factibles Consideremos el siguiente poliedro P = {x R n, tal que Ax = b, x } con A M m n, b R m, m n, x y RangoA = RangoA, b = m. Observación

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a

Más detalles

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro)

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro) UNIDAD 4. INECUACIONES Y SISTEMAS (tema 4 del libro) 1. INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Definición: Se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por

Más detalles

Optimización lineal con R José R. Berrendero

Optimización lineal con R José R. Berrendero Optimización lineal con R José R. Berrendero Introducción Veamos cómo se pueden resolver problemas de optimización lineal con R a través de algunos ejemplos sencillos. La mayor parte de las funciones necesarias

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Inecuaciones en dos variables

Inecuaciones en dos variables Inecuaciones en dos variables Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,. Inecuaciones de primer grado

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

Programación Lineal con Matlab

Programación Lineal con Matlab Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 22 Contenido 1 Programación Lineal Método gráfico

Más detalles

PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA

PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA 1. Sea el problema: Max. 3 x 1 + 4 x 2 + 2 x 3 + x 4 s.a. 4 x 1 + 3 x 2 + 4 x 3 + x 4 5 2 x 1 + x 2 + 5 x 3 + 2 x 4 6 x 1 6, 0 x 2 3, x 3 libre, x 4 0 a) Ponerlo

Más detalles

6.2 OBSERVACIONES IMPORTANTES AL UTILIZAR MÉTODO SIMPLEX

6.2 OBSERVACIONES IMPORTANTES AL UTILIZAR MÉTODO SIMPLEX 6. MÉTODO SIMPLEX El Método Simplex es un método analítico de solución de problemas de programación lineal capaz de resolver modelos más complejos que los resueltos mediante el método gráfico sin restricción

Más detalles

1. Una brevísima introducción. 2. Ese trabalenguas llamado base... IN34A: Optimización Pag. 1

1. Una brevísima introducción. 2. Ese trabalenguas llamado base... IN34A: Optimización Pag. 1 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN4A: Clase Auxiliar Simplex Marcel Goic F. Esta es una versión bastante preliminar por lo que puede

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Apéndice AEl método Simplex José Arturo Barreto M.A. Caracas-Venezuela

Apéndice AEl método Simplex José Arturo Barreto M.A. Caracas-Venezuela A Tels:46-359965 46-6989 44-6643 4-393 josearturobarreto@yahoo.com ALGEBRA LINEAL APLICADA JOSE ARTURO BARRETO,M.A. APÉNDICE A. EL METODO SIMPLEX OBJETIVOS Al terminar el apéndice el estudiante deberá

Más detalles

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex

UNIDAD 3 MÉTODO SIMPLEX. Fundamentos del método simplex UNIDAD 3 MÉTODO SIMPLEX Fundamentos del método simplex Teoría Este método busca la solución, en cada paso, de forma mejorada hasta que no pueda seguir mejorando dicha solución. Al comienzo el vértice principal

Más detalles

Optimización de Problemas de Producción

Optimización de Problemas de Producción Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile Colaboran: Héctor Cancela - Antonio Mauttone - Carlos Testuri Depto. Investigación Operativa. Instituto de Computación. Facultad de

Más detalles

PREPARANDO EL MODELO PARA ADAPTARLO AL MÉTODO SIMPLEX. a21 x1 + a22 x2 +... + a2n xn = b2... am1 x1 + am2 x2 +... + amn xn = bm x1,...

PREPARANDO EL MODELO PARA ADAPTARLO AL MÉTODO SIMPLEX. a21 x1 + a22 x2 +... + a2n xn = b2... am1 x1 + am2 x2 +... + amn xn = bm x1,... El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Partiendo del valor de la

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS

TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS TEMA III MÉTODO SIMPLE. CONCEPTOS BÁSICOS MÉTODOS CUANTITATIVOS I TEMA III. MÉTODO SIMPLE. CONCEPTOS BÁSICOS INDICE.- FACTORES PRODUCTIVOS (A i )....- VECTOR EISTENCIAS (P o )....- TÉCNICA... 4.- PROCESO

Más detalles

Práctica 2 Métodos de búsqueda para funciones de una variable

Práctica 2 Métodos de búsqueda para funciones de una variable Práctica 2 Métodos de búsqueda para funciones de una variable Introducción Definición 1. Una función real f se dice que es fuertemente cuasiconvexa en el intervalo (a, b) si para cada par de puntos x 1,

Más detalles

Cómo resolver el Método Simplex, con penalizaciones, o gran M

Cómo resolver el Método Simplex, con penalizaciones, o gran M Cómo resolver el étodo Simple, con penalizaciones, o gran aterial de apoyo realizado por Sebastián Fellenberg C Estudiante de Ingeniería Industrial Universidad de las Américas Chile Introducción Antes

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales de la forma:

Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales de la forma: MATEMÁTICAS BÁSICAS SISTEMAS DE DESIGUALDADES SISTEMAS DE DOS INECUACIONES Y DOS INCÓGNITAS Un sistema de inecuaciones lineales con una incógnita es el conjunto formado por dos o más inecuaciones lineales

Más detalles

TEMA 3: EL MÉTODO SIMPLEX

TEMA 3: EL MÉTODO SIMPLEX TEMA 3: EL MÉTODO SIMPLEX El uso de este procedimiento gráfico para resolver problemas de PL queda limitado a problemas con dos variables de decisión, de manera que el problema pueda representarse en un

Más detalles

Optimización y Programación Lineal

Optimización y Programación Lineal Optimización y Programación Lineal Método Simplex: Minimización 3 de enero de Método Simplex: Minimización () Optimización y Programación Lineal 3 de enero de / 4 Minimización Minimización En la definición

Más detalles

Programación Lineal. - Si no: Sea j tal que c

Programación Lineal. - Si no: Sea j tal que c Programación Lineal El objetivo de este documento es hacer una breve introducción a la programación lineal que pueda contribuir al fácil manejo de la aplicación. La programación lineal es un procedimiento

Más detalles

Programación Lineal. Yolanda Hinojosa

Programación Lineal. Yolanda Hinojosa Programación Lineal Yolanda Hinojosa Contenido Formulación primal de un programa lineal. Propiedades Algoritmo del simplex Algoritmo dual del simplex Formulación dual de un programa lineal. Propiedades

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

max c T x s.a. Ax b x 0 y un diccionario general para dicho problema a rs x s, c s x s z = d + b r y r min b T y s.a. A T y c y 0

max c T x s.a. Ax b x 0 y un diccionario general para dicho problema a rs x s, c s x s z = d + b r y r min b T y s.a. A T y c y 0 CO-34 (S8) 25/3/28 8 Formalizaremos lo visto en la clase anterior. Considere un problema en forma estándar max s.a. c T x Ax b x un diccionario general para dicho problema x r = b r + a rs x s, s NB z

Más detalles

Método Simplex en Optimización de Problemas de Producción

Método Simplex en Optimización de Problemas de Producción Método Simplex en Optimización de Problemas de Producción Pedro Piñeyro - Luis Stábile - Fernando Islas - Carlos Testuri Héctor Cancela - Antonio Mauttone Depto. Investigación Operativa. Instituto de Computación.

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO M. En C. Eduardo Bustos Farías 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta

Más detalles

Tema # 7. método simplex matricial o revisado

Tema # 7. método simplex matricial o revisado IO04001 Investigación de Operaciones I Tema # 7 Solución de problemas mediante el método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex

Más detalles

PROBLEMAS DE OPTIMIZACIÓN LINEAL

PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMA DE LA PRODUCCIÓN 1.- Una fábrica elabora dos tipos de productos, A y B. El tipo A necesita 2 obreros trabajando un total de 20 horas, y se obtiene un beneficio

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

5.1. Algoritmo en modelos de maximización

5.1. Algoritmo en modelos de maximización 5.1. Algoritmo en modelos de maximización El primer tipo de modelo que vamos a resolver por el método símplex es el que tiene como objetivo maximizar a una función lineal, la cual está sujeta a una serie

Más detalles

Repaso del algoritmo SIMPLEX

Repaso del algoritmo SIMPLEX Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN70K: Clase Auxiliar Repaso del algoritmo SIMPLEX Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Forma estándar de un PPL con m restricciones y n variables. (b 0)

Forma estándar de un PPL con m restricciones y n variables. (b 0) Forma estándar de un PPL con m restricciones y n variables Maximizar (minimizar) Z = c 1 x 1 + c 2 x 2 +... + c n x n a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +a 22 x 2 +... + a 2n x n = b 2...

Más detalles

4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte

4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte 4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co En PL un sistema de producción se representa

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

Qué es la programación lineal?

Qué es la programación lineal? Qué es la programación lineal? En infinidad de aplicaciones de la industria, la economía, la estrategia militar, etc... Se presentan situaciones en las que se exige maximizar o minimizar algunas funciones

Más detalles

Unidad III Teoría de la Dualidad.

Unidad III Teoría de la Dualidad. Curso de investigación de operaciones http://www.luciasilva.8k.com/5.5.htm Unidad III Teoría de la Dualidad. III.1 FORMULACIÓN DEL PROBLEMA DUAL La Teoría de la Dualidad es una de las herramientas que

Más detalles

Programación Lineal. PL: Parte de la Programación Matemática donde tanto la función objetivo como las restricciones son funciones lineales.

Programación Lineal. PL: Parte de la Programación Matemática donde tanto la función objetivo como las restricciones son funciones lineales. Programación Lineal PL: Parte de la Programación Matemática donde tanto la función objetivo como las restricciones son funciones lineales. La importancia de esta técnica se debe a la aparición del método

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Opción A. Alumno. Fecha: 23 Noviembre 2012

Opción A. Alumno. Fecha: 23 Noviembre 2012 Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A

Más detalles

MÁXIMOS Y MINIMOS. Marco Antonio Cruz Chávez

MÁXIMOS Y MINIMOS. Marco Antonio Cruz Chávez MÁXIMOS Y MINIMOS Marco Antonio Cruz Chávez UAEM Av. Universidad 11 Col. Chamilpa C.P. 61 Cuernavaca Morelos, México Agosto 18 del 334858@academ1.mor.itesm.mx Abstract. En este trabajo se presentan algunos

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Lección 1. Algoritmos y conceptos básicos.

Lección 1. Algoritmos y conceptos básicos. Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría

Más detalles

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,

Más detalles

Método Simplex. Ing. Ricardo Fernando Otero, MSc

Método Simplex. Ing. Ricardo Fernando Otero, MSc Método Simplex Ing. Ricardo Fernando Otero, MSc Forma estándar de un modelo de programación lineal Dirección de mejora: Maximizar Todas las restricciones deben ser El lado izquierdo debe contener solo

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Tema 3. El metodo del Simplex.

Tema 3. El metodo del Simplex. Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento

Más detalles

Circunferencia que pasa por tres puntos

Circunferencia que pasa por tres puntos Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 6 Sistemas de ecuaciones lineales 61 Sistemas de ecuaciones lineales Se llama ecuación lineal en n incógnitas sobre R a una expresión de la forma a 1 x 1 + a 2 x 2 + + a n x n = b con los a i en R para

Más detalles