UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3"

Transcripción

1 UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 3

2 Matriz unitaria "I" de base con variables artificiales. Cuando el problema de programación lineal se expresa en la forma canónica de maximizar, las variables de holgura que se suman en cada restricción de tipo <= para conseguir la igualdad de la forma estándar, proporcionan un coeficiente (+1) que es útil para formar la matriz unitaria " I "; se cumple así con la necesidad de la primera solución básica factible que requiere el algoritmo simplex para su inicio. Pero muchas veces, el modelo de programación lineal no tiene forma canónica y presenta restricciones de tipo >= e =, con las cuales no se usan variables de holgura para el propósito de conseguir la forma estándar. Al restar la superávit -1S se convierte a ecuación la restricción tipo >=; y la restricción = ya se cumple; pero en ambos casos no se tiene la aportación del coeficiente + 1. Los problemas de programación lineal expresados con restricciones distintas al tipo <= necesitan un artificio matemático para conseguir una matriz de base artificial, lo cual es posible sumando una variable artificial W i de valor no negativo, i=1,2,...,m en cada restricción i de tipo >= e =, así se proporciona el coeficiente +1 indispensable para la formación de la matriz unitaria I que requiere el algoritmo simplex para ponerlo en marcha. Una variable artificial no tiene significado físico y sólo se utiliza para completar la primera solución básica que requiere el simplex para iniciarse; pero en contraste, a través de las etapas de cálculo, debe procurarse que las artificiales salgan pronto de la base, convirtiéndolas en no básicas, o bien que, como variables básicas valgan cero para poder lograr la solución óptima.

3 Método Simplex penal o de la M grande, Técnica M. El simplex penal es una variante del método simplex aplicable en los casos en que las variables artificiales son necesarias en el problema, ya sea de maximizar o también de minimizar. El nombre de simplex penal se explica porque se penaliza con un coeficiente M, que representa un valor muy grande (mayor que cualquier otro coeficiente del problema), a cada variable artificial W i que se incluya en la función objetivo del problema. Para máximo se utiliza la penalización con signo menos (- M), por otro lado para mínimo se utiliza signo más (+ M). Las variables artificiales se usan para la primera solución básica del simplex, pero el valor muy grande del coeficiente M, procura su rápida salida de la base cuando el problema tiene solución factible. Aunque algún caso degenerado puede tener una variable artificial en la base con valor cero; Por el contrario, si no es posible anular las variables artificiales (W i >0), significa que no hay solución factible al problema.

4

5

6 Método Simplex penal o de la M grande, Técnica M. Primero se prepara el problema convirtiendo a igualdades para forma estándar del modelo propuesto, sumando una variable de holgura H1 en la restricción (1), después se resta una variable S2 de superávit en la (2), la restricción (3) es de tipo = por lo que se deja como está; se condiciona toda variable X j >= 0 y con la función objetivo original ya se tiene este modelo como estándar. Pero así no se completa la matriz cuadrada unitaria I que debe ser de orden m = 3 restricciones, pues sólo se tiene el vector unitario de la variable de holgura H1 que sí aporta el coeficiente +1, faltando dos vectores unitarios. Aquí surge la necesidad de utilizar el artificio matemático ya referido. En las restricciones (2) y (3) que son de >= e =; se suman variables artificiales W2 y W3, aportando cada una de ellas el necesario coeficiente +1, con lo que se completa la matriz I mostrada antes de la tabla simplex, quedando el modelo que se presenta con base artificial.

7 Método Simplex penal o de la M grande, Técnica M. Esta variante del simplex, incluye a las variables artificiales en la función objetivo, pero penalizadas con un coeficiente M, que representa un valor mayor que cualquier otro coeficiente presente en el modelo; para este ejemplo se le asigna -M como coeficiente a las variables artificiales W2 y W3, cumpliendo así con la penalización de la función objetivo la cual se arregla al formato de las restricciones, restando el lado derecho a la variable Z, consiguiendo el término independiente cero en el lado derecho.

8 Método Simplex penal o de la M grande, Técnica M. En segundo lugar debe prepararse la tabla simplex con la primera solución básica "factible", la que se consigue con las variables artificiales W2 y W3, procurando su pronta anulación con los cambios de la base. Se inicia con los renglones y columnas y los encabezados necesarios para copiar ordenadamente los coeficientes del modelo, tal como se presentan en la forma con base artificial y la función Z arreglada con término independiente; los lugares vacíos se llenan con cero. Aquí la matriz I, no necesariamente se forma con sus vectores unitarios colocados juntos escalonadamente; pueden quedar intercalados vectores unitarios (por las variables de holgura y/o artificiales) o no unitarios (por las de superávit); en este ejemplo, hay una intercalación de la variable S2 de superávit, lo cual se podría haber evitado permutando las primeras dos restricciones.

9 Método Simplex penal o de la M grande, Técnica M. En todos los casos se puede buscar arreglar las restricciones en el orden que convenga para facilitar el análisis posterior de la solución tabular. Las variables básicas deben colocarse en la columna izquierda ordenadas de tal manera, que coincidan en su renglón con el coeficiente +1 del vector unitario, en la columna correspondiente a la misma variable. Toda variable básica debe tener coeficiente indicador cero en el renglón Z; esto significa que tal variable ya no puede aportar alguna cantidad al valor de la función objetivo; pero las variables artificiales W2 y W3 tienen un coeficiente M en dicho renglón; lo cual impide que se tenga una solución básica "factible" en esta tabla, por lo que se procede a conseguir los coeficientes cero faltantes en el renglón Z para las variables artificiales.

10

11 Método Simplex penal o de la M grande, Técnica M. Esto se logra mediante operaciones fila elementales usadas en el proceso de Gauss-Jordan, lo que se muestra en las fórmulas en el lado izquierdo de la tabla: Para calcular el cero en W2, se multiplica el renglón W2 por el número -M (inverso aditivo de M) y se suma el renglón Z, ó sea (RW2)(-M) + RZ = Z', se tiene así cero en la posición de Z' con W2. Luego se multiplica el renglón W3 por el número -M y se suma el renglón Z', ó sea (RW3)(-M) + RZ' = Z'', se determinan así los coeficientes cero necesarios para que las variables W2 y W3 sean básicas. Ahora sí en esta segunda tabla, se tiene la primera solución básica indispensable para que el algoritmo se inicie con la aplicación de los criterios del simplex.

12

13 Método Simplex penal o de la M grande, Técnica M. En tercer lugar, ya determinada la solución de arranque, se aplican los criterios del simplex empezando con el de optimalidad y considerando que el objetivo es máximo, la observación de los indicadores del renglón Z, en esta segunda tabla, existe sólo un coeficiente negativo en la variable no básica de decisión X 1, por lo cual se declara variable entrante a la base. La aplicación de la factibilidad resulta al obtener el mínimo cociente, de dividir los valores actuales de las variables básicas situados en la columna solución a la derecha de la tabla, entre los coeficientes en el mismo renglón i con la columna correspondiente a la variable VE. Así: mínimo (6/1, 0/2, 2/1) = 0, que coincide en el renglón de la variable artificial W 2 que se declara variable saliente.

14 Método Simplex penal o de la M grande, Técnica M. En el cruce de la columna X 1 y el renglón W 2, se localiza el coeficiente 2 como pivote P para calcular con Gauss-Jordan la siguiente tabla simplex (tercera) con la nueva solución básica que debe tener a H 1, X 1 (sustituye a W 2 ) y W 3, como base. Se recomienda cuidar la colocación de las variables en la base, conservando el mismo orden que le corresponde de tabla a tabla, excepto para la nueva VE que ocupa el lugar de la VS.

15 Método Simplex penal o de la M grande, Técnica M.

16 Método Simplex penal o de la M grande, Técnica M. En la tercera tabla simplex, se repite la aplicación del criterio de optimalidad seleccionando entre (-1/2 M - 7/2) y (-1/2 M - 3/2), el coeficiente más negativo para el objetivo de máximo, entonces se declara a la variable no básica X 2 como a la base. Para la factibilidad, vea que el renglón de la variable básica X1 queda descartado debido a que 0 / -1/2 no es válido, en cambio con las otras dos variables en la base se tiene: Mínimo (6 / 3/2, 2 / 1/2) = 4, existe empate que debe romperse teniendo en cuenta, la necesidad de procurar una rápida salida de la base de las variables artificiales, en tal caso se puede elegir a la que ahora, es indeseable variable básica W 3. En el cruce de columna X 2 como VE y renglón W 3 como VS, se localiza el coeficiente pivote 1/2 con el que se inicia el cálculo de la siguiente tabla (cuarta) simplex de este problema ejemplo.

17

18

19 La cuarta tabla simplex comienza por ordenar las tres variables básicas H1, X1 y la nueva X2 que sustituye a la W3, se continúa con el cálculo de coeficientes del renglón RE = RS / P = RS / 1/2 resultando el coeficiente +1 en la posición de pivote, necesario para determinar con el Gauss-Jordan el resto de la tabla, que muestra en el lado izquierdo, las fórmulas empleadas de este método. Esta última tabla tiene en el renglón Z, coeficientes indicadores para las variables de valor no negativo, lo cual significa una solución óptima pues, además, todas las variables artificiales ya salieron de la base.

20

21 2. TAREA 3. Minimizar: Z = 0.05X X 2 Sujeto a: 2X 1 + X 2 40 X 1 + X 2 30 X 1, X 2 0

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI RUACS ESTELI Estelí, 13 de Agosto del 2012 EL METODO SIMPLEX El método simplex es el más generalizado para resolver problemas de programación lineal. Se puede utilizar para cualquier número razonable de productos y

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Programación Lineal. Unidad 1 Parte 2

Programación Lineal. Unidad 1 Parte 2 Programación Lineal Unidad 1 Parte 2 Para la mayoría de los problemas modelados con programación lineal, el método gráfico es claramente inútil para resolverlos, pero afortunadamente y gracias a la dedicación

Más detalles

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue: Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra

Más detalles

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba

Más detalles

Pasos en el Método Simplex

Pasos en el Método Simplex Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006

Más detalles

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual

Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual 7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 6. revisado IO04001 Investigación de Operaciones I Tema # 6 Introducción al método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex Matricial para

Más detalles

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados.

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. Programación lineal La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. El nombre de programación no se refiere a la

Más detalles

PASO 1: Poner el problema en forma estandar.

PASO 1: Poner el problema en forma estandar. MÉTODO DEL SIMPLEX PASO Poner el problema en forma estandar: La función objetivo se minimiza y las restricciones son de igualdad PASO 2 Encontrar una solución básica factible SBF PASO 3 Testar la optimalidad

Más detalles

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO Estandarización Tradicional

MÉTODO SIMPLEX. PROFESORA: LILIANA DELGADO HIDALGO Estandarización Tradicional MÉTODO SIMPLE POFESOA: LILIANA DELGADO HIDALGO Lilianadelgado@correounivalleeduco Minimizar 4x + x Sueto a: x + x 4x + x 6 x + x 4 x, x Estandarización Tradicional Minimizar 4x + x Sueto a: x + x 4x +

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

El Método Simplex. H. R. Alvarez A., Ph. D. 1

El Método Simplex. H. R. Alvarez A., Ph. D. 1 El Método Simplex H. R. Alvarez A., Ph. D. 1 El Método Simplex Desarrollado en 1947 por George Dantzig como parte de un proyecto para el Departamento de Defensa Se basa en la propiedad de la solución esquina

Más detalles

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés

EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés EJEMPLO DE SIMPLEX PARA PROBLEMA DE PROGRAMACIÓN LINEAL CASO DE MAXIMIZAR Prof.: MSc. Julio Rito Vargas Avilés CONSTRUCCION DE LA TABLA INICIAL DEL MÉTODO SIMPLEX Una vez que el alumno ha adquirido la

Más detalles

Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones:

Para que un problema pueda ser solucionado por el método de transporte, este debe reunir tres condiciones: MÉTODO DE TRANSPORTE Es un método de programación lineal para la asignación de artículos de un conjunto de origines a un conjunto de destinos de tal manera que se optimice la función objetivo. Esta técnica

Más detalles

4. Método Simplex de Programación Lineal

4. Método Simplex de Programación Lineal Temario Modelos y Optimización I 4. Método Simplex de Programación Lineal A- Resolución de problemas, no particulares, con representación gráfica. - Planteo ordenado de las inecuaciones. - Introducción

Más detalles

METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2

METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ. Max Z= 12X 1 + 15X 2 METODO SIMPLEX NOTAS DE CLASE: INVESTIGACIÓN DE OPERACIONES I UNIVERSIDAD CENTRAL PROFESOR CARLOS DÍAZ Max Z= 12X 1 + 15X 2 Sujeto a: 2X 1 + X 2

Más detalles

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1

PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1 M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser

Más detalles

Método Simplex: Encontrado una SBF

Método Simplex: Encontrado una SBF Método Simplex: Encontrado una SBF CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas () Método Simplex: Encontrado una SBF euresti@itesm.mx 1 / 31 Determinación de SBF Determinación de SBF El método

Más detalles

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización.

Si el objetivo es maximizar, entonces se tiene la forma estándar de maximización y, si el objetivo es minimizar, la forma estándar de minimización. Tema El método simplex Los modelos lineales con dos o tres variables se pueden resolver gráficamente. En el Tema hemos visto la solución gráfica de modelos lineales de dos variables. Sin embargo, este

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION

2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 2.2 PROGRAMACION LINEAL: METODOS DE SOLUCION 1. METODO GRAFICO 2. METODO SIMPLEX - ALGEBRAICO 3. METODO SIMPLEX - TABULAR 4. METODO SIMPLEX - MATRICIAL 1 2.2.1 METODO GRAFICO (modelos con 2 variables)

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

6.2 OBSERVACIONES IMPORTANTES AL UTILIZAR MÉTODO SIMPLEX

6.2 OBSERVACIONES IMPORTANTES AL UTILIZAR MÉTODO SIMPLEX 6. MÉTODO SIMPLEX El Método Simplex es un método analítico de solución de problemas de programación lineal capaz de resolver modelos más complejos que los resueltos mediante el método gráfico sin restricción

Más detalles

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX

(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX (2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX FORMA CANÓNICA DE UN SISTEMA Ax = b Forma Standard y Base factible (repaso). Expresión de las v. básicas en función de las no básicas. Forma

Más detalles

EL MÉTODO SIMPLEX. los redondos. Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo.

EL MÉTODO SIMPLEX. los redondos. Por último, a los manteles rectangulares se les deben colocar cuatro esquineros de refuerzo. EL MÉTODO SIMPLEX Hasta ahora, la única forma que conocemos de resolver un problema de programación lineal, es el método gráfico. Este método es bastante engorroso cuando aumenta el número de restricciones

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales El sistema de ecuaciones lineales como modelo matemático de problemas Los sistemas de ecuaciones lineales permiten el planteamiento de problemas y soluciones que toman en

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

DUALIDAD EN PROGRAMACION LINEAL

DUALIDAD EN PROGRAMACION LINEAL DUALIDAD EN PROGRAMACION LINEAL Relaciones primal-dual Asociado a cada problema lineal existe otro problema de programación lineal denominado problema dual (PD), que posee importantes propiedades y relaciones

Más detalles

TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS

TEMA III MÉTODO SIMPLEX. CONCEPTOS BÁSICOS TEMA III MÉTODO SIMPLE. CONCEPTOS BÁSICOS MÉTODOS CUANTITATIVOS I TEMA III. MÉTODO SIMPLE. CONCEPTOS BÁSICOS INDICE.- FACTORES PRODUCTIVOS (A i )....- VECTOR EISTENCIAS (P o )....- TÉCNICA... 4.- PROCESO

Más detalles

Cómo resolver el Método Simplex, con penalizaciones, o gran M

Cómo resolver el Método Simplex, con penalizaciones, o gran M Cómo resolver el étodo Simple, con penalizaciones, o gran aterial de apoyo realizado por Sebastián Fellenberg C Estudiante de Ingeniería Industrial Universidad de las Américas Chile Introducción Antes

Más detalles

3. Métodos clásicos de optimización lineal

3. Métodos clásicos de optimización lineal 3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte.

Dirección de Operaciones. SESIÓN # 5: El método simplex. Segunda parte. Dirección de Operaciones SESIÓN # 5: El método simplex. Segunda parte. Contextualización Qué más hay que conocer del método simplex? En la sesión anterior dimos inicio a la explicación del método simplex.

Más detalles

En el siguiente capítulo se hará un repaso de algunas propiedades básicas de conjuntos convexos, para después explicar el método simplex.

En el siguiente capítulo se hará un repaso de algunas propiedades básicas de conjuntos convexos, para después explicar el método simplex. Capitulo 2 Método Simplex Para explicar el método de generación de columnas se explicaran a continuación conceptos básicos de la programación lineal y el método simplex. En especial, el concepto de costo

Más detalles

Problemas de Programación Lineal: Método Simplex

Problemas de Programación Lineal: Método Simplex Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con

Más detalles

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012 1 Guía de Estudio y Ejercitación propuesta Esta selección de Temas y Ejercicios están extraídos del texto FUNDAMENTOS DE ALGEBRA LINEAL de R. Larson y D. Falvo.

Más detalles

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos:

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: Solución óptima a los problemas de transporte La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: a) Calcular los

Más detalles

TEMA 3: EL MÉTODO SIMPLEX

TEMA 3: EL MÉTODO SIMPLEX TEMA 3: EL MÉTODO SIMPLEX El uso de este procedimiento gráfico para resolver problemas de PL queda limitado a problemas con dos variables de decisión, de manera que el problema pueda representarse en un

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

Álgebra lineal y. programación lineal Con aplicaciones a ciencias. Administrativas, contables y financieras

Álgebra lineal y. programación lineal Con aplicaciones a ciencias. Administrativas, contables y financieras Tercera edición Álgebra lineal y programación lineal Con aplicaciones a ciencias Administrativas, contables y financieras Francisco Soler Fajardo Fabio Molina Focazzio Lucio Rojas Cortés Contenido Introducción...XIX

Más detalles

DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas.

DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas. DETERMINANTES página 251 DETERMINANTES 13.1 Un determinante es un arreglo numérico en igual número de filas que de columnas del que, a partir de ciertas reglas, se forma un polinomio. El símbolo es un

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Problemas de transporte, asignación y trasbordo

Problemas de transporte, asignación y trasbordo Problemas de transporte, asignación y trasbordo 1. Plantear un problema de transporte Tiene como objetivo encontrar el mejor plan de distribución, generalmente minimizando el coste. Un problema está equilibrado

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal Capitulo 2 Modelación y formulación

INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal Capitulo 2 Modelación y formulación INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal 3 Introducción 1 1.1 Concepto de solución óptima 4 1.2 Investigación de operaciones 6 1.2.1 Evolución

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Eliminación gaussiana y otros algoritmos Departamento de Matemáticas ITESM Eliminación gaussiana y otros algoritmos Álgebra Lineal - p. 1/77 En esta lectura veremos procedimientos

Más detalles

Determinantes. Primera definición. Consecuencias inmediatas de la definición

Determinantes. Primera definición. Consecuencias inmediatas de la definición Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

Ejemplo : PROGRAMACIÓN LINEAL

Ejemplo : PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL Los problemas de Programación Lineal son aquellos donde se trata de encontrar el óptimo de una función, por ejemplo máximo de beneficios, o mínimo de costos, siendo esta función lineal.

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

MATEMÁTICAS 2º ESO. TEMA 1

MATEMÁTICAS 2º ESO. TEMA 1 MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I

Universidad Nacional de Ingeniería Sede: UNI-Norte Investigación de Operaciones I Universidad acional de Ingeniería Sede: UI-orte Investigación de Operaciones I Método Simple Revisado Ejemplo. Resolver el siguiente problema de P.L. s. a: Ma, z 6 Para resolver por el método simple revisado,

Más detalles

PROGRAMACIÓN LINEAL ENTERA

PROGRAMACIÓN LINEAL ENTERA PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,

Más detalles

Tema # 7. método simplex matricial o revisado

Tema # 7. método simplex matricial o revisado IO04001 Investigación de Operaciones I Tema # 7 Solución de problemas mediante el método simplex matricial o revisado Objetivos de aprendizaje Al finalizar el tema serás capaz de: Emplear el Método simplex

Más detalles

Distribuciones bidimensionales. Regresión.

Distribuciones bidimensionales. Regresión. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

Matrices escalonadas y escalonadas reducidas

Matrices escalonadas y escalonadas reducidas Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver

Más detalles

4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte

4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte 4. Métodos de Solución PPL : Solución Algebraica: METODO SIMPLEX Primera Parte Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co En PL un sistema de producción se representa

Más detalles

Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales

Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán * 2011 Resumen

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE:

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA PROGRAMA: ALGEBRA LINEAL CÓDIGO ASIGNATURA: 1272-521 PRE-REQUISITO: 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: 90-II UNIDADES DE CRÉDITO:

Más detalles

Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la aplicación en la programación lineal.

Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la aplicación en la programación lineal. Unidad IX: Programación lineal Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la aplicación en la programación lineal. Conceptos a desarrollar

Más detalles

PREPARANDO EL MODELO PARA ADAPTARLO AL MÉTODO SIMPLEX. a21 x1 + a22 x2 +... + a2n xn = b2... am1 x1 + am2 x2 +... + amn xn = bm x1,...

PREPARANDO EL MODELO PARA ADAPTARLO AL MÉTODO SIMPLEX. a21 x1 + a22 x2 +... + a2n xn = b2... am1 x1 + am2 x2 +... + amn xn = bm x1,... El método Simplex es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución. Partiendo del valor de la

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y

Más detalles

Inversas Generalizadas

Inversas Generalizadas Inversas Generalizadas Departamento de Matemáticas, CSI/IESM 5 de abril de 2 Índice.. Inversas generalizadas..........................................2. Uso de la inversa generalizada.....................................

Más detalles

PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA

PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA PROBLEMAS PROGRAMACIÓN LINEAL CONTINUA 1. Sea el problema: Max. 3 x 1 + 4 x 2 + 2 x 3 + x 4 s.a. 4 x 1 + 3 x 2 + 4 x 3 + x 4 5 2 x 1 + x 2 + 5 x 3 + 2 x 4 6 x 1 6, 0 x 2 3, x 3 libre, x 4 0 a) Ponerlo

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

Programación Lineal con Matlab

Programación Lineal con Matlab Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 22 Contenido 1 Programación Lineal Método gráfico

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

VIII. CIRCUNFERENCIA

VIII. CIRCUNFERENCIA VIII. IRUNFERENI 8.. L IRUNFERENI OMO LUGR GEOMÉTRIO Definición: Una circunferencia es el lugar geométrico de un punto ( ) P, cualquiera, que se mueve sobre el plano, de tal manera que su distancia a un

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

Demostración de la Transformada de Laplace

Demostración de la Transformada de Laplace Transformada de Laplace bilateral Demostración de la Transformada de Laplace Transformada Inversa de Laplace En el presente documento trataremos de demostrar matemáticamente cómo puede obtenerse la Transformada

Más detalles

MÁXIMOS Y MINIMOS. Marco Antonio Cruz Chávez

MÁXIMOS Y MINIMOS. Marco Antonio Cruz Chávez MÁXIMOS Y MINIMOS Marco Antonio Cruz Chávez UAEM Av. Universidad 11 Col. Chamilpa C.P. 61 Cuernavaca Morelos, México Agosto 18 del 334858@academ1.mor.itesm.mx Abstract. En este trabajo se presentan algunos

Más detalles

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,

Más detalles

Optimización lineal con R José R. Berrendero

Optimización lineal con R José R. Berrendero Optimización lineal con R José R. Berrendero Introducción Veamos cómo se pueden resolver problemas de optimización lineal con R a través de algunos ejemplos sencillos. La mayor parte de las funciones necesarias

Más detalles

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición Curso de Matemática Unidad 2 Profesora: Sofía Fuhrman Operaciones Elementales II: Potenciación Definición a n = a. a.a a multiplicado por sí mismo n veces. a) Regla de los signos Exponente Par Exponente

Más detalles

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas plicadas a las iencias Sociales II ntonio Francisco Roldán López de Hierro * onvocatoria de

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

Métodos Numéricos (SC 854) Solución de sistemas de ecuaciones lineales

Métodos Numéricos (SC 854) Solución de sistemas de ecuaciones lineales Solución de sistemas de ecuaciones lineales c M Valenzuela 2007 (2 de agosto de 2007) Matrices Definición Una matriz n m es un arreglo rectangular de elementos con n filas (o renglones) y m columnas en

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

El Método de Gauss. Hallar el conjunto solución del siguiente sistema de ecuaciones. (1.1)

El Método de Gauss. Hallar el conjunto solución del siguiente sistema de ecuaciones. (1.1) El Método de Gauss. Hallar el conjunto solución del siguiente sistema de ecuaciones. x + 5y + z = x y + z = 8 x + y = 10 (1.1) Una manera de resolver este problema consiste en aplicar el método de reducción

Más detalles

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález

CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Notas del curso de Introducción a los métodos cuantitativos

Notas del curso de Introducción a los métodos cuantitativos Ecuación de segundo grado Una ecuación de segundo grado es aquella que puede reducirse a la forma, ax + bx + c = 0 en la que el coeficiente a debe ser diferente de cero. Sabemos que una ecuación es una

Más detalles