PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROCESOS DE MARKOV. Definiciones en los Procesos de Markov de Primer Orden:"

Transcripción

1 ROCESOS DE MARKOV rinciio de Markov: Cuando una robabilidad condicional deende únicamente del suceso inmediatamente anterior, cumle con el rinciio de Markov de rimer Orden, es decir. X ( t ) j X () K, X () K,..., X ( t) i) ( X ( t ) j X ( t) i) ( Definiciones en los rocesos de Markov de rimer Orden: Estados: Las condiciones en las cuales se encuentra un ente ó sucesos osibles. Ensayos: Las ocurrencias reetidas de un evento que se estudia. robabilidad de Transición: La robabilidad de asar de un estado actual al siguiente en un eríodo ó tiemo, y se denota or ij ( la robabilidad de asar del estado i al estado j en una transición ó eríodo) Características de los rocesos de Markov de rimer Orden: Se ueden usar como modelo de un roceso físico ó económico que tenga las siguientes roiedades: a) Que la robabilidad cumla con el rinciio de Markov. b) Existencia de un número finito de estados. c) Las ij son constante con resecto al tiemo ó eríodo. d) Ensayos en eríodos iguales. Si un suceso deende de otro además del inmediatamente anterior, este es un roceso de Markov de mayor orden. or ejemlo, Un roceso de segundo orden describe un roceso en el cual el suceso deende de los dos sucesos anteriores. Los rocesos de Markov también se les llama Cadenas de Markov. Notaciones que utilizaremos: ij robabilidad de transición en un eríodo. [ ij ] nxn matriz de transición formada or los valores de ij, donde cada fila reresenta el estado inicial donde se arte y las columna el estado al que se ira en un eríodo. ( ) k ij ( X ( k) j X () i) reresenta la robabilidad de ir del estado i al estado j en k eríodos. (k) (k ) [ ij ] nxn la matriz de transición de k eríodos. S i (t) robabilidad de encontrarse en el estado i en el eríodo t. S(t) (S (t), S (t),...., S n (t)) vector de robabilidad de estado en el eríodo t. ara n estados. ij

2 Los sucesos que cumlan con un roceso de Markov, se ueden reresentar or medio de un esquema donde los nodos indique los estados y arcos dirigidos de nodo a nodo con un número que reresenta la robabilidad de transición de ir de un estado a otro, ó or medio de una matriz de transición. Ejemlo: ara calcular: () ( X () X () ) ,.,,3.,3,5.,,3 () ( X () X () ) ,.,3,3.,4,5.,4,38 () 3 ( X () 3 X () ) ,.,5,3.,3,5.,4,39 luego () () () 3 Otra forma es usando el vector de robabilidades y la matriz de transición, es decir: S() (,, ) S() S(). (,;,3;,5) S() S(). (,3;,38;,39) Cadenas de Markov Ergódicas ó cadenas irreductibles. Describen matemáticamente un roceso en el cual es osible avanzar desde un estado hasta cualquier otro estado. No es necesario que esto sea osible en un aso. Una cadena ergódica es regular: Si ara alguna otencia de la matriz de transición tiene únicamente elementos ositivos de robabilidad (diferente de cero) Ejemlo :

3 luego es regular (y or lo tanto ergódica) Ejemlo : r q h r q h Esta matriz reite continuamente este atrón ara todas las otencias de ; or consiguiente no es regular ni tamoco ergódica. roiedades de las Cadenas de Markov..- Las robabilidades de estados deben ser igual a uno, es decir. S (t)s (t)....,s n (t) ara n estados..- ara cada fila de la matriz se cumle: i i... in ara todo i,,..., n 3.- Las transiciones de un eríodo al siguiente se obtienen de la siguiente ecuación: S(t) S(t-). or lo tanto S(t) S(). t 4.- Si S(t) S(t) ara t K, Entonces se dice que el sistema se estabiliza ó que los estados son estacionarios ó estables. Esto imlica que S S., es decir. El vector de estado estacionario sigue siendo igual desués de la transición t. Ejemlo ara calcular el vector de equilibrio o de estado estacionario. Sea : 3/ 5 / 5 7 / 5 8/ /5 4 / / 65 8/ 65 4 / 5 / 5 6 / 5 9 / 5 84 /5 4/5 46 / 65 9 / / 35 4 / 35 6 / 3 / 3 7 / 3 / 3 84 / 35 4/ 35 / 3 / 3 El roceso se / 3 / 3 estabiliza en el eríodo 6 Otra forma: Se calcula el siguiente sistema queda,4s,8s S S S S. S i en este caso S S S,6S,4S S,8S,S y

4 cuya solución es: S /3 y S /3 Observación: Las ecuaciones que se obtienen del desarrollo de S S. Siemre hay una ecuación que es combinación lineal de las demás ecuaciones, or lo tanto se omite ara que el sistema quede con n ecuaciones y n variables. Estados Absorbentes: Es aquel estado que tiene una robabilidad de ser abandonado igual a cero, es decir. Una vez en él es imosible dejarlo. Esto quiere decir: Si i es un estado absorbente si se cumle que ij si i j y ii. Una cadena de Markov es Absorbente: Si se cumle: a) Tiene or lo menos un estado Absorbente. b) Es osible ir de cada estado no absorbente hasta or lo menos un estado absorbente. No es necesario efectuar esta transición en un aso; ni es necesario tener la osibilidad de alcanzar cada estado absorbente a artir de cualquier estado no absorbente. Análisis de las cadenas de Markov Absorbentes. A artir del análisis de estas cadenas, es osible determinar los siguientes datos: ) El número eserado de asos antes de que el roceso sea absorbido. ) El número eserado de veces que el roceso está en cualquier estado dado no absorbente. 3) La robabilidad de absorción or cualquier estado absorbente dado. El rimer aso del análisis es construir una submatriz H de formada de estados no absorbentes a estados no absorbentes. Luego H da las robabilidades de ir desde cualquier estado no absorbente hasta otro estado no absorbente en un aso exactamente, H da las robabilidades de ir desde cualquier estado no absorbente hasta otro estado no absorbente en dos asos exactamente. H 3 da información similar ara tres asos, etc. or lo tanto, H n da esta misma información ara n asos. ara hallar el número eserado de asos antes que el roceso sea absorbido, consiste en calcular el número eserado de veces que el roceso uede estar en cada estado no absorbente y sumarlos. Esto totalizaría el número de asos antes de que el roceso fuera absorbido y or consiguiente el número eserado de asos hacia la absorción. Luego: IHH H 3.. (I-H) - Q or consiguiente Q reresenta el número eserado de eríodos que el sistema estará en cada estado no absorbente antes de la absorción, or lo tanto la suma de cada fila de Q reresenta el romedio de eríodos que transcurren antes de ir a un estado absorbente.

5 ara hallar la robabilidad de absorción or cualquier estado absorbente dado, se emlea una lógica similar en el análisis. Se construye una submatriz G de formada de estados no absorbente a estados absorbentes y reresenta la robabilidad de ir de un estado no absorbente a un estado absorbente en un aso exactamente, H.G reresenta la robabilidad de ir de un estado no absorbente a un estado absorbente en dos asos exactamente y así sucesivamente. or lo tanto GH.GH.G... ( IHH H 3..).G (I-H) -.G Q.G R, Y esta matriz reresenta la roorción ó robabilidad en que un estado no absorbente asa a un estado absorbente. Número de asos ara alcanzar or rimera vez un estado determinado en cadenas no absorbentes ( Tiemo de la rimera transición) Si definimos a f ij como el romedio de eríodos que transcurre antes de cambiar de un f estado i al estado j or rimera vez. Se tiene que ij ik. f kj y además f ii k j Si Otro método: Consiste en transformar en estado absorbente el estado al cual queremos ir or rimera vez, or ejemlo si j es el estado que queremos llegar or rimera vez, ara ello la matriz se modifica de manera que el estado j aarezca como estado absorbente y obtener la matriz Q de esta transformación y or lo tanto f ia qia donde A reresenta el estado absorbente. Valor Económico Eserado en un roceso ó cadena de Markov. En un roceso de Markov estar en cada estado genera un costo ó beneficio, or lo tanto el valor económico eserado se define: ci E ( C) ci. S i,es decir, el valor económico or la robabilidad del sistema f ii estabilizado.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Cadenas de Markov. José Antonio Camarena Ibarrola

Cadenas de Markov. José Antonio Camarena Ibarrola Cadenas de Markov José Antonio Camarena Ibarrola Definiciones elementales El proceso discreto cadena de Markov si se cumple es denominado es la probabilidad de que en el tiempo k, el proceso esté en el

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS PROGRAMA: INGENIERIAS DE SISTEMAS Y CIENCIAS ADMINISTRATIVAS ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE:

Más detalles

Tema: LÓGICA PROPOSICIONAL

Tema: LÓGICA PROPOSICIONAL UNIDAD N 01: SEMANA 01: Sesión 01: Denominación: LÓGICA, MATEMÁTICA Y CONJUNTOS. Contenido: Lógica Proosicional: Introducción. Proosiciones lógicas. Clases de Proosiciones Lógicas. Proosiciones Comuestas

Más detalles

Lección 1. Algoritmos y conceptos básicos.

Lección 1. Algoritmos y conceptos básicos. Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría

Más detalles

2 - Matrices y Determinantes

2 - Matrices y Determinantes Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1

Más detalles

Es correcta, le corresponde un estado excitado, un electrón del subnivel 2p ha pasado a otro de mayor energía, el 3s.

Es correcta, le corresponde un estado excitado, un electrón del subnivel 2p ha pasado a otro de mayor energía, el 3s. IES Menéndez Tolosa Dto Física y Química - Tabla eriódica Configuración electrónica y eriodicidad 1 Considere las siguientes configuraciones electrónicas en el estado fundamental: a) 1s s 7 b) 1s s 3 c)

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

DOCUMENTO DE TRABAJO 2009 TRIGONOMETRÍA

DOCUMENTO DE TRABAJO 2009 TRIGONOMETRÍA Prof. Juan Gutiérrez Césedes ANGULO TRIGONOMÉTRICO * ANGULO TRIGONOMETRICO Es aquel que se enera or la rotación de un rayo desde una osición inicial hasta otra osición final, siemre alrededor de un unto

Más detalles

Capitulo I - Lógica Matemática

Capitulo I - Lógica Matemática UNIERSIDAD PRIADA DE MOQUEGUA JOSE CARLOS MARIATEGUI Caitulo I - Lógica Matemática Todos los tóicos relativos a las matemáticas se razonan desde el unto de vista lógico y or lo tanto hay ue tener muy en

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Oferta y demanda. Oferta y demanda. Excedente del consumidor. Disposición a pagar. Tema 2

Oferta y demanda. Oferta y demanda. Excedente del consumidor. Disposición a pagar. Tema 2 Oferta y demanda Tema 2 Oferta y demanda La oferta y la demanda son los instrumentos más imortantes de la Teoría Económica Vamos a ver los asectos más básicos de la oferta y la demanda, así como el análisis

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno:

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno: Unidad 5 Alicaciones de las derivadas Objetivos Al terminar la unidad, el alumno: Resolverá roblemas de ingreso utilizando el ingreso marginal. Resolverá roblemas de costos utilizando el costo marginal

Más detalles

Capítulo 4. Diseño de filtros digitales 1

Capítulo 4. Diseño de filtros digitales 1 53 Caítulo 4 Diseño de filtros digitales 1 Diseñar un filtro consiste en encontrar su función de transferencia (realizable y estable) ara su osterior realización mediante una estructura adecuada. En la

Más detalles

TERMODINÁMICA FUNDAMENTAL. TEMA 4. Aplicaciones del primer principio

TERMODINÁMICA FUNDAMENTAL. TEMA 4. Aplicaciones del primer principio ERMODINÁMICA FUNDAMENAL EMA 4. Alicaciones del rimer rinciio 1. Ecuación energética de estado. Proiedades energéticas 1.1. Ecuación energética La energía interna, al ser función de estado, deende de, y.

Más detalles

CONCEPTOS Y EXPERIMENTOS EN DINÁMICA DE FLUIDOS

CONCEPTOS Y EXPERIMENTOS EN DINÁMICA DE FLUIDOS VIII Congreso Nacional de Ciencias Exloraciones fuera y dentro del aula 7 y 8 de agosto, 006 Universidad Earth, Guácimo, Limón, Costa Rica CONCEPTOS Y EXPERIMENTOS EN DINÁMICA DE FLUIDOS Ing. Carlos E.

Más detalles

Inversas Generalizadas

Inversas Generalizadas Inversas Generalizadas Departamento de Matemáticas, CSI/IESM 5 de abril de 2 Índice.. Inversas generalizadas..........................................2. Uso de la inversa generalizada.....................................

Más detalles

Modelos de input-output y cadenas de Markov

Modelos de input-output y cadenas de Markov MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/~mamaeusch/ Modelos de input-output y cadenas de Markov Ao. Univ.-Prof. Werner Peschek El proyecto MaMaEuSch ha sido

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

MICROECONOMÍA I. Tema 5: La función de demanda individual y de mercado

MICROECONOMÍA I. Tema 5: La función de demanda individual y de mercado Tema 5. LA FUNCIÓN DE DEMANDA INDIVIDUAL DE MERCADO.- Efecto sustitución y efecto renta.- El excedente del consumidor 3.- De la función de demanda individual a la de mercado..- Efecto sustitución y efecto

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada CAPÍTULO 8 Alicaciones de la derivada 8.3 Concavidad conveidad Observemos que f 00./ > 0 en un intervalo ) f 0./ es creciente en dicho intervalo, or lo tanto, al recorrer la gráfica de la función f de

Más detalles

TRABAJO Y ENERGÍA (página 109 del libro)

TRABAJO Y ENERGÍA (página 109 del libro) TRABAJO Y ENERGÍA (ágina 09 del libro).- TRABAJO MECÁNICO. El conceto de trabajo, al igual que vimos con el conceto de fuerza, en la vida diaria es algo intuitivo que solemos asociar con una actividad

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE

TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE Auntes 3 TEMA 3: PROPIEDADES DE UNA SUSTANCIA PURA, SIMPLE Y COMPRESIBLE 3.. El rinciio de estado El rinciio de estado informa de la cantidad de roiedades indeendientes necesarias ara esecificar el estado

Más detalles

GEOMETRÍA ANALÍTICA LA PARÁBOLA

GEOMETRÍA ANALÍTICA LA PARÁBOLA LA PARÁBOLA CONTENIDO. Ecuación de la arábola horizontal con vértice en el origen. Análisis de la ecuación. Ejercicios. Ecuación de la arábola vertical con vértice en el origen. Ejercicios 3. Ecuación

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Parte II. Teoría a del Consumidor

Parte II. Teoría a del Consumidor Parte II. Teoría a del Consumidor Tema 2: La conducta de los consumidores Tema 3: Teoría de la demanda Tema 4: El modelo de elección intertemoral. Parte I. Teoría a del Consumidor Tema 2: La conducta de

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

Profesorado para el 3º Ciclo de la EGB y Educación Polimodal en Tecnología Espacio de Definición Institucional LA TRANSFORMACIÓN DE DATOS EN

Profesorado para el 3º Ciclo de la EGB y Educación Polimodal en Tecnología Espacio de Definición Institucional LA TRANSFORMACIÓN DE DATOS EN LA TRANSFORMACIÓN DE DATOS EN INFORMACIÓN CONTABLE -1- -2- -3- -4- -5- LA ECUACIÓN CONTABLE BÁSICA -6- -7- -8- -9- - 10 - - 11 - REGISTRACIÓN EN EL LIBRO DIARIO - 12 - - 13 - - 14 - - 15 - - 16 - - 17

Más detalles

Matemáticas Discretas Tc1003 Lógica Matemática. Lógica Matemática

Matemáticas Discretas Tc1003 Lógica Matemática. Lógica Matemática OBJETIVOS Unidad Tema Subtema Objetivos II 2.1 Lógica Proosicional 2.2 Lógica de Predicados 2.3 Métodos de Demostración El establecimiento de cualuier teoría o conceto se hace mediante declaraciones y/o

Más detalles

CREACIÓN MEDIANTE POWERPOINT DE ANIMACIONES DIDÁCTICAS DIRECTAMENTE CONTROLABLES

CREACIÓN MEDIANTE POWERPOINT DE ANIMACIONES DIDÁCTICAS DIRECTAMENTE CONTROLABLES CREACIÓN MEDIANTE POWERPOINT DE ANIMACIONES DIDÁCTICAS DIRECTAMENTE CONTROLABLES Arcadi Pejuan Escuela Universitaria Politécnica de Vilanova i la Geltrú arcadi.ejuan@uc.es 1. RESUMEN Entre los rofesionales

Más detalles

> Cadenas de Markov. Horacio Rojo y Miguel Miranda. @ 71.07 Investigación Operativa

> Cadenas de Markov. Horacio Rojo y Miguel Miranda. @ 71.07 Investigación Operativa @ 707 Investigación Operativa > Cadenas de Markov Horacio Rojo y Miguel Miranda c 2009 Facultad de Ingeniería, Universidad de Buenos Aires Digitalizado por Virginia Guala $September 2, 2009 Cadenas de

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

Ecuaciones y sistemas ecuaciones

Ecuaciones y sistemas ecuaciones Ecuaciones y sistemas de ecuaciones trigonométricas Juan José Isach Mayo 7/0/007 Contents I Ecuaciones y sistemas ecuaciones trigonométricas Ecuaciones trigonométricas. Ejemlos de ecuaciones trigonométricas...............

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-07 DINÁMICA II

C U R S O: FÍSICA COMÚN MATERIAL: FC-07 DINÁMICA II C U R S O: FÍSICA COMÚN MATERIAL: FC-07 DINÁMICA II Joseh-Louis de Lagrange (Turín, 1736-París, 1813) Matemático francés de origen italiano. Sus adres tuvieron 11 hijos de los cuales sólo el menor, Lagrange,

Más detalles

9. Lección 9: Cambios de Fase

9. Lección 9: Cambios de Fase 9. Lección 9: Cambios de Fase Cuando un sistema consiste de más de una fase, cada fase uede ser considerada como un sistema searado del todo. Los arámetros termodinámicos del sistema entero ueden ser construidos

Más detalles

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS

CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS LEYES DE LOS CIRCUITOS ELECTRICOS CAPITULO X LEYES DE LOS CIRCUITOS ELÉCTRICOS Con estas leyes podemos hallar las corrientes y voltajes en cada una de las resistencias de los diferentes circuitos de CD.

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

Calor y Termodinámica

Calor y Termodinámica Calor y Termodinámica E S U E M A D E L A U N I D A D.. Historia y evolución del conceto ágina 4.. El equivalente entre trabajo mecánico y calor ágina 5.. Precisiones sobre calor y trabajo mecánico ágina

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

cadenas de Markov tienen la propiedad de que la probabilidad de que X n = j sólo depende

cadenas de Markov tienen la propiedad de que la probabilidad de que X n = j sólo depende Cadenas de Markov Los procesos de paseo aleatorio en realidad son un caso particular de procesos más generales que son las cadenas de Markov. En esencia, una cadena es un proceso en tiempo discreto en

Más detalles

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011 Combinación Lineal Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice.1. Introducción............................................... 1.. Combinación lineal entre vectores...................................

Más detalles

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O FUNDACIÓN VEDRUNA S E V I L L A COLEGIO SANTA JOAQUINA DE VEDRUNA MATEMÁTICAS I LÍMITES Y CONTINUIDAD DE FUNCIONES Límite finito de una función en un

Más detalles

Sistemas de ecuaciones lineales 4

Sistemas de ecuaciones lineales 4 4. SISTEMAS DE ECUACIONES LINEALES 4.1. DEFINICIONES Y CLASIFICACIÓN DE SISTEMAS. La ecuación de una recta en el plano tiene la forma ; su generalización a variables es:, y recibe el nombre de ecuación

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian 40 Matemáticas I Parte II Álgebra Lineal 41 Matemáticas I : Álgebra Lineal Tema 4 Espacios vectoriales reales 4.1 Espacios vectoriales Definición 88.- Un espacio vectorial real V es un conjunto de elementos

Más detalles

TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV

TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV DESCRIPCIÓN: En el siguiente trabajo se mostrarán algunos métodos para encontrar

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 y 11 - CICLO 01-2015 Estudiante: Grupo: 1. Estructuras Algebraicas

Más detalles

Principio de la Termodinámica

Principio de la Termodinámica ema.- Primer P Princiio de la ermodinámica..- El rabajo en la Mecánica. rabajo realizado or una fuerza externa F, que actúa sobre los límites del sistema, cuando su unto de alicación exerimenta un deslazamiento

Más detalles

MECANICA DE FLUIDOS I. Departamento de Metalurgia Universidad de Atacama

MECANICA DE FLUIDOS I. Departamento de Metalurgia Universidad de Atacama MECANICA DE FLUIDOS I Juan Chamorro González Deartamento de Metalurgia Universidad de Atacama PRESIÓN Y MANOMETRÍA La Presión El término resión se usa ara indicar la fuerza normal or unidad de área en

Más detalles

RESUMEN TEMA 8: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico

RESUMEN TEMA 8: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz RSUMN TMA 8: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que se ocua de las relaciones

Más detalles

El movimiento de un fluido puede ser descrito en términos de un flujo. El flujo de los fluidos puede ser de régimen estable o de régimen variable.

El movimiento de un fluido puede ser descrito en términos de un flujo. El flujo de los fluidos puede ser de régimen estable o de régimen variable. UNIVERIDAD TECNICA FEDERICO ANTA MARIA EDE VIÑA DEL MAR, JOE MIGUEL CARRERA 4 6. Dinámica de los fluidos: El moimiento de un fluido uede ser descrito en términos de un flujo. El flujo de los fluidos uede

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

EL PRIMER ESLABÓN DE LAS MATEMÁTICAS EN LASFACULTADES DE CC. ECONÓMICAS Y EMPRESARIALES: LOS ANÁLISIS ECONÓMICOS LINEALES

EL PRIMER ESLABÓN DE LAS MATEMÁTICAS EN LASFACULTADES DE CC. ECONÓMICAS Y EMPRESARIALES: LOS ANÁLISIS ECONÓMICOS LINEALES El Primer Eslabón de las Matemáticas en las Facultades de CC. Económicas y Emresariales: Los Análisis EL PRIMER ESLABÓN DE LAS MATEMÁTICAS EN LASFACULTADES DE CC. ECONÓMICAS Y EMPRESARIALES: LOS ANÁLISIS

Más detalles

Modelado, Control y Simulación de un Sistema Péndulo Invertido Sobre Base Móvil

Modelado, Control y Simulación de un Sistema Péndulo Invertido Sobre Base Móvil Modelado, Control y Simulación de un Sistema Péndulo Invertido Sobre Base Móvil Gabriel Romero-Rodríguez, Pablo Sánchez-Sánchez, Fernando Reyes-Cortés, Antonio Michua-Camarillo, Benjamín Calderón-Flores,

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010 UPR Deartamento de Ciencias Matemáticas RUM MATE 37 Primer Eamen Parcial de octubre de 00 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada regunta minuciosamente. No se ermite el uso de

Más detalles

Tema 4. Mecánica de fluidos reales

Tema 4. Mecánica de fluidos reales Tema 4. Mecánica de fluidos reales Práctica 4. Ley de Stokes Práctica 5. Tensión suerficial de un fluido jabonoso Qué es un fluido real? Aquel en el que no se uede desreciar la interacción entre las moléculas

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Introducción a los. Árboles de Decisión

Introducción a los. Árboles de Decisión ntroducción a los Árboles de Decisión ntroducción: Un árbol de decisión es una forma gráfica y analítica de reresentar todos los eventos (sucesos) que ueden surgir a artir de una decisión asumida en cierto

Más detalles

Material CONDUCTOR: (metales) es un material que permite la interacción térmica.

Material CONDUCTOR: (metales) es un material que permite la interacción térmica. CALOR Y TEMPERATURA El conceto de temeratura se origina en las ideas cualitativas de caliente y frío basadas en el sentido del tacto. Un cuero que se siente caliente suele tener una temeratura más alta

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

Cadenas de Markov. http://humberto-r-alvarez-a.webs.com

Cadenas de Markov. http://humberto-r-alvarez-a.webs.com Cadenas de Markov http://humberto-r-alvarez-a.webs.com Definición Procesos estocásticos: procesos que evolucionan de forma no determinista a lo largo del tiempo en torno a un conjunto de estados. Estos

Más detalles

MARIO PONCE FACULTAD DE MATEMÁTICAS P. UNIVERSIDAD CATÓLICA DE CHILE. 1. Resumen

MARIO PONCE FACULTAD DE MATEMÁTICAS P. UNIVERSIDAD CATÓLICA DE CHILE. 1. Resumen MSS Y GEOMETRÍ DE TRIÁNGULOS MRIO PONE FULTD DE MTEMÁTIS P. UNIVERSIDD TÓLI DE HILE 1. Resumen artir del rinciio de las alancas, desarollado or rquímides se establece una relación entre masas distribuidas

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

PROPIEDADES DISTRIBUCIONALES DE INDICES DE CAPACIDAD DE PROCESOS BAJO DISTRIBUCIONES NO NORMALES

PROPIEDADES DISTRIBUCIONALES DE INDICES DE CAPACIDAD DE PROCESOS BAJO DISTRIBUCIONES NO NORMALES Decimosextas Jornadas "Investigaciones en la Facultad" de iencias Económicas y Estadística. Noviembre de 0 Ferreri, Noemí M. Quaglino, Marta B. () Facultad de iencias Exactas, Ingeniería y Agrimensura.

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE:

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA PROGRAMA: ALGEBRA LINEAL CÓDIGO ASIGNATURA: 1272-521 PRE-REQUISITO: 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: 90-II UNIDADES DE CRÉDITO:

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 6 Sistemas de ecuaciones lineales 61 Sistemas de ecuaciones lineales Se llama ecuación lineal en n incógnitas sobre R a una expresión de la forma a 1 x 1 + a 2 x 2 + + a n x n = b con los a i en R para

Más detalles

Maximización n de la Utilidad

Maximización n de la Utilidad aimización n de la Utilidad icroeconomía Eco. Douglas Ramírez Los elementos básicos Hemos descrito hasta el momento los elementos básicos del roblema de decisión del consumidor Su conjunto de elección

Más detalles

Métodos numéricos para Ecuaciones Diferenciales Ordinarias

Métodos numéricos para Ecuaciones Diferenciales Ordinarias Métodos numéricos para Ecuaciones Diferenciales Ordinarias Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Alicaciones de las derivadas Autores: Paco Martínez (jmartinezbos@uoc.edu), Patrici Molinàs (molinas@uoc.edu). ESQUEMA DE CONTENIDOS Concetos Ejemlos Alicaciones de las Derivadas

Más detalles

Pruebas de vida acelerada en confiabilidad

Pruebas de vida acelerada en confiabilidad Notas Pruebas de vida acelerada en confiabilidad Resumen Las ruebas aceleradas consisten en una variedad de métodos ara acortar la vida de un roducto o ara alargar su degradación. El rincial objetivo de

Más detalles

2.- Sistemas de ecuaciones Lineales

2.- Sistemas de ecuaciones Lineales .- Sistemas de ecuaciones Lineales..- Definición, Clasificación de los sistemas lineales y tipos de solución. Definición Una ecuación lineal con las variables escribirse en la forma,..., n es una ecuación

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado 11 de noviembre 009 Ecuaciones de segundo grado con una incógnita método de solución, formula general e incompletas Algebra Ecuaciones de segundo grado con una incógnita Las

Más detalles

TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO

TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO 1 10.1. INTRODUCCIÓN Qué es el análisis C-V-B? Modelo que estudia la relación existente entre costes, recios, volúmenes de venta y beneficios, tomando ara el análisis

Más detalles