Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección"

Transcripción

1 Matemáticas Tema 5: Conceptos básicos sobre matrices y vectores Objetivos Lección 5.: y determinantes Philippe Bechouche Departamento de Matemática Aplicada Universidad de Granada Qué hemos aprendido hoy? Grado en Finanzas y Contabilidad Curso 5-6 Philippe Bechouche Lección 5.: y determinantes / 44 Philippe Bechouche Lección 5.: y determinantes / 44 Objetivos de esta lección Objetivos Primeros conceptos Comprender qué es una matriz y qué tipos de matriz puede haber. Comprender qué es un vector. 3 Realizar operaciones con matrices. 4 Realizar transformaciones elementales por filas en una matriz para llevarla a un tipo determinado. Matriz de orden m n Una matriz de orden m n es un conjunto de m n números reales dispuestos rectangularmente en m filas y n columnas en la forma a a a n a a a n a m a m a mn Se dice que A pertenece al conjunto M m n de todas las matrices de orden m n. En el contexto de matrices, es frecuente usar letras mayúsculas para las matrices y minúsculas para los números. Philippe Bechouche Lección 5.: y determinantes 3 / 44 Philippe Bechouche Lección 5.: y determinantes 4 / 44

2 Primeros conceptos Primeros conceptos Matriz de orden 3: ( 3, 7 4 a = 3, a = 7. Ejemplo Matriz de orden 3 : B = 5, a 3 =. Ejemplo 3 Matriz de orden 4 4: C = , a 34 =. Philippe Bechouche Lección 5.: y determinantes 5 / 44 Philippe Bechouche Lección 5.: y determinantes 6 / 44 Diagonal principal Transposición de matrices Diagonal principal La diagonal principal de una matriz la constituyen los elementos Ejemplo La diagonal principal de la matriz {a, a, a 33,..., a nn } la constituyen los elementos {,, 5, 9}. Philippe Bechouche Lección 5.: y determinantes 7 / 44 Matriz traspuesta Sea A M m n una matriz con m filas y n columnas. La matriz transpuesta A t se obtiene intercambiando filas por columnas en la matriz A. Es decir, A M n m tiene n filas y m columnas. Ejemplo Cuidado: ( = A t = Puede haber ambigüedad al escribir A t ya que podemos referirnos: la traspuesta de A, A elevada a t. El contexto nos dirá a cuál nos referimos. Philippe Bechouche Lección 5.: y determinantes 8 / 44

3 Tipos de matrices Tipos de matrices Matriz fila A es una matriz fila si consta de una única fila. Los valores se pueden escribir separados por comas. Este tipo de matriz también se llama vector fila. Ejemplo de matriz fila ( 3 4 Philippe Bechouche Lección 5.: y determinantes 9 / 44 Matriz columna A es una matriz columna si consta de una única columna. Este tipo de matriz también se llama vector columna. Ejemplo de matriz columna 3 4 En ocasiones resulta cómodo escribir una matriz columna como la traspuesta de una matriz fila o al revés: 3 = ( 3 4 t ( 5 = 5 4 Philippe Bechouche Lección 5.: y determinantes / 44 t Tipos de matrices Tipos de matrices Matriz cuadrada A es una matriz cuadrada si tiene igual número de filas que de columnas, es decir si m = n. Para denotar el conjunto de todas las matrices cuadradas de orden n escribimos M n en lugar de M n n. Ejemplo de matriz cuadrada Philippe Bechouche Lección 5.: y determinantes / 44 Matriz simétrica Una matriz cuadrada, A, se dice simétrica si coincide con su traspuesta. Ejemplo es una matriz simétrica no es una matriz simétrica es una matriz simétrica Philippe Bechouche Lección 5.: y determinantes / 44

4 Tipos de matrices Tipos de matrices Matriz diagonal A es una matriz diagonal si es una matriz cuadrada con todos los elementos fuera de la matriz diagonal iguales a cero. Ejemplo de matriz diagonal 3 5 Matriz identidad A es una matriz identidad si es una matriz diagonal cuyos elementos de la diagonal principal son todos iguales a uno Ejemplo de matriz identidad Matriz identidad de orden 3: I 3 = Philippe Bechouche Lección 5.: y determinantes 3 / 44 Philippe Bechouche Lección 5.: y determinantes 4 / 44 Tipos de matrices Tipos de matrices Matriz triangular superior o inferior A es una matriz triangular superior (resp. inferior si todos los elementos por debajo (resp. encima de la diagonal son nulos. Ejemplo de matriz triangular superior 4 T = 7 5 Matriz nula A es una matriz nula si tiene todos sus elementos iguales a cero. Ejemplo de matriz nula Philippe Bechouche Lección 5.: y determinantes 5 / 44 Philippe Bechouche Lección 5.: y determinantes 6 / 44

5 Suma de matrices Suma de matrices Definición de A+B Dadas dos matrices A y B de igual orden m n: a a a n b b b n a a a n B = b b b n a m a m a mn b m b m b mn la suma de A y B se define sumando elemento a elemento: a + b a + b a n + b n a + b a + b a n + b n A + B = Ejemplo A + B = B = a m + b m a m + b m a mn + b mn La suma de matrices es conmutativa, es decir: A + B = B + A. Philippe Bechouche Lección 5.: y determinantes 7 / 44 Philippe Bechouche Lección 5.: y determinantes 8 / 44 Producto de un número real por una matriz Definición de α A Dado el número α y la matriz a a a n a a a n a m a m a mn el producto de α por A se define multiplicando cada elemento de A por α αa αa αa n αa αa αa n α αa m αa m αa mn El producto de un número por una matriz también es conmutativo, es decir: α Aα. Philippe Bechouche Lección 5.: y determinantes 9 / 44 Producto de fila por columna Dadas una matriz fila (a a... a n y una matriz columna B = (b b... b n t se define su producto como b b A B = (a a... a n. = a b + a b + + a n b n b n Observaciones: La fila y la columna deben tener el mismo número de elementos, en otro caso no se podrán multiplicar. Esta definición es para fila por columna en ese orden. El producto de columna por fila tendrá otra definición. Philippe Bechouche Lección 5.: y determinantes / 44

6 Ejemplo: Ejemplo: ( 3 = ( 7 = 5. 7 ( ( 3 =. El producto de dos matrices puede ser sin que ninguna de las matrices sea nula!! Ejemplo: ( ( 3 3 no se puede operar ya que la cantidades de elementos no coinciden. Philippe Bechouche Lección 5.: y determinantes / 44 Definición de AB Dadas dos matrices A M m p (con m filas y p columnas y B M p n (con p filas y n columnas, el elemento c ij de la matriz producto C = AB se define como c ij = producto de fila i de A por columna j de B Observación Las filas de A se deben poder multiplicar por las columnas de B, por eso se considera A con p columnas (el tamaño de cada fila y B con p filas (el tamaño de cada columna. Veamos un ejemplo para comprender mejor este proceso. Philippe Bechouche Lección 5.: y determinantes / 44 B = B = - = - = 3

7 B = B = = = B = B = = 5 = 5 4

8 B = B = 4-3 = = B = B = = =

9 B = B = 4-3 = = B = B = - = =

10 B = B = = = B = = Ejemplo B = 4 3 ( = Philippe Bechouche Lección 5.: y determinantes 4 / 44

11 Ejemplo 4 B = 4 3 Ejemplo 4 B = ( - = ( = Philippe Bechouche Lección 5.: y determinantes 4 / 44 Philippe Bechouche Lección 5.: y determinantes 4 / 44 Ejemplo 4 B = 4 3 Ejemplo 4 B = = ( = ( 3 Philippe Bechouche Lección 5.: y determinantes 4 / 44 Philippe Bechouche Lección 5.: y determinantes 4 / 44

12 Propiedades de la suma y del producto de matrices El producto de matrices no es conmutativo! Ejemplo: AB BA ( ( ( = ( ( ( 4 = Si A, B, C son matrices del mismo orden, entonces (A + B + C = A + (B + C A + B = B + A Para la matriz nula: A + = A Si A, B, C son matrices de orden tal que se puedan realizar las siguientes operaciones, entonces (A B C = A (B C Para I la matriz identidad: A I = I A A(B + C = AB + AC (B + C BA + CA Philippe Bechouche Lección 5.: y determinantes 5 / 44 Philippe Bechouche Lección 5.: y determinantes 6 / 44 Transformaciones elementales por filas Transformaciones elementales por filas Llamamos transformaciones elementales por filas en una matriz a cualquiera de las siguientes operaciones: Intercambiar la posición de dos filas: F i F j (intercambio de las filas i y j. Multiplicar todos los elementos de una fila por un número real no nulo: Fi = αf i (multiplicar la fila i por el número α. 3 Sumar a una fila otra multiplicada por un número real: F i = F i + αf j (suma a la fila i la fila j multiplicada por α. Diremos que dos matrices A y B son equivalentes por filas, y lo denotamos por A B, si se puede obtener una a partir de la otra por medio de transformaciones elementales por filas. Ejemplos F F 3 F =F F 3 =F 3 +4F Philippe Bechouche Lección 5.: y determinantes 7 / 44 Philippe Bechouche Lección 5.: y determinantes 8 / 44

13 escalonadas escalonadas por filas Pivote de una fila El pivote de una fila es el primer elemento no nulo de dicha fila. Matriz escalonada por filas Una matriz A es escalonada por filas si se verifican las siguientes condiciones: Si A tiene filas nulas (cuyos elementos son todos cero, estas están agrupadas en la parte inferior de la matriz. El pivote de cada fila no nula está a la derecha del pivote de la fila anterior. escalonadas (los pivotes son los elementos en los recuadros. no escalonadas Philippe Bechouche Lección 5.: y determinantes 9 / 44 Philippe Bechouche Lección 5.: y determinantes 3 / 44 escalonadas reducidas escalonadas reducidas por filas Matriz escalonada reducida por filas Una matriz A es escalonada reducida por filas si se verifican las siguientes condiciones: Si A tiene filas nulas (cuyos elementos son todos cero, estas están agrupadas en la parte inferior de la matriz. El pivote de cada fila no nula está a la derecha del pivote de la fila anterior. El pivote de cada fila no nula es igual a. Los elementos de la misma columna que el pivote de una fila son nulos. escalonadas reducidas 3.5 (los pivotes son los elementos en los recuadros. escalonadas no reducidas 3 Philippe Bechouche Lección 5.: y determinantes 3 / 44 Philippe Bechouche Lección 5.: y determinantes 3 / 44

14 Idea del método Consiste en ir eligiendo el pivote de cada columna e ir haciendo por debajo del pivote, empezando desde el primero hasta el último: ( : elementos cualesquiera salvo los pivotes que son no nulos mediante transformaciones elementales por fila. Philippe Bechouche Lección 5.: y determinantes 33 / 44 Método: Elegimos entre los elementos no nulos de la primera columna, cual será el pivote e intercambiamos filas para que éste se quede en la primera fila. Hacemos ceros en las posiciones debajo del pivote mediante transformaciones elementales del tipo: Cada fila se cambia por: ella misma + una proporcional a la fila de dicho pivote La fila y columna del pivote elegido ya estarán en la forma adecuada. 3 Se hace el mismo proceso pero solo con la parte de la matriz por debajo de la primera fila y a la derecha de la primera columna. La parte de la matriz que ya esté escalonada no se ve afectada en este proceso. 4 Se repite el proceso hasta que quede escalonada. Philippe Bechouche Lección 5.: y determinantes 34 / 44 Excepciones en el procedimiento: Si al buscar el pivote nos encontramos con esa columna llena de ceros (no podríamos elegir un pivote, esa columna ya no cambiará y se continua con la elección del pivote en la siguiente columna. Si una fila se ha quedado formada solo por, ésta pasa a ser la última fila. Philippe Bechouche Lección 5.: y determinantes 35 / 44 Ejemplo: 3 5 Elegimos entre los elementos de la primera columna, cual de ellos va a ser el pivote. En este caso elegimos el de la primera fila y hacemos los elementos debajo del pivote: 5 3 F 3 =F 3 F F =F F Philippe Bechouche Lección 5.: y determinantes 36 / 44

15 Ejemplo (continuación: Escogemos el segundo pivote y hacemos cero los elementos debajo de él: 3 4 F 3 =F F Con esto tenemos una matriz escalonada por filas Ejemplo (continuación: Escogemos el segundo pivote y hacemos cero los elementos debajo de él: 3 4 F 3 =F F Con esto tenemos una matriz escalonada por filas Observación: Se podría escalonar usando otro camino, por ejemplo haber empezado intercambiando las filas F F 3, o en el segundo paso dividir la fila entre, para tener en el pivote un ± (lo que hace algunas cuentas más sencillas. La matriz resultante sería diferente, pero qué tendrán en común? Philippe Bechouche Lección 5.: y determinantes 37 / 44 Philippe Bechouche Lección 5.: y determinantes 37 / 44 Escalonamiento reducido de matrices Ejemplo para clase Escalonar la matriz: Idea del método Una vez que tenemos la matriz escalonada, habrá que hacer por encima de cada pivote, trabajando en las columnas desde la última hasta la primera. ( : elementos cualesquiera salvo los pivotes que son no nulos Philippe Bechouche Lección 5.: y determinantes 38 / 44 mediante transformaciones elementales por fila. Philippe Bechouche Lección 5.: y determinantes 39 / 44

16 Escalonamiento reducido de matrices Escalonamiento reducido de matrices Método: Una vez escalonada Se coge el último pivote y se hace por encima con transformaciones elementales del tipo: Cada fila se cambia por: ella misma + una proporcional a la fila de dicho pivote Se pasa al pivote anterior y se opera de la misma forma, 3 hasta que lleguemos al primer pivote. 4 Los pivotes deben terminar siendo, lo que se consigue dividiendo la fila entre el pivote. Esto se puede hacer en el momento que más convenga. Observación: Al hacer estas transformaciones, la parte escalonada reducida de la matriz no se ve afectada. Philippe Bechouche Lección 5.: y determinantes 4 / 44 Ejemplo Obtener la matriz escalonada reducida de 3 5 Esta matriz la escalonamos anteriormente y obtuvimos Philippe Bechouche Lección 5.: y determinantes 4 / 44 Escalonamiento reducido de matrices Ejemplo (continuación 3 F 3 = 3 F F =F +F F =F F 4 F = F F =F 4F 3 F = F Philippe Bechouche Lección 5.: y determinantes 4 / 44 Ejemplo para clase Encontrar una matriz escalonada reducida de la matriz: Philippe Bechouche Lección 5.: y determinantes 43 / 44

17 Qué hemos aprendido hoy? Que hemos aprendido? Hemos aprendido que las matrices son conjuntos de números reales dispuestos rectangularmente. Hemos estudiado los distintos tipos de matrices que existen. Hemos aprendido a sumar y multiplicar matrices. Y hemos visto que el producto de matrices no es conmutativo. Hemos estudiado las transformaciones elementales por filas y cómo usar éstas para transformar cualquier matriz en una matriz escalonada reducida. Philippe Bechouche Lección 5.: y determinantes 44 / 44

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

EJERCICIOS RESUELTOS DE MATRICES

EJERCICIOS RESUELTOS DE MATRICES EJERCICIOS RESUELTOS DE MATRICES. Dadas las matrices A - 3, B 0 - y C 3 -, calcular si es posible: a) A + B b) AC c) CB y C t B d) (A+B)C a) A + B - 3 + 0 - b) AC - 3 3 - +0 -+ 3+ +(-) 0 7 0.+(-).3+(-)(-).+(-)

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES

PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES 1. Sea una matriz A M n n (R) nilpotente de índice p. r(a) n 1 r(a) =p 1 8 4 2 2. Sea la matriz A = 2 1 1 0 5 2 1 1 r(a) =2 r(a) =3 r(a) =4 3. Sea una

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

Determinantes. Primera definición. Consecuencias inmediatas de la definición

Determinantes. Primera definición. Consecuencias inmediatas de la definición Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Matrices, Determinantes y Sistemas de ecuaciones lineales

Matrices, Determinantes y Sistemas de ecuaciones lineales Tema 1 Matrices, Determinantes y Sistemas de ecuaciones lineales 1.1. Matrices Definición: Una MATRIZ es un conjunto de números reales dispuestos en forma de rectángulo, que usualmente se delimitan por

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 5 de Abril de 2 MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase ) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Puntos a tratar. Definición

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

MATRICES. Producción Nacional (Tn) Producción Rio Negro (Tn) Caolín 8.490 Halita 199.856 Yeso Bentonita 123.092 33.804 Diatomita 15.

MATRICES. Producción Nacional (Tn) Producción Rio Negro (Tn) Caolín 8.490 Halita 199.856 Yeso Bentonita 123.092 33.804 Diatomita 15. MATRICES Las siguientes tablas muestran la producción de distintos minerales en la provincia de Río Negro y en el país durante los años,,,, y. Año Nacional Negro Caolín 8.9 Halita 99.86 Yeso Bentonita.9.8

Más detalles

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas.

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas. MATRICES Las matrices tienen una importancia fundamental en el análisis económico sobre todo en el estudio de sistemas de ecuaciones lineales, como en el modelo insumo-producto. Cuando trabajamos con modelos

Más detalles

2 - Matrices y Determinantes

2 - Matrices y Determinantes Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 6 Sistemas de ecuaciones lineales 61 Sistemas de ecuaciones lineales Se llama ecuación lineal en n incógnitas sobre R a una expresión de la forma a 1 x 1 + a 2 x 2 + + a n x n = b con los a i en R para

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes

Más detalles

UNIVERSIDAD CARLOS III DE MADRID

UNIVERSIDAD CARLOS III DE MADRID UNIVERSIDAD CARLOS III DE MADRID Departamento de Economía Tema 1: Matrices y sistemas de ecuaciones lineales Empezaremos por recordar conceptos ya conocidos de álgebra lineal como las matrices, determinantes,

Más detalles

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012 1 Guía de Estudio y Ejercitación propuesta Esta selección de Temas y Ejercicios están extraídos del texto FUNDAMENTOS DE ALGEBRA LINEAL de R. Larson y D. Falvo.

Más detalles

Capitulo 6. Matrices y determinantes

Capitulo 6. Matrices y determinantes Capitulo 6. Matrices y determinantes Objetivo. El alumno aplicará los conceptos fundamentales de las matrices, determinantes y sus propiedades a problemas que requieran de ellos para su resolución. Contenido.

Más detalles

Resumen 3: Matrices, determinantes y sistemas de ecuaciones

Resumen 3: Matrices, determinantes y sistemas de ecuaciones Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

Matrices y sistemas lineales

Matrices y sistemas lineales 15 Matemáticas I : Preliminares Tema 2 Matrices y sistemas lineales 2.1 Definiciones básicas Una matriz es una tabla rectangular de números, es decir, una distribución ordenada de números. Los números

Más detalles

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse.

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Definición de matriz Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Una matriz es un cuadrado o tabla de números ordenados. Se llama matriz

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca 30 de junio de 2015 Matriz de m por n Definimeros a una matriz A de orden m por n como un arreglo de números de m filas y n columnas. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = a 31 a 32 a 33 a 3n....

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Eliminación gaussiana y otros algoritmos Departamento de Matemáticas ITESM Eliminación gaussiana y otros algoritmos Álgebra Lineal - p. 1/77 En esta lectura veremos procedimientos

Más detalles

Lo rojo sería la diagonal principal.

Lo rojo sería la diagonal principal. MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 1 Matrices y determinantes Objetivos: Al inalizar la unidad, el alumno: Identiicará qué es una matriz y cuáles son sus elementos. Distinguirá los principales tipos de matrices. Realizará operaciones

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

MATRICES DETERMINANTES

MATRICES DETERMINANTES MATRICES Y DETERMINANTES INTRODUCCIÓN, MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de

Más detalles

Sistemas de Ecuaciones y Matrices

Sistemas de Ecuaciones y Matrices Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

La Lección de hoy es sobre las Matrices: Suma, Resta, y Multiplicación Escalar.

La Lección de hoy es sobre las Matrices: Suma, Resta, y Multiplicación Escalar. Matrices DIP.5.A1.2-Jennifer Schreit La Lección de hoy es sobre las Matrices: Suma, Resta, y Multiplicación Escalar. El cuál es la expectativa para el aprendizaje del estudiante DIP.5.A1.2 Primeramente

Más detalles

Matemáticas Aplicadas a los Negocios

Matemáticas Aplicadas a los Negocios LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas.

DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas. DETERMINANTES página 251 DETERMINANTES 13.1 Un determinante es un arreglo numérico en igual número de filas que de columnas del que, a partir de ciertas reglas, se forma un polinomio. El símbolo es un

Más detalles

Matrices escalonadas y escalonadas reducidas

Matrices escalonadas y escalonadas reducidas Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes Matrices y determinantes Matrices Una matriz es un grupo de números organizados en filas y columnas, limitados por un paréntesis: 1 2 3 n columnas a11 a12 a13 a1 n a21 a22 a23

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Í N D I C E MATRICES Y DETERMINANTES.

Í N D I C E MATRICES Y DETERMINANTES. MATRICES Y DETERMINANTES Año escolar: 5to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A)

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A) TEMA 3: Matrices y sistemas de ecuaciones lineales Álgebra y estructuras finitas/discretas Grupos A Curso 2007-2008 1 2 1 Anillos y cuerpos Definición 1 Un anillo viene dado por un conjunto R y por dos

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

Mat r i z in v e r s a

Mat r i z in v e r s a Unidad 2 Método de GaUss Mat r i z in v e r s a M U lt i pli cat i va Objetivos: Al inalizar la unidad, el alumno: Representará un sistema de m ecuaciones lineales con n incógnitas mediante una matriz

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Matrices Tema MATRICES Y DETERMINANTES. DEFINICIÓN Y DESCRIPCIÓN DE MATRICES Una matriz es una ordenación rectangular de elementos dispuestos en filas y columnas encerrados entre paréntesis, por ejemplo

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

Sistemas lineales y matrices

Sistemas lineales y matrices resumen04 1 Sistemas lineales y matrices Sistemas de ecuaciones lineales Un sistema de ecuaciones lineales es de la orma indicada a la izquierda y se suele representar por una matriz una tabla como la

Más detalles

ESPACIO NULO DE A: RESOLUCIÓN DE AX = 0 3.2

ESPACIO NULO DE A: RESOLUCIÓN DE AX = 0 3.2 3.2 Espacio nulo de A: resolución de Ax = ESPACIO NULO DE A: RESOLUCIÓN DE AX = 3.2 Este tema versa sobre las soluciones espaciales de Ax =. La matriz A puede se cuadrada o rectangular. Una solución inmediata

Más detalles

Lección 1. Algoritmos y conceptos básicos.

Lección 1. Algoritmos y conceptos básicos. Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

!DETERMINANTES. Tema 3.- DETERMINANTES !MATRICES EQUIVALENTES POR FILAS!RANGO DE UNA MATRIZ. APLICACIONES. Un poco de historia

!DETERMINANTES. Tema 3.- DETERMINANTES !MATRICES EQUIVALENTES POR FILAS!RANGO DE UNA MATRIZ. APLICACIONES. Un poco de historia Tema 3.- DETERMINANTES!DETERMINANTES!MATRICES EQUIVALENTES POR FILAS!RANGO DE UNA MATRIZ. APLICACIONES 1 Un poco de historia Los determinantes es uno de los temas más útiles del Álgebra Lineal, con muchas

Más detalles

Sistema de Ecuaciones Lineales Matrices y Determinantes (3ª Parte)

Sistema de Ecuaciones Lineales Matrices y Determinantes (3ª Parte) Sistema de Ecuaciones Lineales Matrices y Determinantes (ª Parte) Definición: Sistemas Equivalentes Dos sistemas de ecuaciones son equivalentes si y solo si tienen el mismo conjunto solución Teorema fundamental

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban. DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

Matrices y Determinantes

Matrices y Determinantes Capítulo 1 Matrices y Determinantes 11 Matrices Generalidades Definición 11 Sea E un conjunto cualquiera, m, n N Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12 a 1n a 21 a

Más detalles

DETERMINANTES Profesor: Fernando Ureña Portero

DETERMINANTES Profesor: Fernando Ureña Portero : CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=a ij, de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden

Más detalles