Campo Eléctrico. La fuerza eléctrica ejercida por una carga sobre otra es un ejemplo de acción a distancia.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Campo Eléctrico. La fuerza eléctrica ejercida por una carga sobre otra es un ejemplo de acción a distancia."

Transcripción

1 Campo Eléctrico Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition.

2 Campo Eléctrico La fuerza eléctrica ejercida por una carga sobre otra es un ejemplo de acción a distancia. acción a distancia se refiere a que la acción de la fuerza ocurre aún cuando no exista contacto físico entre los objetos. Ejemplo: fuerza gravitatoria ejercida por una masa sobre otra.

3 Campo Eléctrico Para evitar el problema de acción a distancia, Michael Faraday ( ) desarrolló el concepto de campo. La región del espacio que rodea a una carga u objeto cargado (la fuente de carga) tiene una propiedad que se conoce como campo eléctrico. Una fuente de carga (carga) crea un campo eléctrico E en todo el espacio y este campo ejerce una fuerza sobre cualquier otra carga (u objeto cargado) en la posición de esta segunda carga, no en la de la fuente que se encuentra a cierta distancia.

4 Campo Eléctrico Cuando otro objeto, también cargado, entra en la región de un campo eléctrico, una fuerza actúa sobre él. Entonces, si consideramos una carga q 0 (carga de prueba o testigo) suficientemente pequeña ( en magnitud!), de tal manera que sea despreciable su efecto sobre cualquier distribución de carga en sus alrededores, podemos estudiar el campo eléctrico creado por otras cargas (u objeto cargados) sin perturbarlas.

5 Campo Eléctrico Por qué la carga de prueba o testigo tiene que ser pequeña ( en magnitud!)? (a) para una carga de prueba q 0 suficientemente pequeña, la distribución de carga en la esfera no es perturbada. (b) cuando la carga de prueba q 0 es mayor, la distribución de carga en la esfera se ve perturbada debido a la proximidad de q 0.

6 Campo Eléctrico Por ejemplo, una carga de prueba pequeña y positiva, q 0, se coloca cerca de un segundo objeto con una carga positiva mucho más grande, Q. Definimos el campo eléctrico en la posición de la carga testigo debido a la fuente de carga, como la fuerza eléctrica que actúa sobre la carga testigo por unidad de carga.

7 Campo Eléctrico En física, la fuerza del campo eléctrico en un punto dado (posición) se define como la fuerza que ejercería sobre una carga de prueba positiva de +1 C, colocada en dicho punto; la dirección del campo eléctrico está dada por la dirección de dicha fuerza. el vector del campo eléctrico E, en un punto en el espacio se define como la fuerza eléctrica F e que actúa sobre una carga de prueba q 0 colocada en dicho punto, dividida entre la carga de prueba.

8 Campo Eléctrico La dirección de E es la dirección de la fuerza ejercida sobre una carga de prueba positiva debido al campo eléctrico. Sus unidades SI son: N/C Podemos decir que un campo eléctrico existe en un punto si una carga de prueba colocada en dicho punto experimenta un fuerza eléctrica.

9 Campo Eléctrico Se debe entender que E es el campo eléctrico generado por alguna carga o distribución de carga separada de la carga de prueba, no es el campo eléctrico producido por la propia carga de prueba. Se debe entender que la existencia de un campo eléctrico es una propiedad de su fuente (la fuente de carga), la presencia de la carga de prueba no es necesaria para que el campo eléctrico exista. La carga de prueba sirve como un detector del campo eléctrico.

10 Campo Eléctrico La fuerza eléctrica es una fuerza de campo, i.e. puede actuar a través del espacio.

11 Campo Eléctrico Vector El campo eléctrico E es un vector que describe la condición en el espacio creada por un sistema de cargas puntuales. Desplazando la carga de prueba q 0 de un punto a otro, podemos determinar E (i.e. E i ) en todos los puntos del espacio (excepto el ocupado por la carga q). El campo eléctrico E es, por tanto, una función vectorial de la posición.

12 Campo Eléctrico Vector Principio de Superposición El campo eléctrico E es un vector que obedece al principio de superposición. El campo eléctrico E resultante producido por un sistema de cargas se determina calculando, por separado, el campo eléctrico E i debido a cada carga del sistema y después sumando estos vectores para obtener el E resultante.

13 Campo Eléctrico La fuerza eléctrica ejercida sobre una carga de prueba q 0 en cualquier punto está relacionada con el campo eléctrico E en dicho punto. Y, por lo tanto, podemos calcular la fuerza eléctrica sobre una partícula de carga q colocada en un campo eléctrico.

14 Campo Eléctrico Por lo tanto, una vez que se conoce la magnitud y dirección del campo eléctrico E, generado por una carga o una distribución de carga, en algún punto del espacio (para lo cual utilizamos la carga de prueba q 0 ), a partir de esta ecuación se puede calcular la fuerza eléctrica ejercida sobre cualquier partícula cargada en ese mismo punto del espacio.

15 Campo Eléctrico Esta ecuación es válida únicamente para cargas puntuales (partículas cargadas de tamaño cero), pues estas no perturban la carga o distribución de carga responsable del campo eléctrico. Si q es positiva, la F e y el E apuntan en la misma dirección; Si q es negativa, la F e y el E apuntan en direcciones opuestas.

16 Campo Eléctrico Cómo se determina la dirección de un campo eléctrico? Considere una carga puntual q i como la fuente de carga; esta carga genera un campo eléctrico en todos los puntos del espacio que la rodea. Un carga de prueba q 0 se coloca en el punto P, a una distancia r i0 de la fuente de carga.

17 Campo Eléctrico OJO: utilizamos la carga de prueba para determinar la dirección de la fuerza eléctrica y, por lo tanto, la dirección del campo eléctrico; sin embargo, el campo eléctrico no depende de la existencia de la carga de prueba (q 0 ), pues el campo eléctrico es establecido únicamente por la fuente de carga (q i ).

18 Campo Eléctrico El campo eléctrico debido a una sola carga puntual q i en la posición r i puede calcularse a partir de la ley de Coulomb. Si la carga de prueba q 0 se encuentra en el punto P a una distancia r i0, la fuerza eléctrica que ejerce q i sobre ella es:

19 Campo Eléctrico donde es el vector unitario que apunta de q i a q 0. En la figura (a), q i es positiva (q 0 siempre es positiva y pequeña), entonces la fuerza eléctrica que ejerce q i sobre q 0 es repulsiva y apunta en dirección opuesta a q i.

20 Campo Eléctrico El campo eléctrico (E i ) en el punto P (la posición de la carga de prueba q 0 ) debido a la carga q i es (E = F e /q 0 ):

21 Campo Eléctrico donde r i0 es la distancia de la carga al punto P (conocido como punto del campo) y es un vector unitario que apunta, desde la fuente de carga q i, en dirección de P (posición de la carga de prueba) Esta es la ley de Coulomb referida al campo eléctrico (E) creado por una sola carga puntual.

22 Campo Eléctrico Si la fuente de carga q i es positiva, establece un campo eléctrico en el punto P que apunta en dirección opuesta a la posición de q i, en la misma dirección de la fuerza eléctrica de repulsión que ejerce sobre la carga de prueba positiva q 0 en el mismo punto P.

23 Campo Eléctrico Si la fuente de carga q i es negativa, ejerce, sobre la carga de prueba positiva q 0 en el punto P, una fuerza eléctrica de atracción que apunta hacia q i, de tal manera que el campo eléctrico en el punto P apunta también en dirección de q i

24 Campo Eléctrico Para calcular el campo eléctrico E resultante en un punto del campo P debido a una distribución de cargas puntuales Principio de Superposición se calcula el vector del campo eléctrico E i originado por cada carga q i en el punto P y entonces se suman vectorialmente para obtener el E resultante

25 Campo Eléctrico donde r i0 es la distancia de la i-ésima fuente de carga q i al punto P y es un vector unitario que apunta, desde q i, en dirección de P En cualquier punto P, el campo eléctrico resultante E debido a un grupo o conjunto de fuentes de carga es igual a la suma vectorial de los campos eléctricos individuales de todas las cargas.

26 E: Distribuciones Continuas de Carga Frecuentemente, las distancias entre las cargas de un grupo de cargas son mucho más pequeñas que la distancia entre el grupo de cargas y algún punto de interés (v. gr. un punto donde el campo eléctrico se tenga que calcular). En estas situaciones, el sistema de cargas se puede modelar o considerar como un continuo. El sistema de cargas poco separadas es equivalente a una carga total distribuida continuamente a lo largo de una línea, sobre una superficie o a través de un volumen.

27 E: Distribuciones Continuas de Carga Procedimiento para evaluar el E: 1) divida la distribución de carga en pequeños elementos, cada uno de los cuales contiene una pequeña carga Δq 2) calcule el campo eléctrico debido a uno de estos elementos en el punto P 3) Evalúe el campo eléctrico total sumando las contribuciones de todos los elementos de carga (Δq)

28 E: Distribuciones Continuas de Carga El campo eléctrico en el punto P debido a cada uno de los elementos de carga individuales es:

29 E: Distribuciones Continuas de Carga El campo eléctrico total en el punto P debido a todos los elementos en la distribución de carga es, aproximadamente: donde el subíndice i se refiere al i-ésimo elemento en la distribución

30 E: Distribuciones Continuas de Carga Como la distribución de carga se modela o considera como continua, el campo eléctrico total en el punto P en el límite Δq i 0 es: donde la integración es sobre toda la distribución de carga. Ésta es una operación vectorial y debe tratarse apropiadamente

31 E: Distribuciones Continuas de Carga Ilustraremos este tipo de cálculos con varios ejemplos, en los cuales se debe asumir que la carga está distribuida uniformemente a lo largo de una línea, sobre una superficie, o a través de un volumen. Al hacerlo, es conveniente utilizar el concepto de una densidad de carga

32 E: Distribuciones Continuas de Carga Definiciones para la densidad de carga densidad de carga volumétrica si la carga Q está distribuida uniforme u homogéneamente a través de un volumen V donde ρ tiene unidades de coulombs por metro cúbico (C/m 3 ) densidad de carga superficial si la carga Q está distribuida uniforme u homogéneamente sobre una superficie de área A donde σ tiene unidades de coulombs por metro cuadrado (C/m 2 )

33 E: Distribuciones Continuas de Carga Definiciones para la densidad de carga densidad de carga lineal si la carga Q está distribuida uniforme u homogéneamente a lo largo de una línea de longitud l donde λ tiene unidades de coulombs por metro (C/m) Elementos de carga para las diferentes distribuciones: las cantidades de carga dq en un pequeño elemento de volumen (dv), de superficie (da) o de longitud (dl) son, respectivamente:

34 E: Pistas para resolver problemas Unidades: en cálculo en los que se utilice la contante de Coulomb (k e = 1/4πε 0 ), las cargas deben expresarse en C (coulombs) y las distancias en m (metros) Cálculo del campo eléctrico de cargas puntuales: para determinar el campo eléctrico total (E)en un punto dado, primero se debe calcular el campo eléctrico en ese punto debido a cada carga individual (E i ) El campo eléctrico resultante en dicho punto es la suma vectorial de los campos eléctricos debido a las cargas individuales.

35 E: Pistas para resolver problemas Distribuciones de carga continuas: cuando se enfrenta problemas que implican distribuciones de carga continuas, las sumas vectoriales `para evaluar el campo eléctrico total (E) en algún punto debe reemplazarse por integrales vectoriales. Se divide la distribución de carga en pedazos infinitesimales, y se calcula la suma vectorial integrando sobre toda la distribución de carga.

36 E: Pistas para resolver problemas Simetría: tanto con las distribuciones de cargas puntuales como con las distribuciones continuas de carga, se debe aprovechar cualquier elemento de simetría en el sistema para simplificar los cálculos.

37 El E de un anillo cargado uniformemente Un anillo de radio a tiene una carga total positiva Q distribuida uniformemente. Calcule el campo eléctrico debido al anillo en el punto P que se encuentra a una distancia x del centro del anillo sobre el eje perpendicular al plano del anillo.

38 El E de un disco cargado uniformemente Un disco de radio R tiene una densidad de carga superficial σ uniforme. Calcule el campo eléctrico en un punto P que se encuentra sobre el eje perpendicular al centro del disco y a una distancia x de dicho centro.

39 El E de un debido a una barra cargada Un barra de longitud l tiene una carga uniforme positiva por unidad de longitud (densidad de carga lineal) λ y una carga total Q. Calcule el campo eléctrico en un punto P que se encuentra sobre el eje largo de la barra y a una distancia a desde uno de sus extremos.

40 Líneas de Campo Eléctrico El campo eléctrico se ha definido matemáticamente mediante la ecuación: Existe un método para representar pictóricamente el campo eléctrico. Una manera de visualizar patrones de campo eléctrico es dibujando líneas curvas que sean paralelas al vector campo eléctrico en cualquier punto en el espacio.

41 Líneas de Campo Eléctrico Estas líneas, introducidas inicialmente por Faraday, están relacionadas con el campo eléctrico establecido en una región del espacio de la siguiente manera: El vector campo eléctrico E es tangente en cada punto a la línea de campo eléctrico; esta línea tiene una dirección que es la misma que la dirección del vector campo eléctrico, por lo tanto, indica la dirección del E en dicho punto. Las líneas de campo eléctrico también se conocen como líneas de fuerza, ya que muestran la dirección de la fuerza eléctrica que se ejercería sobre una carga testigo positiva en dicho punto.

42 Líneas de Campo Eléctrico El número de líneas por unidad de área que pasan a través de una superficie perpendicular es proporcional a la magnitud del campo eléctrico en esa región.

43 Líneas de Campo Eléctrico: Carga + Para una fuente de carga positiva, las líneas de campo eléctrico apuntan radialmente alejándose de la carga (en todas direcciones). En tres dimensiones la distribución de las líneas de campo eléctrico es esférica (en la figura sólo se representa el plano xy) Una carga de prueba positiva sería repelida lejos de la fuente de carga positiva

44 Líneas de Campo Eléctrico: Carga + Las líneas de campo eléctrico divergen desde un punto ocupado por una carga positiva

45 Líneas de Campo Eléctrico: Carga Para una fuente de carga negativa, las líneas de campo eléctrico apuntan radialmente hacia esta carga (las líneas de campo eléctrico siempre apuntan hacia una carga negativa) En tres dimensiones la distribución de las líneas de campo eléctrico es esférica (en la figura sólo se representa el plano xy) Una carga de prueba positiva sería atraída hacia la fuente de carga negativa

46 Líneas de Campo Eléctrico En ambos casos, las líneas de campo eléctrico se disponen a lo largo de direcciones radiales y se extienden o prolongan hasta el infinito. Nótese que las líneas de campo eléctrico se aproximan unas a otras conforme se acercan a la carga; esto indica que la magnitud del campo eléctrico aumenta conforme uno se acerca a la fuente de carga. O bien, a medida que uno se aleja de la fuente de carga, el campo eléctrico se debilita y las líneas se separan. Existe una conexión entre el espaciado de las líneas y la intensidad del campo eléctrico.

47 Líneas de Campo Eléctrico Superficies esféricas con carga en el centro. número de líneas por unidad de área de la esfera? Densidad superficial de líneas. Si r aumenta, aumenta A (superficie) de la esfera, pero el mismo número de líneas pasan a través de ella. q Por lo tanto, el número de líneas por unidad de área o superficie disminuye cuando r aumenta.

48 Líneas de Campo Eléctrico Superficies esféricas con carga en el centro. Para la esfera: A = 4πr 2 La densidad superficial de líneas que atraviesan la esfera decrece en razón inversa con el cuadrado de la distancia a la carga puntual. q Es decir, lo mismo que ocurre con la intensidad o magnitud del campo eléctrico E = k e q/r 2, que también disminuye en razón inversa con el cuadrado de esta distancia.

49 Líneas de Campo Eléctrico Las líneas de campo eléctrico están más juntas donde el campo eléctrico es fuerte y más separadas donde el campo eléctrico es débil. Es decir, cuanto más próximas se encuentran las líneas de campo eléctrico, más intenso es el campo eléctrico

50 Líneas de Campo Eléctrico Las líneas de campo eléctrico están más juntas donde el campo eléctrico es fuerte y más separadas donde el campo eléctrico es débil. La densidad de línea a través de la superficie A es mayor que la densidad de líneas a través de la superficie B. Por lo tanto, la magnitud del campo eléctrico es mayor sobre la superficie A que sobre la superficie B El hecho de que las líneas en cada punto apunten en diferentes direcciones indica que el campo eléctrico no es uniforme

51 Líneas de Campo Eléctrico La líneas de campo eléctrico sólo representan gráficamente el E en diferentes puntos. Con excepción de algunos casos muy especiales, la líneas de campo eléctrico NO representan la trayectoria de una partícula cargada moviéndose en un campo eléctrico. Las líneas de campo eléctrico no son objetos materiales. Se utilizan únicamente como una representación pictórica que proporcione una descripción cualitativa del E. Sólo un número finito de líneas se pueden dibujar, lo cual puede hacer creer, erróneamente, que el campo eléctrico está cuantizado y sólo existe en ciertas partes del espacio. De hecho, el campo eléctrico es continuo, i.e. existe en todos los puntos. Se debe evitar quedar con la impresión incorrecta de un dibujo bidimensional de líneas de campo eléctrico utilizado para describir una situación tridimensional.

52 Líneas de Campo Eléctrico

53 Líneas de Campo Eléctrico (a) Líneas de campo eléctrico para dos cargas puntuales positivas. (b) Pedazos de hilo suspendidos en aceite, los cuales se alinean con el campo eléctrico establecido por dos cargas positivas de igual magnitud. Ordena las magnitudes del campo eléctrico en los puntos A, B y C.

54 Líneas de Campo Eléctrico Las cargas tienen igual magnitud y signo (positivas). El número de líneas de campo eléctrico que salen de cada carga es el mismo pues éstas tienen la misma magnitud. A una gran distancia, el campo eléctrico es aproximadamente igual al de una sola carga de 2q.

55 Líneas de Campo Eléctrico Relación de las líneas de campo eléctrico y la distancia a la cual se encuentra el punto de medición: En un punto próximo a una carga (o a un sistema cargado), las líneas de campo eléctrico poseen la misma separación y según el signo de la carga se alejan o se acercan a ella. En un punto lejano de un sistema de cargas, la estructura pormenorizada del sistema no es importante, y las líneas del campo eléctrico son las mismas que las correspondientes al sistema cargado con la carga neta del sistema.

56 Líneas de Campo Eléctrico La magnitud de la cargas positiva es el doble de la magnitud de la carga negativa. Dos líneas de campo eléctrico salen de la carga positiva por cada línea de campo eléctrico que termina en la carga negativa. Es decir la mitad de la líneas que comienzan en la carga positiva +2q entran en la carga q y la otra mitad divergen hacia el infinito.

57 Líneas de Campo Eléctrico En una esfera de radio r, en donde r es mucho mayor que la separación de las cargas, las líneas que abandonan el sistema están espaciadas de modo aproximadamente simétrico y señalan radialmente hacia fuera. Es decir, a una gran distancia, el campo eléctrico es aproximadamente igual al de una sola carga de q.

58 Líneas de Campo Eléctrico: Reglas Las líneas de campo eléctrico comienzan en las cargas positivas y terminan en las negativas. En caso de un exceso de un tipo de carga algunas líneas empezarán o se acabarán en el infinito. Las líneas se dibujan simétricamente saliendo o entrando en la carga. El número de líneas que abandonan una carga positiva o entran en una carga negativa es proporcional a la magnitud de la carga.

59 Líneas de Campo Eléctrico: Reglas La densidad superficial de líneas (número de líneas por unidad de área que cruzan una superficie perpendicular a las mismas) en un punto es proporcional al valor del campo en dicho punto. A grandes distancias de un sistema de cargas, las líneas de campo eléctrico están igualmente espaciadas y son radiales como si procediesen de una línea, superficie o volumen cargado con la carga neta del sistema. Nunca se pueden cruzar o intersecar dos líneas de campo

60 Líneas de Campo Eléctrico: Reglas Nunca se pueden cruzar o intersecar dos líneas de campo Esta regla se deduce del hecho de que E tiene una dirección única en cualquier punto del espacio (excepto en el punto o espacio ocupado por una carga puntual o un sistema cargado, o donde E = 0). Si se cortasen o intersecasen dos líneas, existirían dos direcciones para E en el punto de intersección.

61 Dipolo Eléctrico Dipolo eléctrico: sistema de dos cargas iguales de signos opuestos (+q y q), separadas por cierta distancia L. Característica fundamental: momento dipolar eléctrico (p) Vector que apunta de la carga negativa a la positiva y cuya magnitud es el producto de la carga q por la separación L. Si L es el vector desplazamiento desde la carga negativa hacia la carga positiva, el momento dipolar es p = ql

62 Dipolo Eléctrico: Problema Una carga +q se encuentra en x = a, y una segunda carga q en x = a. Determinar el campo eléctrico resultante sobre el eje x en un punto P muy alejado en comparación con la separación de las cargas. Determinar el momento dipolar eléctrico.

63 Dipolo Eléctrico (a) Líneas de campo eléctrico para dos cargas puntuales de igual magnitud y signo contrario (dipolo eléctrico). (b) Pedazos de hilo suspendidos en aceite, los cuales se alinean con el campo eléctrico de un dipolo.

64 Dipolo Eléctrico Puesto que las cargas tienen la misma magnitud pero signo contrario, el número de líneas que empiezan en la carga positiva es igual al número de líneas que terminan en la carga negativa. En este caso el campo es más intenso en la región entre las cargas, como lo indica el hecho de que la densidad de líneas de campo en esta región es muy elevada.

65 Movimiento de cargas puntuales en un campo eléctrico uniforme Cuando una partícula de carga q y masa m se coloca en un campo eléctrico E, experimenta la acción de una fuerza eléctrica: F e = qe En general, las fuerzas gravitatorias que actúan sobre una partícula son despreciables en comparación con las fuerzas eléctricas. Si F e es la única fuerza significativa que actúa sobre la partícula, ésta es la fuerza neta y provoca que la partícula se acelere según la segunda ley de Newton: F e = qe = ma

66 Movimiento de cargas puntuales en un campo eléctrico uniforme Por lo tanto la aceleración de la partícula es: Si el campo eléctrico E es uniforme (i.e. constante en magnitud y dirección), entonces la aceleración es constante. Como la aceleración es constante, las ecuaciones de la cinemática son totalmente válidas y se pueden utilizar.

67 Movimiento de cargas puntuales en un campo eléctrico uniforme Si la partícula tiene una carga positiva, su aceleración apunta en la dirección del campo eléctrico. Si la partícula tiene una carga negativa, su aceleración apunta en dirección opuesta a la del campo eléctrico

68 Movimiento de cargas puntuales en un campo eléctrico uniforme Si el campo eléctrico se conoce, puede determinarse la relación carga/masa de una partícula a partir de la aceleración medida. En el caso de un campo eléctrico uniforme, la trayectoria de la partícula es una parábola semejante a la de un proyectil en un campo gravitatorio. La medida de la desviación de los electrones en un campo eléctrico uniforme fue utilizada por J.J. Thompson en 1897 para demostrar la existencia de los electrones y para medir su relación carga/masa.

69 Carga positiva acelerada. Una carga puntual positiva q y de masa m se coloca dentro de un campo eléctrico E uniforme que apunta a lo largo del eje x y se le suelta desde el reposo. Describa su movimiento. M. U. A. Ecuaciones cinemáticas en una dimensión:

70 Carga positiva acelerada. Una carga puntual positiva q en un campo eléctrico E uniforme experimenta una aceleración constante en la dirección del campo eléctrico.

71 Placas cargadas. El campo eléctrico en la región entre dos placas metálicas con cargas opuestas es aproximadamente uniforme. Consideren un electrón (q = e) que se incide horizontalmente en dicho campo desde el origen con una velocidad inicial vî (t = 0) E con dirección y + Dirección de a?

72 Placas cargadas. Dirección de a? Si E es contante (uniforme), a también es constante. Ecuaciones cinemáticas en dos dimensiones (con aceleración constante).

73 Placas cargadas. Ecuaciones cinemáticas en dos dimensiones (con aceleración constante).

74 Tubo de Rayos Catódicos (TRC) Visualización de información electrónica en osciloscopios, sistemas de radar, televisores, monitores. El TRC es un tubo de vacío en el cual un haz de electrones es acelerado y desviado bajo la influencia de campos eléctricos y magnéticos.

75 Tubo de Rayos Catódicos (TRC) El haz de electrones se produce en la pistola de electrones, localizada en el cuello del tubo. Si estos electrones no son perturbados siguen una trayectoria rectilínea hasta impactar en la pantalla, la cual está recubierta con un material fluorescente, i.e. un material que emite luz visible cuando absorbe electrones.

76 Tubo de Rayos Catódicos (TRC) En un osciloscopio, los electrones son desviados en diferentes direcciones mediante dos conjuntos de placas (E y B) colocadas en ángulo recto una respecto a la otra. Si una de las placas horizontales se carga positivamente y la otra negativamente, se establece un campo eléctrico entre ellas que permite dirigir el haz de electrones de un lado a otro.

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Recordamos que: La carga eléctrica siempre

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato EL CAMPO ELÉCTRICO Física de 2º de Bachillerato Los efectos eléctricos y magnéticos son producidos por la misma propiedad de la materia: la carga. Interacción electrostática: Ley de Coulomb Concepto de

Más detalles

El Campo Eléctrico INTRODUCCIÓN

El Campo Eléctrico INTRODUCCIÓN INTRODUCCIÓN En este tema introduciremos el campo eléctrico y veremos cómo puede describirse mediante las líneas de campo, las cuales indican la magnitud y dirección del campo, discutiremos el comportamiento

Más detalles

/Ejercicios de Campo Eléctrico

/Ejercicios de Campo Eléctrico /Ejercicios de Campo Eléctrico 1-Determine la fuerza total actuante sobre q2 en el sistema de la figura. q 1 = 12 µ C q 2 = 2.0 µ C q 3 = 12 µ C a= 8,0 cm b= 6,0 cm 2-Determine la fuerza total actuante

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Campo eléctrico, definición Se dice que

Más detalles

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón?

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón? ANEXO 1. FÍSICA. 1- Compara la fuerza eléctrica y la fuerza gravitacional entre: a- Dos electrones. b- Un protón y un electrón. Carga del electrón: e = 1,6x10-19 C Masa del protón: 1,67x10-27 Kg Masa del

Más detalles

Tema 3.-Fuerzas eléctricas

Tema 3.-Fuerzas eléctricas Tema 3: Fuerzas eléctricas y campo eléctrico Fundamentos Físicos de la Ingeniería Ingeniería Industrial Primer curso Curso 009/010 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción

Más detalles

Módulo 1: Electrostática Fuerza eléctrica

Módulo 1: Electrostática Fuerza eléctrica Módulo 1: Electrostática Fuerza eléctrica 1 Cargas eléctricas y fuerzas Hay dos tipos de cargas cargas positivas y cargas negativas REPELEN REPELEN ATRAEN Fuerzas del mismo signo se repelen, mientras que

Más detalles

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C.

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. Giancoli AL DESARROLLAR LOS CUESTIONARIOS, TENER EN CUENTA LOS PROCESOS

Más detalles

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS 2.1. CAMPO ELECTRICO En lugar de manejar el campo de fuerzas, resulta más cómodo definir un campo vectorial denominado campo eléctrico, E.

Más detalles

Campo magnético creado por cargas puntuales móviles.

Campo magnético creado por cargas puntuales móviles. Introducción Volvamos ahora considerar los orígenes del campo magnético B. Las primeras fuentes conocidas del magnetismo fueron los imanes permanentes. Un mes después de que Oersted anunciarse su descubrimiento

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Forma vectiorial de un campo eléctrico

Más detalles

III A - CAMPO ELÉCTRICO

III A - CAMPO ELÉCTRICO 1.- Una carga puntual de 4 µc se encuentra localizada en el origen de coordenadas y otra, de 2 µc en el punto (0,4) m. Suponiendo que se encuentren en el vacío, calcula la intensidad de campo eléctrico

Más detalles

Dinámica de la partícula: Leyes de Newton

Dinámica de la partícula: Leyes de Newton Dinámica de la partícula: Leyes de Newton Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética A) Interacción Magnética sobre cargas puntuales. 1.- Determina la fuerza que actúa sobre un electrón situado en un campo de inducción magnética B = -2 10-2 k T cuando su velocidad v = 2 10 7 i m/s. Datos:

Más detalles

El campo eléctrico. es un campo de fuerzas

El campo eléctrico. es un campo de fuerzas El campo eléctrico es un campo de fuerzas Podemos detectar un campo eléctrico colocando un cuerpo cargado, en reposo. - El cuerpo cargado comenzará a moverse, acelerando en la dirección y sentido de la

Más detalles

Ley de Coulomb. Introducción

Ley de Coulomb. Introducción Ley de Coulomb Introducción En este tema comenzaremos el estudio de la electricidad con una pequeña discusión sobre el concepto de carga eléctrica, seguida de una breve introducción al concepto de conductores

Más detalles

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual.

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual. 1.- Carga eléctrica. Propiedades. 2.- Ley de Coulomb. Campo de una carga puntual. 3.- Principio de superposición. 4.- Distribuciones continuas de carga. 5.- Ley de Gauss. Aplicaciones. 6.- Potencial electrostático.

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

5. Campo gravitatorio

5. Campo gravitatorio 5. Campo gravitatorio Interacción a distancia: concepto de campo Campo gravitatorio Campo de fuerzas Líneas de campo Intensidad del campo gravitatorio Potencial del campo gravitatorio: flujo gravitatorio

Más detalles

Magnetismo e Inducción electromagnética. PAEG

Magnetismo e Inducción electromagnética. PAEG 1. Por un hilo vertical indefinido circula una corriente eléctrica de intensidad I. Si dos espiras se mueven, una con velocidad paralela al hilo y otra con velocidad perpendicular respectivamente, se inducirá

Más detalles

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador.

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador. UD6 FUERZAS Y MOVIMIENTO EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si cambia de posición con respecto al sistema de referencia; en caso contrario, está en reposo. Sistema de referencia

Más detalles

INTENSIDAD DE CAMPO ELECTRICO (E)

INTENSIDAD DE CAMPO ELECTRICO (E) CAMPO ELECTRICO Región donde se produce un campo de fuerzas. Se representa con líneas que indican la dirección de la fuerza eléctrica en cada punto. Una carga de prueba observa la aparición de fuerzas

Más detalles

Electrostática. Procedimientos

Electrostática. Procedimientos Electrostática. Procedimientos 1. Calcula a qué distancia tendrían que situarse un electrón y un protón de manera que su fuerza de atracción eléctrica igualase al peso del protón. 0,12 m 2. Recuerdas la

Más detalles

TEMA 3.- Campo eléctrico

TEMA 3.- Campo eléctrico Cuestiones y problemas resueltos de Física º Bachillerato Curso 013-014 TEMA 3.- Campo eléctrico CUESTIONES 1.- a) Una partícula cargada negativamente pasa de un punto A, cuyo potencial es V A, a otro

Más detalles

Leyes del movimiento de Newton

Leyes del movimiento de Newton Leyes del movimiento de Newton Leyes del movimiento de Newton Estudiaremos las leyes del movimiento de Newton. Estas son principios fundamentales de la física Qué es una fuerza Intuitivamente, consideramos

Más detalles

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo 1. El módulo de la intensidad del campo gravitatorio en la superficie de un planeta de masa M y de radio R es g. Cuál será

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

CÓMO DETECTAR UN CAMPO ELÉCTRICO?

CÓMO DETECTAR UN CAMPO ELÉCTRICO? CAMPO ELÉCTRICO! E Es aquella región de espacio que rodea a una carga eléctrica. Este campo funciona como transmisor mediante el cual una carga interactúa con otra que está a su alrededor CÓMO DETECTAR

Más detalles

FUERZA Y CAMPO ELÉCTRICO

FUERZA Y CAMPO ELÉCTRICO FUERZA Y CAMPO ELÉCTRICO PREGUNTAS 1. Se tienen tres esferas conductoras A, B y C idénticas y aisladas. La esfera A se encuentra cargada con 60 µc y B y C totalmente descargadas. Si seguimos el siguiente

Más detalles

Campo Eléctrico. Cubeta de Vidrio, Agua y Sal

Campo Eléctrico. Cubeta de Vidrio, Agua y Sal Manual de laboratorio de lectricidad y Magnetismo Física III 1.- OJTIOS Campo léctrico xperiencia N 2 Graficar las líneas euipotenciales en la vecindad de dos configuraciones de carga (). - Calcular la

Más detalles

Ejercicios resueltos de Campo Eléctrico

Ejercicios resueltos de Campo Eléctrico Ejercicios resueltos de Campo Eléctrico. Hallar la intensidad del campo eléctrico, en el aire, a una distancia de 30 cm de la carga q 5x C. 500 [N/C] q 5x C r 0,3 m kq kq x x5x E E 500 r r 0,3. Hallar

Más detalles

II. ELECTROSTÁTICA. Carga eléctrica:

II. ELECTROSTÁTICA. Carga eléctrica: FÍSICA II TELECOM Profesor BRUNO MAGALHAES II. ELECTROSTÁTICA La electrostática es la rama de la física que estudia los efectos mutuos que se producen entre los cuerpos como consecuencia de su carga eléctrica.

Más detalles

Bolilla 10: Magnetismo

Bolilla 10: Magnetismo Bolilla 10: Magnetismo 1 Bolilla 10: Magnetismo La fuerza magnética es una de las fuerzas fundamentales de la naturaleza. Si bien algunos efectos magnéticos simples fueron observados y descriptos desde

Más detalles

Fuerza Eléctrica y Ley de Coulomb

Fuerza Eléctrica y Ley de Coulomb Fuerza Eléctrica y Ley de Coulomb Junto con fuerza magnética (a la cuál está intimamente relacionada) es una de las cuatro fuerzas fundamentales de la naturaleza y la única que actua en nuestra vida diaria

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

Capítulo 18. Biomagnetismo

Capítulo 18. Biomagnetismo Capítulo 18 Biomagnetismo 1 Fuerza magnética sobre una carga La fuerza que un campo magnético B ejerce sobre una partícula con velocidad v y carga Q es: F = Q v B El campo magnético se mide en teslas,

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

3. Determina el valor del campo eléctrico en el punto B del esquema de la siguiente figura:

3. Determina el valor del campo eléctrico en el punto B del esquema de la siguiente figura: ampo eléctrico 1 Se tienen dos cargas eléctricas puntuales, una de 3 µ y la otra de - 3 µ, separadas una distancia de 0 cm alcula la intensidad del campo eléctrico y el potencial eléctrico en los siguientes

Más detalles

Guía de Ejercicios de Fuerza Eléctrica, Campo y Potencial Eléctrico

Guía de Ejercicios de Fuerza Eléctrica, Campo y Potencial Eléctrico INSTITITO NACIONAL Dpto. de Física Coordinación. 4 plan electivo Marcel López Urbina Guía de Ejercicios de Fuerza Eléctrica, Campo y Potencial Eléctrico Objetivo: - Reconocer la fuerza eléctrica, campo

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO

DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO CAMPO ELÉCTRICO El espacio que rodea a un objeto cargado se altera en presencia de la carga. Podemos postular la existencia

Más detalles

FUERZA CIENCIAS: FÍSICA PLAN GENERAL FUERZA NORMAL PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

FUERZA CIENCIAS: FÍSICA PLAN GENERAL FUERZA NORMAL PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES FUERZA Fuerza es la interacción de dos o más cuerpos que puede causar el cambio de su movimiento. Fuerzas constantes dan origen a cambios progresivos del movimiento de un cuerpo o partícula en el tiempo.

Más detalles

4. Cuanta energía se necesita para traer un electrón desde el infinito hasta una distancia de 2, m, de una carga de 1, C?

4. Cuanta energía se necesita para traer un electrón desde el infinito hasta una distancia de 2, m, de una carga de 1, C? Capítulo 1 SEMINARIO CAMPO ELÉCTRICO 1. Una esfera metálica de masa 10 g con carga +2 µc, se cuelga de un hilo y se le aproxima otra esfera con carga del mismo signo. Cuando ambas están separadas 10 cm

Más detalles

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES 1.- Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 105 m/s, se encuentra a 50

Más detalles

Módulo 6: Electricidad y Magnetismo. Electrostática

Módulo 6: Electricidad y Magnetismo. Electrostática Módulo 6: Electricidad y Magnetismo. Electrostática tica 1 Cargas eléctricas y fuerzas Hay dos tipos de cargas cargas positivas y cargas negativas REPELEN REPELEN ATRAEN Fuerzas del mismo signo se repelen,

Más detalles

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas 2.ESTÁTICA La palabra estática se deriva del griego statikós que significa inmóvil. En virtud de que la dinámica estudia la causa que originan la causa del reposo o movimiento de los cuerpos, tenemos que

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua.

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua. Ley de Gauss Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Flujo Eléctrico Hemos aprendido a calcular el

Más detalles

Intensidad del campo eléctrico

Intensidad del campo eléctrico Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través

Más detalles

4. El Campo Eléctrico

4. El Campo Eléctrico 4. El Campo Eléctrico El campo eléctrico E, producido por ciertas cargas, se define como la fuerza eléctrica que actúa sobre una carga de prueba q 0, dividido la carga q 0 : E F q 0 Michael Faraday (1791

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Recordamos que: La carga eléctrica siempre

Más detalles

Unidad 9. Fuerza magnética y Campo Magnético

Unidad 9. Fuerza magnética y Campo Magnético Unidad 9. Fuerza magnética y Campo Magnético Física 2 Basado en Bauer/Westfall 2011, Resnick 1995 y Ohanian/Markert, 2009 El alambre recto conduce una corriente I grande, y hace que las pequeñas partículas

Más detalles

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.

Más detalles

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica GUIA DE FÍSICA Campo Eléctrico Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor CAMPO ELECTRICO Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

Más detalles

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial)

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial) CAMPO ELECTRICO Concepto de Campo l El concepto de Campo es de una gran importancia en Ciencias y, particularmente en Física. l l La idea consiste en atribuirle propiedades al espacio en vez de considerar

Más detalles

ELECTRICIDAD Y MAGNETISMO FIS 1532 (2)

ELECTRICIDAD Y MAGNETISMO FIS 1532 (2) ELECTRICIDAD Y MAGNETISMO FIS 1532 (2) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2nd. Semestre 2010 Electrostática, Varias cargas puntuales CAMPO ELECTRICO DE VARIAS CARGAS

Más detalles

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO 1. Una carga eléctrica, q = 3,2.10-19 C,

Más detalles

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO

Facultad de Ciencias Curso 2010-2011 Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO SOLUCIONES PROLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO. Dos conductores rectilíneos, paralelos mu largos transportan corrientes de sentidos contrarios e iguales a,5 A. Los conductores son perpendiculares

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

CUESTIONES ELECTROMAGNETISMO Profesor: Juan T. Valverde

CUESTIONES ELECTROMAGNETISMO Profesor: Juan T. Valverde 1.- Cómo son las líneas de fuerza del campo eléctrico producido por un hilo rectilíneo, infinito y uniformemente cargado? (Junio 2000) En cada punto el campo, sería perpendicular al cable pues cada elemento

Más detalles

Magnetismo. Slide 1 / 49. Slide 2 / 49. Slide 3 / 49. Materiales Magnéticos. Imanes

Magnetismo. Slide 1 / 49. Slide 2 / 49. Slide 3 / 49. Materiales Magnéticos. Imanes Slide 1 / 49 Magnetismo Materiales Magnéticos Slide 2 / 49 Muy pocos materiales exhiben un fuerte magnetismo. stos materiales se llaman ferromagnéticos. Los ejemplos incluyen hierro, cobalto, níquel y

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com CAMPO Y FUERZA MAGNÉTICA 1- a) Explique las características de la fuerza sobre una partícula cargada que se mueve en un campo magnético uniforme. Varía la energía cinética de la partícula? b) Una partícula

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

PROBLEMAS CAMPO ELÉCTRICO

PROBLEMAS CAMPO ELÉCTRICO PROBLEMAS CAMPO ELÉCTRICO 1. Explica las semejanzas y las diferencias entre los campos gravitatorio y eléctrico 2. En una región del espacio, la intensidad del campo eléctrico es nula. Debe ser nulo también

Más detalles

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 20 Carga Eléctrica, Fuerza, y Campo PowerPoint Lecture prepared by Richard Wolfson Slide 20-1 En esta exposición usted aprenderá Como la materia y muchas de

Más detalles

CAMPO ELÉCTRICO Nm 2

CAMPO ELÉCTRICO Nm 2 CAMPO ELÉCTRICO 1. Dos cargas eléctricas positivas e iguales de valor 3x10-6 C están situadas en los puntos A(0,2) y B(0,-2) del plano XY. Otras dos cargas iguales Q están localizadas en los puntos C(4,2)

Más detalles

EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA

EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA C6. 1 Calcular el campo eléctrico E en el centro del cuadrado, así como la diferencia de potencial entre los puntos A y B. Resp.: E = ; V A -V B = 0 C6. 2 En

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue

Más detalles

CAPÍTULO IV Dieléctricos

CAPÍTULO IV Dieléctricos Fundamento teórico CAPÍTULO IV Dieléctricos I.- l dipolo Ia.- Momento dipolar Un sistema formado por dos cargas iguales en módulo y de signo opuesto, +q y q, con vectores posición r + y r respectivamente,

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

Guía N 4: Campo Magnético, Ley de Ampere y Faraday e Inductancia

Guía N 4: Campo Magnético, Ley de Ampere y Faraday e Inductancia Física II Electromagnetismo-Física B C/014 Guía N 4: Problema 1. Un electrón se mueve en un campo magnético B con una velocidad: experimenta una fuerza de 5 5 v (4 10 i 7.1 10 j) [ m / s] F (.7 10 13i

Más detalles

IMANES. B. Determinación de la imagen lineomotriz del campo magnético de un imán

IMANES. B. Determinación de la imagen lineomotriz del campo magnético de un imán PRÁCTICA 1 IMANES OBJETIVOS A. Estudio de las fuerzas de interacción entre polos magnéticos B. Determinación de la imagen lineomotriz del campo magnético de un imán INTRODUCCIÓN A. Un imán es un cuerpo,

Más detalles

Índice. Introducción Campo magnético Efectos del campo magnético sobre. Fuentes del campo magnético

Índice. Introducción Campo magnético Efectos del campo magnético sobre. Fuentes del campo magnético Campo magnético. Índice Introducción Campo magnético Efectos del campo magnético sobre Carga puntual móvil (Fuerza de Lorentz) Conductor rectilíneo Espira de corriente Fuentes del campo magnético Carga

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

Problemas adicionales (Electrostática, Magnetostática y Circuitos) (con y sin respuestas).

Problemas adicionales (Electrostática, Magnetostática y Circuitos) (con y sin respuestas). Física 1 (Paleontólogos) Problemas adicionales (Electrostática, Magnetostática y Circuitos) (con y sin respuestas). 1. Se localizan tres cargas ubicadas en las esquinas de un triángulo equilátero. Calcúlese

Más detalles

Fuerzas eléctricas y campo eléctrico

Fuerzas eléctricas y campo eléctrico Fuerzas eléctricas y campo eléctrico Física II Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 011-01 Departamento de Física Aplicada III Universidad de Sevilla

Más detalles

Potencial Eléctrico Preguntas de Multiopción

Potencial Eléctrico Preguntas de Multiopción Slide 1 / 72 Potencial Eléctrico Preguntas de Multiopción Slide 2 / 72 1 Una carga negativa se coloca en una esfera de conducción. Cual de las afirmaciones es verdadera acerca a la distribución de carga?

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

Campo Magnético 1.- Academia, Librería, Informática Diego

Campo Magnético 1.- Academia, Librería, Informática Diego Campo Magnético 1.- brújula que se orienta según la dirección N S del campo magnético terrestre, que supondremos aproximadamente horizontal. En paralelo a la brújula y a una distancia d = 5 cm por encima

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018 2018-Junio-coincidentes A. Pregunta 3.- Dos cargas Q 1= -4 nc y Q 2= 4 nc están situadas en los puntos P 1(3, 4) y P 2(-3, 4), respectivamente, del plano xy (coordenadas expresadas en metros). Determine:

Más detalles

UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS.

UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS. UNIDAD 2: DINÁMICA. LAS FUERZAS Y SUS EFECTOS. 1. FUERZAS Y SUS EFECTOS. La Dinámica es una parte de la Física que estudia el movimiento de los cuerpos, atendiendo a las causas que lo producen. Son las

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

Cálculo de campos eléctricos por medio del principio de superposición.

Cálculo de campos eléctricos por medio del principio de superposición. Cálculo de campos eléctricos por medio del principio de superposición. En la clase anterior hemos introducido varios conceptos: Carga. Interacción entre cargas (Ley de Coulomb). Campo campo eléctrico.

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles