DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función."

Transcripción

1 Funciones de dos o más Variables DERIVADAS PARCIALES Existen magnitudes que dependen de dos o más variables independientes por ejemplo el área del rectángulo depende de la longitud de cada uno de sus lados, el costo de producción de una artículo depende del costo de los materiales y de la mano de obra, la temperatura que tiene un gas depende del volumen que ocupa y de su presión, la concentración de una sustancia en cualquier punto de la vena luego de haber suministrado una inyección depende del tiempo, la velocidad de la sangre y la distancia en que se encuentra el punto de la inyección, Las funciones de dos variables se simbolizan f: R 2 = f(x; y) R y se representan generalmente z Definición.- Sea D un conjunto de pares ordenados, (x, y), de números reales, D R 2. Una función real de dos variables reales es una regla que asigna a cada par ordenado (x, y) en D un único número real, denotado por f (x, y). El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función. Ejercicios 38 Evalué las siguientes funciones para los valores dados de las variables independientes 1. z = x 2 +4xy+y 2 ; x=1, y=-1 z = (1) 2 +4(1) (-1)+(-1) 2 z = z = z = 4x 2 y-3xy 3 ; x=2, y=2 z = 4(2) 2 (2)-3(2)(2) 3 z = z = ; x=4, y=-3 2. C(x1,x2)=600+4x1+6x2; x1=400, x2=50 C(x1,x2)=600+4(400)+6(50) C(x1,x2)= C(x1,x2)= encuentre q(40,35) 4. encuentre z(3.-3) 1

2 5. z=3x + 4y; x=-1, y=2 7. ; x=3, y=2 9., encuentre q(50, 10) 11. con(1, 3, 1) 6. z=2x 3 y-xy 2 ; x=-1, y=1 8. C(x1,x2)=500+5x1-7x2; C(200, 300) con (2, 3, 1, -1) Problemas El costo (en dólares) de una pequeña compañía de muebles por fabricar una unidad de varios artículos distinto de maderas está dado por C(x, y)= 5 + 5x +22y, donde x representa el número de píes de tablas utilizados y y expresa el número de horas de trabajo necesarias para ensamblado y acabado. Si para hacer un librero se necesitan 20 píes de tabla y 2.5 horas de trabajo, encuentre el costo de fabricación. Por datos x=20 y y=2.5 remplazando C(20,2.5)= 5 + 5(20) +22(2.5) C(20,2.5)= C(20, 2.5)=160 dólares El costo de fabricación de un librero será de 160 dólares 2. Suponga que la producción de Q unidades del producto de una compañía se determina mediante la función de producción de Cobb-Douglas, donde K representa la inversión de capital en dólares y L las horas de trabajo. a. Encuentre Q si K= dólares y L=625 horas. Remplazando Cuando el capital invertido es dólares y se trabajan 625 horas las unidades producidas serán b. Qué pasa sí la inversión y las horas trabajadas se reducen a la mitad? Entonces K=5 000 dólares y L=312.5 horas. Remplazando 2

3 UNIDADES PRODUCIDAS (Q) Cuando el capital invertido y las horas trabajadas se reducen a la mitad la producción también se reduce a la mitad. c. Si se mantiene la inversión de capital en dólares, trace la gráfica de Q como función de L. La ecuación sería HORAS TRABAJADAS (L) 3. Suponga que la función de utilidad de dos bienes X y Y estás dada por U=XY 2. a. Determinar la utilidad si un consumidor adquiere 9 unidades de X y 6 de Y. b. Si el consumidor compra 9 unidades de Y, cuántas unidades de X se deben comprar para mantener el mismo nivel de utilidad. c. Si el consumidor compra 81 unidades de X, cuántas unidades de Y se deben comprar para mantener el mismo nivel de utilidad. 4. En economía la cantidad Q de bienes (televisores, vestidos, litros de pintura, etc.) más económica que pude pedir una tienda se obtiene con la fórmula de tamaños de lote de Wilson: Q= f(k, M, h)=, donde K es el costo del pedido, M el número de artículos vendidos por semana y h el costo de almacenamiento por artículo (servicios, impuestos, seguridad, etc.). Encuentre f(200, 625, 1). Interprete la respuesta. 5. Suponga que la producción de Q unidades del producto de una compañía se determina mediante la función de producción de Cobb-Douglas, donde K representa la inversión de capital en dólares y L las horas de trabajo. a. Encuentre Q si K= dólares y L= 512 horas. b. Qué pasa sí la inversión y las horas trabajadas se duplican? 3

4 c. Si la inversión de capital se mantiene en dólares, trace la gráfica de Q como función de L. 6. Suponga que el número de unidades producidas de una mercancía, z, está dada por z=20xy, donde x es el número de máquinas que funcionan de manera apropiada y y el número promedio de horas de trabajo por máquina. Encuentre la producción para una semana en la que: a. 12 máquinas funciona de manera adecuada y el número promedio de horas de trabajo por máquina es 30 b. Cuántas horas en promedio de trabajo deben mantenerse en funcionamiento 10 máquinas que funcionan de manera adecuada para producir 7200 unidades de mercancía? c. Cuántas máquinas en buen estado se deben tener para producir 7200 unidades trabajando en promedio 24 horas? 7. La Kirk Kelly Kandy Company elabora dos tipos de dulces, Kisses y Kreams. La ganancia, en dólares, para la empresa está dada por P(x, y) = 100x + 64y 0.01x y 2, donde x es la cantidad de libras de Kisses y y el numero de libras de Kreams vendidos por semana. a. Cuál es la ganancia si se venden 20 libras de Kisses y 10 libras de Kreams? b. Cuántas libras de Kisses se deben vender si se mantiene la venta de 10 libras de Kreams y se desea obtener ganancias de dólares? c. Cuántas libras de Kreams se deben vender si se mantiene la venta de 20 libras de Kisses y se desea obtener ganancias de dólares? Diferenciación Parcial La derivada de una función de una variable mide la rapidez de cambio de la variable dependiente respecto a la variable independiente. Para funciones de dos variables x e y podemos medir dos razones de cambio: una según cambia y, dejando a x fija y otra según cambia x, dejando a y fija. Suponga que dejamos variar sólo a x, dejando a y fija, digamos y=b, en donde b es una constante. Entonces, en verdad estamos en presencia de una función de una sola variable x, a saber g(x)=f(x, b). Si g tiene una derivada en a entonces la llamamos la derivada parcial de f con respecto a x en (a, b). De forma análoga podemos hacerlo para y variable y x fija. En general, si z=f(x, y) la derivada parcial de z respecto a x se expresa como derivada parcial de z respecto a y se expresa como. Obsérvese que representa la 4 y la

5 derivada de una función de una variable, x, y función de dos o más variables. representa la derivada parcial de una Las notaciones empleadas para representar la derivada parcial de z=f(x, y) respecto a x son: Si x permanece constante en la función z=f(x, y) y se toma la derivada respecto a y, tenemos la derivada parcial de z respecto a y, que se denota Ejercicios 39 Para cada función hallar las derivadas parciales por cada variable 2. z= x 4 +3y 3 3. z= 3xy +y 2 4. z=(x 3 +2y 2 ) 3 5. C(x,y)=600-4x + 10x 2 y

6 8. z=5x 2-2y 9. z= x 5-6x+4y 3 -y C(x, y)=1000-4xy+xy Ejercicios 40 Encuentre la derivada parcial de cada función según las condiciones dadas 1. f(x, y)=4x 3 5xy + y 2, respecto a x en el punto(1, -2) 2., respecto a y en el punto (2, -1) b. c., como x=1 y y=-2 remplazamos, como x=2 y y=-1 remplazando y resolviendo d. 6

7 3., respecto a x en el punto (1, 1) 1., respecto a y en el punto (0, 1), como x=0 y y=1, remplazando y resolviendo, como x=1 y y=1, remplazando y resolviendo 1. Si z=2x + 3y, demuestre que 3z x 2z y =0 2. Si, demuestre que xz x + yz y = 0 3. Si, demuestre que xz x + yz y = 2z 5. Si, demuestre que xz x - yz y = 4. Si z= x 3 + y 3, demuestre que xzx + yzy = 3z 6. Si, demuestre que xz y yz x = Costo Conjunto y Costo Marginal Suponga que una empresa fabrica dos bienes de consumo utilizando las mismas materias primas en distintas proporciones. En este caso, la función de costo de conjunto tiene la forma C=Q(x, y) donde x y y representan la las cantidades de cada bien y C expresa el costo total de ambos bienes. Entonces es el costo marginal respecto al producto x y es el costo marginal respecto al producto y. Problemas El costo (en dólares) de fabricar un artículo está dado por C(x, y)= x + 5y, donde x es el costo de una hora de mano de obra y y es el costo de una libra de material. Si el costo de la mano de obra es de $4 por hora y el de material $3 por 7

8 libra. Calcule el costo marginal respecto a la mano de obra y al costo de material e intérprete los resultados. Respecto a la mano de obra hallamos Por tanto, si el costo de la mano de obra es de $4 por hora y el de material $3 por libra el costo de fabricar el producto se incrementará en 3 dólares por cada 1 dólar que se incremente la mano de obra, si el precio del material permanece constante. Respecto a la mano de obra hallamos Por tanto, si el costo de la mano de obra es de $4 por hora y el de material $3 por libra el costo de fabricar el producto se incrementará en 5 dólares por cada 1 dólar que se incremente la libra material, si el precio de la mano de obra permanece constante. 2. El costo total de producir un artículo es C(x, y)= x y xy, donde x es la tarifa por hora de la mano de obra y y el costo por libra de materia prima. La tarifa actual por hora de la mano de obra es de $15 y la materia prima cuestan $6 por libra Cómo afectará el costo total un incremento de a. $1 por libra de materia prima? Hallamos la derivada parcial del costo respecto a la materia prima Remplazando Si se incrementa la materia prima en $7 el costo de producción se incrementa en $5 b. $1 por hora en los costos de mano de obra? Remplazando Si se incrementa la mano de obra en $16 el costo se incrementa en $ La función costo conjunto para dos productos es C(x, y)= 50 + x 2 + 8xy + y 3 a. Calcule el costo marginal respecto a x y respecto a y en (5, 3). b. Intérprete los resultados. 8

9 4. El costo total de producir un artículo es C(x, y)= x + 6y +, donde x es el costo por libra de las materias primas y y representa el costo por hora de la mano de obra. De qué manera afectará el costo total un aumento de a. $1 por libra de materia prima? b. $1 por hora en los costos de mano de obra? 5. El costo conjunto (en dólares) de los producto X y Y esta dado por C(x, y)= x 2 +y 2 +xy, donde x expresa la cantidad del producto X y y la cantidad del producto Y. a. Calcule el costo marginal respecto a x si se producen 20 unidades del producto X y 15 del producto Y. b. Calcule el costo marginal respecto a y si se producen 20 unidades del producto X y 15 del producto Y. c. Interprete los resultados. 6. Si la función costo conjunto para dos procductos es C(x, y)= a. Encuentre la función costo marginal respecto a x. b. Encuentre la función costo marginal respecto a y. Productividad Marginal La producción total de un producto depende de varios factores, los cuales la empresa puede modificar. Los dos factores más importantes son la mano de obra y el capital invertido. Consideremos L el número de unidades de mano de obra empleada y K el monto de capital invertido, entonces el número de unidades del producto producidas en un mes (la producción total) P se denota P = f(l, K) esta función se conoce como función de producción de la empresa y las variables L y K son ejemplos de factores de insumos de producción La derivada parcial se denomina productividad marginal de la mano de obra y productividad marginal del capital. Problemas Dadas las funciones de producción P(K, L), calcule e intérprete las productividades marginales para los valores dados de L y K. L esta dado en miles de horas 9

10 trabajadas por semana, K en millones de pesos y P miles de artículos producidos por semana a. P(L, K)= 7L + 5K + 2LK L 2 2K 2 ; L=3 y K=10 La productividad marginal de mano de obra se obtiene por K), derivando P(L, Si se labora 3 mil horas de trabajo a la semana y se invierten 10 millones de pesos entonces el número de unidades producidas P se incrementa en 21 por cada incremento unitario en L. Es decir por cada unidad de hora trabajada que se incremente (1 000) semanal la producción se incrementa en 21 un mil unidades, manteniendo la inversión de capital K fija. La productividad marginal de capital se obtiene por, derivando P(L, K) Si se labora 3 mil horas de trabajo a la semana y se invierten 10 millones de pesos entonces el número de unidades producidas P disminuye 29 por cada incremento unitario en K. Es decir por cada millón de pesos adicional que se incremente el monto de capital la producción disminuye en 29 unidades manteniendo el número de horas laboradas L fija. b. P(L, K)= 18L 5L 2 + 3LK+7K - K 2 ; L=4 y K=8 c. P(L, K)= 50L + 3L 2 4L 3 + 2LK 2 3L 2 K 2K 3 ; L=2 y K=5 b. P(L, K)= 25L + 2L 2 3L 3 + 5LK 2 7L 2 K+ 2K 2 K 3 ; L=3 y K=10 Funciones de Demanda Suponga que dos productos se venden a los precios p1 y p2 (ambos en dólares), la cantidad demanda de cada uno de los productos depende de los precios de ambos productos en el mercado, Si q1 representa la demanda del primer producto entonces q1=f(p1,p2) es la función demanda de dicho producto y si q2 representa la demanda del segundo producto entonces q2=g(p1,p2), por lo tanto las derivadas parciales de q1 y q2 se conocen como funciones de demanda marginal Problemas La función demanda par dos productos están dadas por q1=300 8p1-4p2 q2=400 5p1-10p2 a. Encuentre la demanda para cada uno de ellos si el precio del primero es p1= 10 y del segundo p2=8 10

11 q1=300 8(10) 4(8)=188 q2=400 5(10) 10(8)=270 A los precios dados la demanda del producto 2 es mayor b. Encuentre la demanda marginal de q1 respecto al precio p1 Por cada $1 que se incremente el precio del producto 1 la demanda del producto 1 disminuye en 8 unidades, manteniendo constante el precio del producto 2 c. Encuentre la demanda marginal de q2 respecto al precio p2 Por cada $1 que se incremente el precio del producto 2 la demanda del producto 2 disminuye en 10 unidades, manteniendo constante el precio del producto 1 c. Encuentre la demanda marginal de q1 respecto al precio p2 Por cada $1 que se incremente el precio del producto 2 la demanda del producto 1 disminuye en 4 unidades, manteniendo constante el precio del producto 1 2. La función demanda par dos productos están dadas por q1=900 9p1 + 2p2 q2= p1-10p2 a. Encuentre la demanda para cada uno de ellos si el precio del primero es p1= 10 y del segundo p2=12 b. Encuentre la demanda marginal de q1 respecto al precio p1 c. Encuentre la demanda marginal de q1 respecto al precio p2 d. Encuentre la demanda marginal de q2 respecto al precio p2 d. Encuentre la demanda marginal de q2 respecto al precio p1 3. Dadas las funciones qa, qb, pa y pb las demandas y los precios (en dólares) de dos productos A y B calcule las demandas marginales: de qa respecto al precio pa, qa respecto al precio pb, qb respecto al precio pb y qb respecto al precio pa a. qa=400 3pA - 2pB y qb=250-5pa - 6pB b. qa=600 4pA + 6pB y qb= pA - 4pB c. d. 11

12 12

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

Δx = x2 x1. Δy = y2 y1. Δy = f(x2) - f(x1)

Δx = x2 x1. Δy = y2 y1. Δy = f(x2) - f(x1) INCREMENTO Y TASAS El cálculo diferencial es el estudio del cambio que ocurre en variables dependientes cuando hay variaciones en variables independientes Por ejemplo El cambio del costo de operación de

Más detalles

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA Valor promedio Problemas de Aplicación 1. Suponga que el costo en dólares de un producto está dado por C(x)= 400+x+0.3x 2, donde

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios Resuelva cada Integral Problemas de Aplicación 1. El costo marginal ( en dólares) de una compañía que fabrica zapatos esta dado por, en donde x es el

Más detalles

Matemática I - Problemas de Máximos y Mínimos

Matemática I - Problemas de Máximos y Mínimos Conceptos previos de la materia a considerar: Concepto de Función. Dominio, codominio, imagen. Formas de expresar una función: mediante tablas, mediante gráficas y analíticamente. Funciones crecientes

Más detalles

Guía - Funciones de Varias Variables (II)

Guía - Funciones de Varias Variables (II) Universidad de Talca Cálculo (Contador público y auditor) Instituto de Matemática y Física Mayo de 2015 Guía - Funciones de Varias Variables (II) Regla de la cadena 1. En los siguientes problemas, obtenga

Más detalles

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com.

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com. FUNCIONES 1- a) Dada la función:, Definida para 0, 0, encontrar el punto (x,y) que maximiza f sujeto a la restricción x+y=36. b) Calcular: Aragón 2014 Opción A Junio 2- Dada la función: Calcular: a) Dominio

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA. Valor promedio =

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA. Valor promedio = APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA Valor promedio El valor promedio de una función continua y=f(x) sobre un intervalo [a, b] es Valor promedio = Ejercicio. 1. El costo

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE FUNCIONES REALES DE UNA VARIABLE REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE FUNCIONES REALES DE UNA VARIABLE REAL EJERCICIOS RESUELTOS DE DERIVADAS DE FUNCIONES REALES DE UNA VARIABLE REAL Ejercicio nº 1.- Calcula (), utilizando la definición de derivada, siendo: f () + 5 f ( + ) f () ( + ) + 5( + ) 18 (4 + 4 + )

Más detalles

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164 EJERCICIO 16 LA COMPETENCIA PERFECTA El modelo de competencia perfecta es uno de los modelos de mercado más importantes en microeconomía. En este ejercicio analizamos dicho modelo. * Consideremos una situación

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos

Más detalles

Ejercicios Tema 5. La sociedad además debe soportar los siguientes gastos: Por el seguro: 450 euros y por derechos arancelarios: 980 euros

Ejercicios Tema 5. La sociedad además debe soportar los siguientes gastos: Por el seguro: 450 euros y por derechos arancelarios: 980 euros Ejercicios Tema 5 Ejercicio 1. La sociedad ANEOR, SA adquiere 1.000 uds de mercancías por 18.000 euros, siendo los gastos de transporte de 550 euros. El proveedor concede a la sociedad un descuento por

Más detalles

3. Especialización y necesidad de coordinación.

3. Especialización y necesidad de coordinación. 2º BACHILLERATO Ester Ponsoda 3. Especialización y necesidad de coordinación. LA DIVISIÓN TÉCNICA DEL TRABAJO genera INTERDEPENDENCIA ECONÓMICA lo que plantea la necesidad de crear INSTRUMENTOS PARA COORDINAR

Más detalles

Unidad V. Ingeniería en administración. Cuestionario de la Unidad 5: Teoría de la empresa: producción y costos

Unidad V. Ingeniería en administración. Cuestionario de la Unidad 5: Teoría de la empresa: producción y costos Unidad V Catedrática: L.A. Jorge Velasco Castellanos Ingeniería en administración Cuestionario de la Unidad 5: Teoría de la empresa: producción y costos ING. EN GESTIÓN EMPRESARIAL CUESTIONARIO 1. Defina

Más detalles

ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD

ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD 1 Los alumnos de 2º curso del IES San Saturnino, con objeto de recabar fondos para su viaje de estudios, se plantean la posibilidad de vender

Más detalles

Ejercicios Resueltos de Derivadas y sus aplicaciones:

Ejercicios Resueltos de Derivadas y sus aplicaciones: Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

3. Funciones y gráficas

3. Funciones y gráficas Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que

Más detalles

SELECTIVIDAD. (Hasta modelo 2012) PROBLEMAS UNIDAD 5

SELECTIVIDAD. (Hasta modelo 2012) PROBLEMAS UNIDAD 5 SELECTIVIDAD (Hasta modelo 2012) PROBLEMAS UNIDAD 5 13. Supongamos una empresa que produce un determinado bien X y que para ello genera los siguientes costes mensuales: Retribución fija a los empleados:

Más detalles

3. LA COMBINACION DE FACTORES Y LA PRODUCTIVIDAD DE LA EMPRESA

3. LA COMBINACION DE FACTORES Y LA PRODUCTIVIDAD DE LA EMPRESA 3. LA COMBINACION DE FACTORES Y LA PRODUCTIVIDAD DE LA EMPRESA Como se sabe, la producción es el proceso mediante el cual se generan los bienes y servicios que las sociedades compran con el fin de consumirlos

Más detalles

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA 1º) Estudia la continuidad de la siguiente función: x+3 si x < 2 fx = x +1 si x 2 La función está definida para todos los reales: D(f)=R Tanto a

Más detalles

El alumno deberá contestar al bloque de respuesta obligada y elegir una de las dos alternativas. BLOQUE DE RESPUESTA OBLIGADA

El alumno deberá contestar al bloque de respuesta obligada y elegir una de las dos alternativas. BLOQUE DE RESPUESTA OBLIGADA El alumno deberá contestar al bloque de respuesta obligada y elegir una de las dos alternativas. BLOQUE DE RESPUESTA OBLIGADA Una empresa industrial fabrica un único producto que vende al precio de 375

Más detalles

9. Rectas e hipérbolas

9. Rectas e hipérbolas 08 SOLUCIONARIO 9. Rectas e hipérbolas Representa gráficamente las siguientes ecuaciones. Di cuáles son funciones y clasifícalas: 8. y =. FUNCIONES CONSTANTES LINEALES PIENSA CALCULA y = Halla mentalmente

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

UNIDAD 3 LOGARITMOS EJERCICIOS RESUELTOS. Objetivo general.

UNIDAD 3 LOGARITMOS EJERCICIOS RESUELTOS. Objetivo general. . UNIDAD LOGARITMOS EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad comprenderás la importancia histórica de los logaritmos y resolverás ejercicios y problemas en los que apliques los logaritmos

Más detalles

EL PUNTO DE EQUILIBRIO

EL PUNTO DE EQUILIBRIO EL PUNTO DE EQUILIBRIO El punto de equilibrio sirve para determinar el volumen mínimo de ventas que la empresa debe realizar para no perder, ni ganar. En el punto de equilibrio de un negocio las ventas

Más detalles

TEMAS 10 LAS FUNCIONES ELEMENTALES 1º BACH MATE I

TEMAS 10 LAS FUNCIONES ELEMENTALES 1º BACH MATE I TEMA 0 FUNCIONES ELEMENTALES MATEMÁTICAS I º Bach. TEMAS 0 LAS FUNCIONES ELEMENTALES º BACH MATE I Son funciones? Ejercicio : Indica cuáles de las siguientes representaciones corresponden a la gráfica

Más detalles

unidad 8 Funciones lineales

unidad 8 Funciones lineales Cuando dos magnitudes son proporcionales Página Dos magnitudes son proporcionales cuando los valores de una de ellas se obtienen a partir de los de la otra, multiplicándolos por un número fijo llamado

Más detalles

LIMITE. Si f(x)= x 2 -x 6 = (x 3) (x + 2) = x + 3 x + 2 x + 2

LIMITE. Si f(x)= x 2 -x 6 = (x 3) (x + 2) = x + 3 x + 2 x + 2 LIMITE Qué se entiende por límite? De ordinario hablamos del precio límite de la velocidad límite del límite de nuestra propia resistencia los límites de la tecnología moderna o de estirar un muelle hasta

Más detalles

Tema 1 Las Funciones y sus Gráficas

Tema 1 Las Funciones y sus Gráficas Tema Las Funciones y sus Gráficas..- Definición de Función y Conceptos Relacionados Es muy frecuente, en geometría, en física, en economía, etc., hablar de ciertas magnitudes que dependen del valor de

Más detalles

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014 http://www.matematicaaplicada.info 1 de 6 jezasoft@gmail.com MATEMÁTICA APLICADA ADMINISTRACIÓN DE EMPRESAS MATEMÁTICAS PARA ADMINISTRACIÓN TALLER 04 (MÍNIMOS CUADRADOS) Manizales, 28 de Abril de 2014

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

Tema 5. La actividad económica

Tema 5. La actividad económica 1. Actividad económica: definición y agentes económicos Actividad económica es el proceso mediante el cual se obtienen e intercambian los bienes y servicios que cubren las necesidades de las personas.

Más detalles

Prof. Claudio del Pino O.

Prof. Claudio del Pino O. Índice 1. Derivadas parciales 2 1.1. Definición de derivadas parciales..... 2 1.2. Actividades iniciales............ 3 1.3. Costo marginal............... 5 1.3.1. Una actividad........... 6 1.4. Productos

Más detalles

5.3 El equilibrio a corto y a largo plazo en los distintos tipos de mercado

5.3 El equilibrio a corto y a largo plazo en los distintos tipos de mercado 5.3 El equilibrio a corto y a largo plazo en los distintos tipos de mercado Hay equilibrio cuando no hay motivación para alterar las conductas, pues ya no se puede aumentar ganancias o disminuir pérdidas.

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. tema 08 La minimización de los costes Enunciados

Más detalles

CÁLCULO DIFERENCIAL (SEMESTRE 01-2010) EJERCICIOS COMPLEMENTARIOS SECCIÓN 1.1 DEL TEXTO GUÍA

CÁLCULO DIFERENCIAL (SEMESTRE 01-2010) EJERCICIOS COMPLEMENTARIOS SECCIÓN 1.1 DEL TEXTO GUÍA CÁLCULO DIFERENCIAL (SEMESTRE 01-2010) EJERCICIOS COMPLEMENTARIOS SECCIÓN 1.1 DEL TEXTO GUÍA 1. Expresar el área de un triángulo equilátero como función de la altura h del triángulo. 2. Se va a construir

Más detalles

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f)

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f) 1. Aplique el método de inducción matemática para probar las siguientes proposiciones. a) b) c) d) e) f) es divisible por 6. g) 2. Halle la solución de las siguientes desigualdades de primer orden. g)

Más detalles

LA EMPRESA, LA TEORIA DE LA PRODUCCION Y DE LOS COSTOS

LA EMPRESA, LA TEORIA DE LA PRODUCCION Y DE LOS COSTOS LA EMPRESA, LA TEORIA DE LA PRODUCCION Y DE LOS COSTOS En un sistema de economía de mercado, la empresa privada realiza la función productiva fundamental. La empresa es la unidad económica de producción

Más detalles

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.

Más detalles

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita: RELACIÓN DE EJERCICIOS TEMA 4.- Inecuaciones 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Variables. Relación funcional.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Variables. Relación funcional. 86 _ 069-078.qxd 7//07 : Página 69 Funciones INTRODUCCIÓN El concepto de función es uno de los más importantes que se tratan en este curso y, aunque no reviste una especial dificultad, plantea a veces

Más detalles

Lección 49. Funciones I. Definición

Lección 49. Funciones I. Definición Lección 49 Funciones I Definición Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x A exactamante un elemento y B. El elemento y B, se denota por f (x), y decimos

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

demandada. Es decir, observar si una variación del precio afecto mucho o poco a la cantidad que los consumidores están dispuestos a comprar.

demandada. Es decir, observar si una variación del precio afecto mucho o poco a la cantidad que los consumidores están dispuestos a comprar. La elasticidad de la demanda La elasticidad de la demanda (1) El precio ejerce una influencia sobre la cantidad demandada del bien. Cuando varía el precio del bien, los consumidores reaccionan demandando

Más detalles

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011 1. CÁLCULO DE DERIVADAS Ejercicio 1. (001) Calcule las funciones derivadas de las siguientes: Lx a) (1 punto) f ( x) = (Lx indica logaritmo neperiano de x) x 3 b) (1 punto) g( x) = (1 x ) cos x 3 1 c)

Más detalles

Teoría de la Empresa. La Tecnología de Producción

Teoría de la Empresa. La Tecnología de Producción Teoría de la Empresa La Tecnología de Producción La Empresa Qué es una Empresa? En la práctica, el concepto de empresa, y el papel que las empresa desempeñan en la economía, son extraordinariamente complejos.

Más detalles

Introducción FRONTERA DE POSIBILIDADES DE PRODUCCIÓN TEMA 2

Introducción FRONTERA DE POSIBILIDADES DE PRODUCCIÓN TEMA 2 TEMA 2 Introducción FRONTERA DE POSIBILIDADES DE PRODUCCIÓN Introducción Recordemos que la economía es la ciencia que estudia cómo la sociedad produce y distribuye bienes y servicios para satisfacer los

Más detalles

2. LA FUNCIÓN PRODUCTIVA DE LA EMPRESA

2. LA FUNCIÓN PRODUCTIVA DE LA EMPRESA 2. LA FUNCIÓN PRODUCTIVA DE LA EMPRESA PRODUCCIÓN: Concepto: Elaboración de productos terminados (bienes y servicios) a partir de la combinación de los factores productivos (recursos naturales, trabajo

Más detalles

INTRODUCCIÓN A LA ECONOMÍA. 6.1. La Demanda de Bienes. 6.1. La Demanda de Bienes TEMA 6. DEMANDA AGREGADA

INTRODUCCIÓN A LA ECONOMÍA. 6.1. La Demanda de Bienes. 6.1. La Demanda de Bienes TEMA 6. DEMANDA AGREGADA INTRODUCCIÓN A LA ECONOMÍA TEMA 6. DEMANDA AGREGADA Índice 6.1. Modelización agregada de los componentes de la Demanda Interior: Consumo, Inversión, Gasto Público. 6.2. Determinación del equilibrio; Multiplicadores.

Más detalles

ADMINISTRACIÓN DE OPERACIONES EJERCICIOS No 1. PRIMERA PREGUNTA Un vendedor puede comprar pantalones a precios referenciales.

ADMINISTRACIÓN DE OPERACIONES EJERCICIOS No 1. PRIMERA PREGUNTA Un vendedor puede comprar pantalones a precios referenciales. ADMINISTRACIÓN DE OPERACIONES EJERCICIOS No 1 PRIMERA PREGUNTA Un vendedor puede comprar pantalones a precios referenciales. Si compra 100 unidades, el costo unitario es $ 11; Si compra 200 unidades, el

Más detalles

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido:

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido: INTRODUCCIÓN A LA ESTADÍSTICA. Relación 4: REGRESIÓN Y CORRELACIÓN 1.- En una población se ha procedido a realizar observaciones sobre un par de variables X e Y. Xi 4 5 4 5 6 5 6 6 Yi 1 1 3 3 3 4 4 ni

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Funciones constantes, lineales y afines 1.

Funciones constantes, lineales y afines 1. Funciones constantes, lineales y afines 1. 1.- Rectas horizontales y verticales. Ej.1.- A continuación tienes la gráfica de la recta y = 0. Qué puntos de corte tiene con los ejes? Qué posición tiene respecto

Más detalles

la posición de inventario no será igual al inventario disponible cuando se coloca un pedido en términos de los inventarios disponibles 4.

la posición de inventario no será igual al inventario disponible cuando se coloca un pedido en términos de los inventarios disponibles 4. 1.- Una empresa que se dedica a la venta de bebidas gaseosas tiene una demanda anual de 3600 cajas, Una caja de bebidas le cuesta a la empresa $3.00, el costo de cada pedidos es de $ 20.00, y los costos

Más detalles

Algunos conceptos microeconómicos. Tema: Elasticidad.

Algunos conceptos microeconómicos. Tema: Elasticidad. UNIVERSIDAD DEL VALLE FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN MICROECONOMÍA rograma de Contaduría ública rofesor: Uvencer Alexander Gómez I. Marzo de 008. Algunos conceptos microeconómicos. Tema: Elasticidad.

Más detalles

CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO

CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO Documento elaborado por Jaime Aguilar Moreno Docente área económica Universidad del Valle Sede Buga CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO OBJETIVO DEL CAPÍTULO Lograr que el estudiante

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

5. [2013] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días

5. [2013] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días . [204] [ET-A] Una empresa ha realizado un estudio sobre los beneficios, en miles de euros, que ha obtenido en los últimos 0 años. La función a la que se ajustan dichos beneficios viene dada por B(t) =

Más detalles

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

Ayudantía 6. Costo mediototal

Ayudantía 6. Costo mediototal Ayudantía 6 1. Comentes a) La oferta de una firma es el costo marginal R: VERDADERO En el corto plazo la curva de oferta de una empresa competitiva es su curva marginal situada por encima de su costo medio

Más detalles

El punto de equilibrio. Apalancamiento operativo Apalancamiento financiero

El punto de equilibrio. Apalancamiento operativo Apalancamiento financiero El punto de equilibrio Apalancamiento operativo Apalancamiento financiero PUNTO DE EQUILIBRIO Es el volumen de ventas al cual los costos operativos totales son iguales a los ingresos totales, y el ingreso

Más detalles

Anexo Metodológico N 6 Metodología para el Cálculo de Indicadores Económicos-Financieros

Anexo Metodológico N 6 Metodología para el Cálculo de Indicadores Económicos-Financieros Anexo Metodológico N 6 Metodología para el Cálculo de Indicadores Económicos-Financieros 258 Instituto Nacional de Estadística e Informática Metodología para el Cálculo de Indicadores Económicos-Financieros

Más detalles

Modelos de input-output y cadenas de Markov

Modelos de input-output y cadenas de Markov MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/~mamaeusch/ Modelos de input-output y cadenas de Markov Ao. Univ.-Prof. Werner Peschek El proyecto MaMaEuSch ha sido

Más detalles

a. Definir el concepto de productividad global y calcularlo para esta empresa

a. Definir el concepto de productividad global y calcularlo para esta empresa 1. Una empresa produce dos artículos, A y B, con los siguientes datos medios diarios: para producir A, emplea 5 trabajadores y consume 100 Kg de materiales. Para producir el producto B emplea a 6 trabajadores,

Más detalles

Guía Práctica de la Unidad I. Economía I - 2013.

Guía Práctica de la Unidad I. Economía I - 2013. Resuelva la presente guía teniendo en cuenta estos puntos: En caso de Verdadero o Falso (V/F) Justifique sus respuestas. En caso de múltiple choice existe una única opción. 1. (V/F)Si las manzanas y las

Más detalles

Parte I. 1. (V/F) Dos curvas de indiferencia de un consumidor solo pueden cortarse en un punto.

Parte I. 1. (V/F) Dos curvas de indiferencia de un consumidor solo pueden cortarse en un punto. Estimados estudiantes: esta es una guía que pretende ayudarlos a estudiar. Si la trabajan a conciencia, con cada pregunta o ejercicio podrán reforzar conceptos y les ayudará a comprender el tema. Los trabajos

Más detalles

Cómo determinar los costos y definir los precios adecuados para mis productos y/o servicios? 05/04/2016 1

Cómo determinar los costos y definir los precios adecuados para mis productos y/o servicios? 05/04/2016 1 Cómo determinar los costos y definir los precios adecuados para mis productos y/o servicios? 05/04/2016 1 Agenda 1. Qué es un costo y por qué es importante? 2. Objeto de costo 3. Qué nos permite la medición

Más detalles

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante.

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante. Pruebas de Acceso a la Universidad de Zaragoza. ANÁLISIS Junio 99. Sea f: una función cuya primera derivada es f () =. Se pide: a) Determinar los intervalos de crecimiento y decrecimiento, de concavidad

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

ACTIVIDADES TEMA 1. LA ECONOMÍA: LA NECESIDAD DE ELEGIR

ACTIVIDADES TEMA 1. LA ECONOMÍA: LA NECESIDAD DE ELEGIR 1. Contesta brevemente y con tus palabras a las siguientes cuestiones: a) Define con tus palabras qué entiendes por economía. b) Cuál es la característica más importante que presentan las necesidades humanas

Más detalles

PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.

PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. Matemáticas º ESO Federico Arregui PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en es igual a su cuadrado?. Qué número multiplicado por 3 es 0

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

APLICACIÓN. TEMARIO: excedente del consumidor, excedente del productor, impuestos, precios máximos y mínimos.

APLICACIÓN. TEMARIO: excedente del consumidor, excedente del productor, impuestos, precios máximos y mínimos. APLICACIÓN TEMARIO: excedente del consumidor, excedente del productor, impuestos, precios máximos y mínimos. Excedente del consumidor (EC): podemos definirlo como el beneficio o valor total que reciben

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

FUNCIONES RACIONALES. HIPÉRBOLAS

FUNCIONES RACIONALES. HIPÉRBOLAS www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal Análisis y programación lineal Problema 1: La gráfica de la función derivada de una función f es la parábola de vértice (0, 2) que corta al eje de abscisas en los puntos ( 3, 0) y (3, 0). A partir de dicha

Más detalles

GEOMETRÍA ANALÍTICA DEL PLANO

GEOMETRÍA ANALÍTICA DEL PLANO GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del

Más detalles

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad.

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad. LA MEDIDA Magnitudes físicas Todas las propiedades que podemos medir se denominan magnitudes. Para medir una magnitud hay que determinar previamente una cantidad de esta, llamada unidad. Al medir, se comparan

Más detalles

Máximo o mínimo de una función. Solución: El mínimo de una función se da en los puntos que anulan su derivada y tiene derivada segunda positiva.

Máximo o mínimo de una función. Solución: El mínimo de una función se da en los puntos que anulan su derivada y tiene derivada segunda positiva. Análisis: Máimos, mínimos, optimización 1 Máimo o mínimo de una función Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios

Más detalles

Ecuaciones de Primer Grado con una Incógnita

Ecuaciones de Primer Grado con una Incógnita Tema 5 Ecuaciones de Primer Grado con una Incógnita Una ecuación es una igualdad ( = ) que sólo se verifica para unos valores concretos de una variable, generalmente llamada x. Cuando sólo aparece una

Más detalles

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES FUNDAMENTO TEÓRICO: La materia puede estar en tres estados: sólido, líquido y gaseoso. Los gases, no tienen forma ni volumen fijo, las fuerzas que mantienen

Más detalles

ACTIVIDAD DE APRENDIZAJE

ACTIVIDAD DE APRENDIZAJE ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES.

TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. TEMA: FUNCIONES REALES DE VARIABLE REAL. TIPOS DE FUNCIONES. Definición: Una función es una relación entre dos variables x e y de manera que a cada valor de la variable x le corresponde un único valor

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

ECONOMÍA I MICROECONOMÍA PRODUCCIÓN Y COSTES. El ingreso total es la cantidad que recibe una empresa por la venta de su producción.

ECONOMÍA I MICROECONOMÍA PRODUCCIÓN Y COSTES. El ingreso total es la cantidad que recibe una empresa por la venta de su producción. TEMA 4 PRODUCCIÓN Y COSTES En este tema vamos a estudiar la conducta de la empresa, lo que nos permitirá conocer mejor la curva de oferta de un mercado. También analizaremos una parte de la economía denominada

Más detalles

Problemas de Sistemas de Inecuaciones lineales con dos incógnitas.

Problemas de Sistemas de Inecuaciones lineales con dos incógnitas. Problema 1. Se considera la región factible dada por el siguiente conjunto de restricciones: + 5 + 3 9 0, Representar la región factible que determina el sistema de inecuaciones anterior hallar de forma

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

MICROECONOMÍA I NOTAS DE CLASE

MICROECONOMÍA I NOTAS DE CLASE MICRECNMÍ I NTS E CLSE UNI 4: La competencia perfecta 4.1.- efinición y supuestos Estudiar el modelo de competencia perfecta brinda un ideal contra el cual comparar otros modelos y mercados. Las propiedades

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

CURSOS CENEVAL TOLUCA

CURSOS CENEVAL TOLUCA Precálculo Propiedades de los números reales Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números

Más detalles

Los costes de la empresa

Los costes de la empresa Los costes de la empresa La costes de la empresa (1) Para producir las empresas utilizan factores productivos. Dado que estos no son gratuitos, es inevitable incurrir en costes de producción. El coste

Más detalles