y por lo tanto se tiene (5)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "y por lo tanto se tiene (5)"

Transcripción

1 FISICA GENERAL II 2011 Guía de Trabajo Practico N o 1 MEDICIÓN DE VISCOSIDAD EN LÍQUIDOS Método 1: El viscosímetro de Ostwald Introducción: El fundamento de la mayor parte de los viscosímetros que se utilizan en la práctica es la fórmula de Poiseuille, que nos da el caudal Q (volumen de fluido por unidad de tiempo) que atraviesa un capilar de radio R y longitud l entre cuyos extremos se ha aplicado una diferencia de presiones p (2) donde η es la viscosidad del fluido. Esto es Como R, l y V son constantes para un tubo determinado, los agrupamos en la constante (3) (4) y por lo tanto se tiene (5) Si el líquido fluye únicamente por acción de la gravedad en un tubo situado verticalmente, la diferencia de presión p es la que ejerce la columna de líquido, esto es, p =ρgh, siendo ρ la densidad del liquido y h la altura de la columna. Por lo tanto Si el capilar no fuera vertical habría que tener en cuenta el ángulo que forma con la vertical. Pero como h y el ángulo son valores constantes para un tubo determinado podemos escribir: (6) (7) 1

2 El valor de K depende por lo tanto de la geometría de cada viscosímetro en concreto y suele darlo el constructor. También puede determinarse utilizando un líquido de viscosidad conocida. Normalmente se determinan las viscosidades relativas referidas al agua. Para el agua se tendrá: De la expresión (8) se puede determinar K e introducir en la expresión (7) para determinar la viscosidad desconocida del líquido en estudio. (8) enrases A Figura 1. Viscosímetro de Ostwald. Como la viscosidad depende de las fuerzas intermoleculares y estas se modifican con la temperatura la viscosidad de un líquido también varía con la temperatura. El viscosímetro de Ostwald (Fig.1) es un aparato relativamente simple para medir viscosidad, η, de fluidos Newtonianos. En un experimento típico se registra el tiempo de flujo, t, de un volumen dado V (entre las marcas a y b) a través de un tubo capilar de longitud L bajo la influencia de la gravedad. Procedimiento Con una pipeta introduzca alcohol en la ampolla A hasta más de la mitad de la misma. Insufle aire de modo que le líquido llene el volumen V quedando un poco más arriba del enrase a. Deje escurrir el líquido poniendo en marcha el cronómetro en el momento en que la superficie del líquido pasa por a y deteniéndolo en el momento que pasa por b. Realice al menos 10 determinaciones del tiempo que tarda el líquido en escurrir desde a hasta b. Vacíe el viscosímetro y séquelo. 2

3 Después de que el viscosímetro se halla secado y alcance nuevamente la temperatura ambiente repita el procedimiento con agua destilada y determine la viscosidad relativa del líquido respecto del agua. Recuerde que si realiza varias medidas la dispersión de las mismas debe tenerse en cuenta en la estimación del intervalo de incertidumbre. 2. Determinación de la viscosidad absoluta del agua a una temperatura dada respecto a la ambiente. 3. Determine la temperatura ambiente, y repita la medición con agua a otra temperatura diferente. Método 2: Viscosímetro de Stokes. Introducción Sobre una esfera en movimiento e inmersa (la figura muestra una esfera que cae) en un líquido, actúan las siguientes fuerzas, como se observa en la figura, el peso, el empuje (Arquímedes) y la fuerza de roce que aparece al desplazarse el cuerpo en el medio. Donde ρ c es la densidad de la esfera, ρ f la densidad del líquido, r el radio de la esfera, η es la viscosidad del líquido y v la velocidad de la esfera. Dependiendo de las diferencia de densidades entre la esfera y el líquido, será el sentido de. Al ser F η proporcional a la velocidad, después de un tiempo transitorio, la suma de fuerzas vale cero y la esfera se mueve con velocidad constante, que se llama velocidad límite v l. 3

4 Entonces, midiendo esta velocidad límite, sabiendo las densidades involucradas y conociendo el radio r de la esfera es posible determinar la viscosidad del fluido. Parte I En este práctico vamos a usar, en esta primera parte, como esferas a burbujas de aire introducidas en la base del recipiente, como se observa en la figura. Por lo tanto debemos medir r y ρ c, además de v l, Medición de r Como una buena aproximación podemos pensar que el aire a presión atmosférica como gas ideal (quiere decir que las moléculas que lo componen, no interactúan entre sí). La ecuación que relaciona la presión, temperatura y volumen de un gas ideal es la siguiente Donde P = presión del gas V = Volumen del gas T = Temperatura del gas expresada en grados K 4

5 R = constante de de los gases = JK -1 mol -1 n = número de moles La jeringa está graduada de modo que es posible conocer a priori el volumen V 0 de aire a introducir. De acuerdo a la ecuación de los gases, si el aire en la jeringa está a la presión atmosférica Una vez introducido el aire en el fluido Donde. Entonces, si la introducción de aire en el líquido se hace rápidamente, se puede suponer que en el proceso no se intercambia calor con el entorno, (lo que se conoce como proceso adiabático). En ese caso, la ecuación que describe el proceso es De donde donde γ = 1.4 De modo que midiendo V 0, P 0 y h es posible determinar V h y luego r. Determinación de ρ c Volvamos a la ecuación de los gases ideales: Como V 0 está determinado a priori, podemos despejar n (el número de moles en la burbuja) Asumiendo que el aire es 80% nitrógeno y 20% oxigeno 1 mol de aire =0.8 x x 32= 31.2 gr. Entonces y Determinación de la velocidad límite υ l 5

6 La velocidad límite se determina midiendo el tiempo que tarda la burbuja en recorrer una distancia determinada en la probeta, una vez que ha alcanzado el estado estacionario. Procedimiento Experimental Se medirán 4 tamaños de burbujas, ml, 0.05 ml, ml y 0.1 ml. Se introducirán en glicerina cuya densidad es en:.el procedimiento experimental consiste Introducir la aguja sola hasta el fondo en el tapón de goma. Inmediatamente, seleccionar el volumen de aire a introducir en la jeringa. Conectar la jeringa a la aguja y presionar el émbolo rápidamente. Si sale mas de una burbuja, esperar que las burbujas desaparezcan y repetir el procedimiento, (esto es, retirar la jeringa de la aguja y volver a seleccionar el volumen). Para cada uno de los volúmenes, se introducirán 10 burbujas y se medirá el tiempo que tardan en recorrer la distancia predeterminada en la probeta. Si por alguna razón se demora el procedimiento, sacar la aguja del tapón para que no empiece a perder líquido. Comentarios 1) Mas arriba se demostró que el volumen, y por lo tanto el radio de la burbuja depende de la presión. Implícitamente hemos asumido que el radio no varía durante el experimento. Determine la validez de esta hipótesis calculando el error introducido en esta suposición. 2) También hemos asumido que la burbuja se encuentra ya con la velocidad límite cuando empezamos la medición de tiempos. Verificar con las ecuaciones del Apéndice si esta suposición es correcta. 3) Es importante el valor de la densidad de la burbuja? Parte II En la segunda parte del práctico se dejaran caer en el líquido, esferas de acero de diámetro D = 3.17 mm y se procederá medir los tiempos de descenso entre marcas de la probeta (10 veces). De este modo, se volverá a medir la velocidad límite y a recalcular la viscosidad del líquido. Analizar y comparar los resultados obtenidos por ambos métodos. Apéndice Ecuación de movimiento de una esfera en un fluido 6

7 donde y. Integrando se obtiene Obteniendo Donde La velocidad tiende asintóticamente a v l. Si integramos nuevamente Como se observa, el término exponencial decae rápidamente y la posición resulta entonces proporcional al tiempo. El aire limpio y puro forma una capa de aproximadamente millones de toneladas que rodea la Tierra, de las su composición es la siguiente Componente Concentración aproximada Nitrógeno (N) 78.03% en volumen Oxígeno (O) 20.99% en volumen Dióxido de Carbono (CO 2 ) 0.03% en volumen Argón (Ar) 0.94% en volumen Neón (Ne) % en volumen 7

8 Helio (He) % en volumen Criptón (Kr) % en volumen Xenón (Xe) % en volumen Hidrógeno (H) 0.01% en volumen Metano (CH 4 ) % en volumen Óxido nitroso (N 2 O) % en volumen Vapor de Agua (H 2 O) Variable Ozono (O 3 ) Variable Partículas Variable 8

Descripción de los 3 estados de la materia. Química General II Estados líquido y sólido. Diagrama de Fases

Descripción de los 3 estados de la materia. Química General II Estados líquido y sólido. Diagrama de Fases Descripción de los 3 estados de la materia Química General II Estados líquido y sólido. Diagrama de Fases Estado Líquido El estado líquido se caracteriza por: Retener su volumen pero no su forma. No poder

Más detalles

"OBSERVACIÓN DE LA CAÍDA DE UNA ESFERA A TRAVÉS DE UN MEDIO VISCOSO"

OBSERVACIÓN DE LA CAÍDA DE UNA ESFERA A TRAVÉS DE UN MEDIO VISCOSO EXPERIMENTO FA6 LABORATORIO DE FÍSICA AMBIENTAL "OBSERVACIÓN DE LA CAÍDA DE UNA ESFERA A TRAVÉS DE UN MEDIO VISCOSO" MATERIAL: () VISCOSÍMETRO ESFERAS DE ACERO 3 () MICROMETRO. ESCALA (O.00mm) (D x=0.0mm).

Más detalles

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS.

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. PRÁCTICA : MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. MEDIDA DE DIMENSIONES GEOMÉTRICAS CON EL PALMER Y EL CALIRADOR. Con esta práctica se pretende que el alumno se familiarice con el manejo de distintos

Más detalles

Principios de hidrodinámica

Principios de hidrodinámica Introducción Principios de hidrodinámica Adaptación: Prof. Hugo Chamorro HIDRODINÁMICA Mecánica y Fluidos Hidrodinámica Estudia los fluidos en movimientos, es decir, el flujo de los fluidos. Este estudio

Más detalles

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES FUNDAMENTO TEÓRICO: La materia puede estar en tres estados: sólido, líquido y gaseoso. Los gases, no tienen forma ni volumen fijo, las fuerzas que mantienen

Más detalles

PROPIEDADES DE LOS FLUIDOS

PROPIEDADES DE LOS FLUIDOS PROPIEDADES DE LOS FLUIDOS CRUDO Objetivo: Determinar las propiedades importantes del Crudo, tales como la Densidad, Gravedad API, Viscosidad Cinemática y Viscosidad Dinámica; utilizando diferentes métodos.

Más detalles

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS Se le llama fluido a toda aquella sustancia continua que puede fluir. Los fluidos pueden ser gaseosos y líquidos. Esta es la diferencia fundamental entre un sólido, cuya

Más detalles

PRÁCTICA 1: DETERMINACIÓN EXPERIMENTAL DE LA VELOCIDAD DE SEDIMENTACIÓN

PRÁCTICA 1: DETERMINACIÓN EXPERIMENTAL DE LA VELOCIDAD DE SEDIMENTACIÓN PRÁCTICA 1: DETERMINACIÓN EXPERIMENTAL DE LA VELOCIDAD DE SEDIMENTACIÓN 1. Introducción Se llama sedimentación a la operación que consiste en separar de una suspensión, un líquido claro que sobrenada en

Más detalles

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

ECUACIÓN DE ESTADO DE LOS GASES IDEALES ECUACIÓN DE ESTADO DE LOS GASES IDEALES Laboratorio de Física 1. OBJETIVO Se estudiará, tomando como ejemplo el aire, el comportamiento de un gas ideal cuando varían sus variables de estado, y se comprobarán

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS 6.- Principio de Arquímedes.

Más detalles

Es totalmente homogénea o posee capas?

Es totalmente homogénea o posee capas? Qué es la atmósfera terrestre? La atmósfera terrestre es la envoltura gaseosa que rodea nuestro planeta. La fuerza de gravedad la mantiene en su sitio, siendo su composición es 78% nitrógeno, 21% oxígeno

Más detalles

IV UNIDAD TRANSFERENCIA DE MASA

IV UNIDAD TRANSFERENCIA DE MASA IV UNIDAD TRANSFERENCIA DE MASA La transferencia de masa es la tendencia de uno o más componentes de una mezcla a transportarse desde una zona de alta concentración del o de los componentes a otra zona

Más detalles

Fundamentos de Hidrodinámica

Fundamentos de Hidrodinámica Fundamentos de Hidrodinámica Biofísica del Sistema Cardiovascular Matías Puello Chamorro http://matiaspuello.wordpress.com/ 20 de enero de 2015 Índice 1. Introducción 3 2. Dinámica de Fluidos 4 2.1. Definición

Más detalles

VISCOSIDAD DE LÍQUIDOS NEWTONIANOS

VISCOSIDAD DE LÍQUIDOS NEWTONIANOS VISCOSIDAD DE LÍQUIDOS NEWTONIANOS 1. PROBLEMA Determinar la viscosidad de la acetona a la temperatura de 30 ºC, empleando un viscosímetro capilar. 2. PARTE EXPERIMENTAL 2.1 Medidas de higiene y seguridad

Más detalles

Ultra Alto Vacío (UHV)

Ultra Alto Vacío (UHV) Ultra Alto Vacío (UHV) Desde el punto de vista experimental, el desarrollo de la física de superficies e interfaces está íntimamente relacionado con los avances en las técnicas de UHV. La preparación de

Más detalles

Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante)

Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante) Práctica 6 Ecuación de los Gases Ideales 6.1 Objetivo El estado de un gas puede describirse en términos de cuatro variables (denominadas variables de estado): presión (P), volumen (V), temperatura (T)

Más detalles

Tema 5. Propiedades de transporte

Tema 5. Propiedades de transporte Tema 5 Propiedades de transporte 1 TEMA 5 PROPIEDADES DE TRANSPORTE 1. TEORÍA CINÉTICA DE LOS GASES POSTULADOS DE LA TEORÍA CINÉTICA DE LOS GASES INTERPRETACIÓN CINÉTICO MOLECULAR DE LA PRESIÓN Y LA TEMPERATURA

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

La Densidad, es la masa de un cuerpo por unidad de volumen.

La Densidad, es la masa de un cuerpo por unidad de volumen. Práctica INTRODUCCIÓN.- La Densidad, es la masa de un cuerpo por unidad de volumen. En ocasiones se habla de densidad relativa es significa la relación entre la densidad de un cuerpo y la densidad del

Más detalles

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

ECUACIÓN DE ESTADO DE LOS GASES IDEALES ECUACIÓN DE ESTADO DE LOS GASES IDEALES Laboratorio de Física 1. OBJETIVO Se estudiará, tomando como ejemplo el aire, el comportamiento de un gas ideal cuando varían sus variables de estado, y se comprobarán

Más detalles

EL ESTADO GASEOSO. Algunas características importantes de los gases son: la expansibilidad, capacidad de difusión, baja densidad y altas presiones.

EL ESTADO GASEOSO. Algunas características importantes de los gases son: la expansibilidad, capacidad de difusión, baja densidad y altas presiones. EL ESTADO GASEOSO El aire está compuesto, principalmente, de los elementos oxígeno y nitrógeno. Otros elementos no metálicos existen en la naturaleza como gases en condiciones ordinarias como hidrógeno

Más detalles

Práctica 2 DENSIDAD RELATIVA Y DENSIDAD APARENTE DE UN MATERIAL EN POLVO

Práctica 2 DENSIDAD RELATIVA Y DENSIDAD APARENTE DE UN MATERIAL EN POLVO Práctica 2 DENSIDAD RELATIVA Y DENSIDAD APARENTE DE UN MATERIAL EN POLVO 1. Objetivos docentes Conocer un método para determinar la densidad de un material en polvo. Conocer los distintos tipos de densidades

Más detalles

Fluidos y Sistemas de Bombeo Contenido

Fluidos y Sistemas de Bombeo Contenido Fluidos y Sistemas de Bombeo Contenido 1. Conceptos Fundamentales. Propiedades de sustancias puras Agua. Ecuaciones de Conservación 4. Bombas Jairo Andrés s Sandoval León, M.Sc. 1. CONCEPTOS FUNDAMENTALES.

Más detalles

Las condiciones ambientales, especialmente la temperatura y la presión afectan a la viscosidad.

Las condiciones ambientales, especialmente la temperatura y la presión afectan a la viscosidad. 4. PRUEBAS 4.1. VISCOSIDAD 4.1.1. Definición La viscosidad, es la propiedad de un fluido al oponerse a su flujo cuando se aplica una fuerza. Los fluidos de alta viscosidad presentan una cierta resistencia

Más detalles

Prácticas Integrales I Año Lectivo 2007-2008 Modulo I Procedimientos e instrumentación Básica en el Laboratorio

Prácticas Integrales I Año Lectivo 2007-2008 Modulo I Procedimientos e instrumentación Básica en el Laboratorio Práctica N 2 Mediciones y Tipos de Errores 1.- Objetivos: Seleccionar el instrumento más apropiado para realizar una medición considerando su precisión y exactitud. Realizar transformaciones de unidades

Más detalles

Experimento 12 LEY DE CHARLES. Objetivos. Teoría

Experimento 12 LEY DE CHARLES. Objetivos. Teoría Experimento 12 LEY DE CHARLES Objetivos 1. Montar un modelo de máquina térmica, 2. Poner a funcionar el modelo para verificar la ley de Charles, 3. Describir y explicar la ley de Charles a la luz de los

Más detalles

NORMAS DE LA CALIDAD DEL AIRE

NORMAS DE LA CALIDAD DEL AIRE CAPÍTULO 6 NORMAS DE LA CALIDAD DEL AIRE Fuente: National Geographic - Noviembre 2000 INTRODUCCIÓN La exigencia de un aire limpio y puro proviene, en principio, del público en general ante su creciente

Más detalles

Ud 5: Cálculos en circuitos neumáticos.

Ud 5: Cálculos en circuitos neumáticos. 4 Ud 5: Cálculos en circuitos neumáticos. Presión absoluta y relativa. Presión relativa, es el valor de la presión indicado por un manómetro, tomando como referencia cero la presión atmosférica ( Pat )

Más detalles

Trabajo Práctico Nº 1 Movimiento en un fluido viscoso.

Trabajo Práctico Nº 1 Movimiento en un fluido viscoso. Trabajo Práctico Nº 1 Movimiento en un fluido viscoso. Objetivo de la experiencia -Observación del rol de las propiedades del fluido (tales como viscosidad y densidad) sobre el movimiento de un objeto

Más detalles

AEROSTATICA La aerostática frente a la hidrostática La compresibilidad de los gases. Ley de Boyle. La presión atmosférica p = p0 + g h

AEROSTATICA La aerostática frente a la hidrostática La compresibilidad de los gases. Ley de Boyle. La presión atmosférica p = p0 + g h AEROSTATICA La aerostática frente a la hidrostática Desde un punto de vista mecánico, la diferencia fundamental entre líquidos y gases consiste en que estos últimos pueden ser comprimidos. Su volumen,

Más detalles

TRABAJO PRÁCTICO N 2 DETERMINACIÓN DE DENSIDADES

TRABAJO PRÁCTICO N 2 DETERMINACIÓN DE DENSIDADES 0 TRABAJO PRÁCTICO N 2 DETERMINACIÓN DE DENSIDADES a) Determinación de la densidad de hidrógeno Objetivos Determinar la densidad de un gas Conceptos Gases ideales, presión de vapor, rendimiento, pureza,

Más detalles

Análisis de la velocidad de cuerpos esféricos en sustancias viscosas

Análisis de la velocidad de cuerpos esféricos en sustancias viscosas Análisis de la velocidad de cuerpos esféricos en sustancias viscosas Débora Leibovich, María Cecilia Molas y Florencia Rodrigez Riou Facultad de Ingeniería, Ciencias Exactas y Naturales Universidad Favaloro,

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

PRÁCTICA 1: MANEJO DEL ERROR EXPERIMENTAL Y PROPIEDADES DE LOS FLUIDOS

PRÁCTICA 1: MANEJO DEL ERROR EXPERIMENTAL Y PROPIEDADES DE LOS FLUIDOS Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Programa de Ingeniería Industrial Departamento de Energética Laboratorio de Fenómenos de Transporte PRÁCTIC 1: MNEJO DEL ERROR

Más detalles

DETERMINACION DE LA DENSIDAD Y HUMEDAD DE EQUILIBRIO I.N.V. E - 146

DETERMINACION DE LA DENSIDAD Y HUMEDAD DE EQUILIBRIO I.N.V. E - 146 E - 146-1 DETERMINACION DE LA DENSIDAD Y HUMEDAD DE EQUILIBRIO I.N.V. E - 146 1. OBJETO Existe dependencia del grado de compactación alcanzado por los suelos, con el contenido de humedad y la magnitud

Más detalles

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS 9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS OBJETIVO El objetivo de la practica es determinar la densidad de líquidos utilizando la balanza de Möhr y su aplicación a la determinación de la densidad de disoluciones

Más detalles

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO 8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la práctica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un

Más detalles

Descripción de los 3 estados de la materia. Química General II Estado Gaseoso

Descripción de los 3 estados de la materia. Química General II Estado Gaseoso Descripción de los 3 estados de la materia Química General II Estado Gaseoso Clasificación de los Estados de la Materia. Gases Líquidos Sólidos 1. Carecen de forma definida, llenan completamente el recipiente.

Más detalles

PRÁCTICA 1. Mediciones

PRÁCTICA 1. Mediciones PRÁCTICA 1 Mediciones Objetivo General El alumno determinará la incertidumbre de las mediciones. Objetivos particulares 1. El alumno determinará las incertidumbres a partir de los instrumentos de medición..

Más detalles

ρ 20º/20º = ρ a /ρ ref (I)

ρ 20º/20º = ρ a /ρ ref (I) Práctica N 1 Determinación de Densidad en los Alimentos Objetivos Determinar la densidad de diferentes muestras de alimentos utilizando el picnómetro. Determinar la densidad de diferentes muestras de alimentos

Más detalles

FACULTAD DE INGENIERIA LABORATORIO DE QUIMICA TEMA: VOLUMENES. Belkis saumeth lopez cod: 2010217066. Faviel Miranda Lobo cod: 2011111006

FACULTAD DE INGENIERIA LABORATORIO DE QUIMICA TEMA: VOLUMENES. Belkis saumeth lopez cod: 2010217066. Faviel Miranda Lobo cod: 2011111006 FACULTAD DE INGENIERIA LABORATORIO DE QUIMICA TEMA: VOLUMENES Belkis saumeth lopez cod: 2010217066 Faviel Miranda Lobo cod: 2011111006 Roberto Carlos Correa 2010213015 Victor andres castrillon martinez

Más detalles

Módulo 3: Fluidos reales

Módulo 3: Fluidos reales Módulo 3: Fluidos reales 1 Fluidos reales Según la ecuación de Bernouilli, si un fluido fluye estacionariamente (velocidad constante) por una tubería horizontal estrecha y de sección transversal constante,

Más detalles

TENSIÓN SUPERFICIAL RESUMEN

TENSIÓN SUPERFICIAL RESUMEN TENSIÓN SUPERFICIAL RESUMEN En esta práctica se trata de hallar la tensión de cinco distintos fluidos (agua, aceite de oliva y comestible, glicerina y shampoo) mediante el rompimiento de una película generada

Más detalles

Viscosímetros. Explicaciones complementarias/ Versión 0.0/ MODULO 2/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/

Viscosímetros. Explicaciones complementarias/ Versión 0.0/ MODULO 2/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/ Viscosímetros, explicaciones complementarias 0.0/ M/ FISICA Viscosímetros Explicaciones complementarias/ Versión 0.0/ MODULO / CÁTEDRA DE FÍSICA/ FFYB/ UBA/ Cátedra de Física-FFYB-UBA [] Viscosímetros,

Más detalles

CONCEPTOS BÁSICOS EN QUÍMICA

CONCEPTOS BÁSICOS EN QUÍMICA CONCEPTOS BÁSICOS EN QUÍMICA MOLES, ÁTOMOS Y MOLÉCULAS 1.-/ Calcule la masa molar de las siguientes sustancias: a) Disulfuro de carbono. b) Óxido de nitrógeno (III). c) Hidróxido de berilio. d) Carbonato

Más detalles

Práctica No 2. Determinación experimental del factor de compresibilidad

Práctica No 2. Determinación experimental del factor de compresibilidad Práctica No 2 Determinación experimental del factor de compresibilidad 1. Objetivo general: Determinación del comportamiento de un gas a diferentes presiones, mediante el cálculo experimental del factor

Más detalles

EL MOL. MOL: cantidad de materia que tiene 6,022.10 23 partículas, es decir, el número de Avogadro de partículas

EL MOL. MOL: cantidad de materia que tiene 6,022.10 23 partículas, es decir, el número de Avogadro de partículas EL MOL MOL: cantidad de materia que tiene 6,022.10 23 partículas, es decir, el número de Avogadro de partículas MOL DE ATOMOS: 6,022.10 23 átomos MOL DE MOLÉCULAS 6,022.10 23 moléculas 1 mol de átomos

Más detalles

DETERMINACION DE LA DENSIDAD

DETERMINACION DE LA DENSIDAD DETERMINACION DE LA DENSIDAD GUÍA DE QUÍMICA EXPERIMENTO N 2 DETERMINANCION DE LA DENSIDAD DE SOLIDOS Y LÍQUIDOS OBJETIVOS: Que el estudiante: a) Desarrolle destrezas para determinar numéricamente las

Más detalles

Guía de Repaso 1: Introducción

Guía de Repaso 1: Introducción Guía de Repaso 1: Introducción 1- La distancia de la Tierra al Sol es casi 104 veces mayor que el diámetro de la Tierra. Al estudiar el movimiento de ésta alrededor del Sol, diría usted que la podemos

Más detalles

Fluidos. Presión. Principio de Pascal.

Fluidos. Presión. Principio de Pascal. Fluidos. Presión. Principio de Pascal. CHOQUES ELASTICOS E INELASTICOS Se debe tener en cuenta que tanto la cantidad de movimiento como la energía cinética deben conservarse en los choques. Durante una

Más detalles

Interacción aire - agua. Termómetro húmedo

Interacción aire - agua. Termómetro húmedo Interacción aire - agua. Termómetro húmedo Objetivos de la práctica! Obtener experimentalmente la denominada temperatura húmeda.! Estudiar las magnitudes psicrométricas de dos corrientes de aire húmedo,

Más detalles

INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR

INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR Adaptación del Experimento Nº1 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 36-42. Autorizado por el Autor. Materiales: Cilindros

Más detalles

CONTENIDOS BÁSICOS. HIPÓTESIS DE AVOGADRO, CANTIDAD DE MATERIA, LEY DE LOS GASES IDEALES.

CONTENIDOS BÁSICOS. HIPÓTESIS DE AVOGADRO, CANTIDAD DE MATERIA, LEY DE LOS GASES IDEALES. CONTENIDOS BÁSICOS. HIPÓTESIS DE AVOGADRO, CANTIDAD DE MATERIA, LEY DE LOS GASES IDEALES. CUESTIONES E1S2013 La fórmula molecular del azúcar común o azúcar de mesa (sacarosa) es C12H22O11. Indique razonadamente

Más detalles

Introducción a la Física Experimental Guía de la experiencia Gas ideal Ley de Boyle-Mariotte

Introducción a la Física Experimental Guía de la experiencia Gas ideal Ley de Boyle-Mariotte Introducción a la Física Experimental Guía de la experiencia Gas ideal Ley de Boyle-Mariotte Departamento de Física Aplicada. Universidad de Cantabria. Febrero 28, 2005 Tenga en cuenta que la lectura previa

Más detalles

PRACTICA N 1: PROPIEDADES DE LOS FLUIDOS: DENSIDAD Y VISCOSIDAD.

PRACTICA N 1: PROPIEDADES DE LOS FLUIDOS: DENSIDAD Y VISCOSIDAD. PRACTICA N 1: PROPIEDADES DE LOS FLUIDOS: DENSIDAD Y VISCOSIDAD. INTRODUCCIÓN Para comprender los conceptos relacionados con la estática y dinámica de los fluidos es necesario familiarizarse con algunas

Más detalles

Manual de laboratorio de termodinámica I. Ley de Gay-Lussac

Manual de laboratorio de termodinámica I. Ley de Gay-Lussac Ley de Gay-Lussac Conceptos relacionados Presión, temperatura, volumen, coeficiente de expansión térmica, ecuación de estado de los gases ideales, constante universal de los gases. Principio El estado

Más detalles

Unidades de masa atómica

Unidades de masa atómica Unidades de masa atómica La estructura química y las fórmulas químicas sirven para estudiar las relaciones de masa de átomos y moléculas. Estas relaciones ayudan a explicar la composición de los compuestos

Más detalles

Leyes de los gases ideales

Leyes de los gases ideales QUIMICA GENERAL 1 Leyes de los gases ideales La mayoría de las sustancias pueden existir en los tres estados de la materia, dependiendo el estado del sistema de la presión y de la temperatura. En muchos

Más detalles

LIQUIDOS. Propiedades:

LIQUIDOS. Propiedades: LIQUIDOS Los líquidos se caracterizan por su volumen fijo y forma variable. Las fuerzas intermoleculares son mayores que en los gases, pero al igual que en estos, sus partículas están en movimiento constante.

Más detalles

VISCOSIDAD ELABORADO POR: DANIELA ALEJANDRA BARRETO GOMEZ MARIA CAROLINA BENAVIDES MUÑOZ VALENTINA ROJAS MARTINEZ

VISCOSIDAD ELABORADO POR: DANIELA ALEJANDRA BARRETO GOMEZ MARIA CAROLINA BENAVIDES MUÑOZ VALENTINA ROJAS MARTINEZ VISCOSIDAD ELABORADO POR: DANIELA ALEJANDRA BARRETO GOMEZ MARIA CAROLINA BENAVIDES MUÑOZ VALENTINA ROJAS MARTINEZ KAREN SUSANA DE MARIA MOSQUERA TORRADO PRESENTADO A: FERNANDO VEGA PONTIFICIA UNIVERSIDAD

Más detalles

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1]

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1] TEMA 4: BALANCES DE ENERGÍA IngQui-4 [1] OBJETIVOS! Aplicar la ecuación de conservación al análisis de la energía involucrada en un sistema.! Recordar las componentes de la energía (cinética, potencial

Más detalles

Guía de repaso 5: Gases-Transformación isotérmica

Guía de repaso 5: Gases-Transformación isotérmica Guía de repaso 5: Gases-Transformación isotérmica 1- a) Cuáles son las cantidades que determinan el estado de un gas? b) Qué significa decir que un gas sufrió una transformación? 2- a) Qué son los gases

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Sistemas Físicos y Químicos

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Sistemas Físicos y Químicos 1(7) Ejercicio nº 1 Una muestra de sulfuro de hierro de 60,5 g contiene 28 g de azufre. Cuál es la fórmula empírica de dicho compuesto? Ejercicio nº 2 150 g de un compuesto contienen 45,65 g de nitrógeno

Más detalles

P T = P A + P B + P C.

P T = P A + P B + P C. 6. Ley de Dalton: La ley de Dalton establece que en una mezcla de gases cada gas ejerce su presión como si los restantes gases no estuvieran presentes. La presión específica de un determinado gas en una

Más detalles

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

Física 1 (Paleontólogos) Curso de Verano Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli

Física 1 (Paleontólogos) Curso de Verano Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli 1. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro de 1.2 m en la sección de prueba. Si

Más detalles

LEY DE BOYLE: RELACIÓN DE PRESIÓN VOLUMEN EN GASES

LEY DE BOYLE: RELACIÓN DE PRESIÓN VOLUMEN EN GASES LEY DE BOYLE: RELACIÓN DE PRESIÓN VOLUMEN EN GASES OBJETIVOS: 1. Determinar la relación entre presión y el volumen de un gas confinado. 2. Calcular experimentalmente el trabajo realizado por un pistón

Más detalles

Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas

Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas Laboratorio de Física 1 (ByG) Guía 4: Viscosidad, empuje y oscilaciones amortiguadas Verano 2008 Objetivos Experiencia 1: Viscosidad y Empuje En esta experiencia de laboratorio vamos a estudiar el movimiento

Más detalles

4. TEORÍA ATÓMICO-MOLECULAR

4. TEORÍA ATÓMICO-MOLECULAR 4. TEORÍA ATÓMICO-MOLECULAR Sustancias que reaccionan 1. Explica qué son los procesos o cambios físicos y pon ejemplos de ellos. Los procesos o cambios físicos no producen modificaciones en la naturaleza

Más detalles

GASES - PREGUNTAS DE TEST

GASES - PREGUNTAS DE TEST GASES - PREGUNTAS DE TEST A - CONCEPTOS GENERALES B - LEYES GENERALES DE LOS GASES IDEALES: C- LEY DE GRAHAM DE LA DIFUSIÓN D- TEORÍA CINÉTICA A - CONCEPTO DE GAS-VAPOR A-1 - Un vapor es A - Cualquier

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

PRÁCTICA No. 5 Estados del flujo en un canal

PRÁCTICA No. 5 Estados del flujo en un canal PRÁCTICA No. 5 Estados del flujo en un canal Laboratorio de Hidráulica I OBJETIVO: Observar la generación y el comportamiento de diversos estados del flujo en un canal. INTRODUCCIÓN Para poder comprender

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO Facultad de Ingeniería Eléctrica y Electrónica Escuela Profesional de Ingeniería Eléctrica Ciclo 2010-B VISCOSIMETRO

UNIVERSIDAD NACIONAL DEL CALLAO Facultad de Ingeniería Eléctrica y Electrónica Escuela Profesional de Ingeniería Eléctrica Ciclo 2010-B VISCOSIMETRO VISCOSIMETRO ENGLER 1 1. OBJETIVOS: Determinar la viscosidad de una muestra de aceite lubricante. Mostrar la variación de la viscosidad de un fluido líquido con el cambio de temperatura. 2. FUNDAMENTO

Más detalles

GUIA DE LABORATORIO PRACTICA N 03 GRAVEDAD ESPECIFICA DE LOS SUELOS

GUIA DE LABORATORIO PRACTICA N 03 GRAVEDAD ESPECIFICA DE LOS SUELOS GUIA DE LABORATORIO PRACTICA N 03 GRAVEDAD ESPECIFICA DE LOS SUELOS 1. NORMATIVA 2. GENERALIDADES La gravedad específica de los suelos se define como la relación que existe de un volumen determinado de

Más detalles

Guía 2 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli

Guía 2 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli Física (Paleontólogos) - do Cuatrimestre 05 Guía - Hidrodinámica: fluidos ideales, ecuación de Bernoulli. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro

Más detalles

Leyes de los Gases. Prof. Sergio Casas-Cordero E.

Leyes de los Gases. Prof. Sergio Casas-Cordero E. Leyes de los Gases Prof. Sergio Casas-Cordero E. Sustancias gaseosas a 25 ºC y 1 atm Elemento H 2 (Hidrógeno) O 2 (Oxígeno) O 3 (Ozono) F 2 (Fluor) Cl 2 (Cloro) N 2 (Nitrógeno) He (Helio) Ne (neón) Ar

Más detalles

TEMA 12 EL ESTADO GASEOSO

TEMA 12 EL ESTADO GASEOSO TEMA 12 EL ESTADO GASEOSO Relación presión-volumen ley de Boyle A finales del siglo XVII boyle y Edme Mariotte, estudiaron independientemente la manera cómo cambia el volumen ocupado por un gas a una temperatura

Más detalles

PRACTICA No. 3 EL ESTADO GASEOSO

PRACTICA No. 3 EL ESTADO GASEOSO PRACTICA No. 3 EL ESTADO GASEOSO INTRODUCCION: Las sustancias en Estado Gaseoso tienen propiedades físicas y químicas que las hacen diferentes de otras que se encuentran en un estado físico distinto. A

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

EJERCICIOS DE EQUILIBRIO QUÍMICO.

EJERCICIOS DE EQUILIBRIO QUÍMICO. EJERCICIOS DE EQUILIBRIO QUÍMICO. 1º. A partir de 150 g de acético se desean obtener 166 g de acetato de etilo. Calcular los gramos de etanol que se necesitan sabiendo que la K c de la reacción de esterificación

Más detalles

(a) El número de capilares y el caudal en cada uno de ellos. (b) La velocidad de la sangre en la aorta y en cada uno de los capilares.

(a) El número de capilares y el caudal en cada uno de ellos. (b) La velocidad de la sangre en la aorta y en cada uno de los capilares. Guía - Hidrodinámica. Conservación del caudal. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro de. m en la sección de prueba. Si la velocidad del agua

Más detalles

Las ecuaciones químicas

Las ecuaciones químicas Las reacciones químicas se representan escribiendo las fórmulas de los reactivos en el primer miembro de una ecuación y las de los productos en el segundo. El signo igual se sustituye por una flecha (

Más detalles

Mediciones y Tipos de Errores

Mediciones y Tipos de Errores 1. Objetivos Práctica N 2 Mediciones y Tipos de es 1. Seleccionar el instrumento más apropiado para reizar una medición considerando su precisión y exactitud. 2. Reizar transformaciones de unidades en

Más detalles

Viscosidad de un líquido

Viscosidad de un líquido Viscosidad de un líquido Laboratorio de Mecánica y fluidos Objetivos Determinar el coeficiente de viscosidad de un aceite utilizando el viscosímetro de tubo y aplicando la ecuación de Poiseuille. Equipo

Más detalles

Determinar la variación de la viscosidad en función de la temperatura

Determinar la variación de la viscosidad en función de la temperatura PRACTICA # 4 VISCOSIDAD: MÉTODO DE STOKES Objetivo: Determinar la variación de la viscosidad en función de la temperatura Temas relacionados: Líquidos, líquidos newtonianos, formula de Stokes, friccion

Más detalles

Fundamentos Físicos de la Ingeniería (Ingeniería Industrial) Prácticas de Laboratorio Curso 2008-09

Fundamentos Físicos de la Ingeniería (Ingeniería Industrial) Prácticas de Laboratorio Curso 2008-09 Fundamentos Físicos de la Ingeniería Práctica 2: Estudio experimental de los gases ideales Objeto de la práctica El objetivo específico es estudiar el comportamiento experimental de los gases. Se supondrá

Más detalles

RESUMEN DE HIDROSTÁTICA E HIDRODINÁMICA

RESUMEN DE HIDROSTÁTICA E HIDRODINÁMICA Fluidos: RESUMEN DE HIDROSTÁTICA E HIDRODINÁMICA Materiales que fluyen, que no tienen forma propia, materiales que se comportan de manera diferente de los sólidos ya que estos tienen forma y volumen definido.

Más detalles

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad.

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad. LA MEDIDA Magnitudes físicas Todas las propiedades que podemos medir se denominan magnitudes. Para medir una magnitud hay que determinar previamente una cantidad de esta, llamada unidad. Al medir, se comparan

Más detalles

3. DETERMINACIÓN DE LA DENSIDAD RELATIVA Y LA DENSIDAD APARENTE DE UN CERÁMICO EN POLVO

3. DETERMINACIÓN DE LA DENSIDAD RELATIVA Y LA DENSIDAD APARENTE DE UN CERÁMICO EN POLVO 3. ETERMINACIÓN E LA ENSIA RELATIVA Y LA ENSIA APARENTE E UN CERÁMICO EN POLVO 3.1. Objetivos docentes Conocer un método para determinar la densidad de un sistema material sólido disperso con tamaño de

Más detalles

FUERZAS INTERMOLECULARES

FUERZAS INTERMOLECULARES DEPARTAMENTO DE CIENCIAS QUÍMICA - IB FUERZAS INTERMOLECULARES Existen fuerzas de atracción entre las moléculas (fuerzas intermoleculares). Ellas son las responsables de que los gases condensen (pasar

Más detalles

CURSO FÍSICA II 2012 CLASE VIII

CURSO FÍSICA II 2012 CLASE VIII UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO FÍSICA II 2012 CLASE VIII MECÁNICA DE FLUIDOS PROPIEDADES DE FLUIDOS ESTÁTICA DE LOS FLUIDOS CINÉMATICA DE

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

11. Desgaste de herramientas. Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas

11. Desgaste de herramientas. Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas 11. Desgaste de herramientas Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas Desgaste de herramientas La herramienta durante su trabajo está sometida

Más detalles

Actividades de consolidación

Actividades de consolidación Actividades de consolidación 1 Define los siguientes conceptos: Las definiciones de los distintos conceptos son: a) Magnitud: todo aquello que se puede medir. b) Propiedad intensiva: propiedad de la materia

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 6, Opción A Reserva 1, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

R, esto es, que aumenta su valor al aumentar la velocidad, resulta que un movimiento acelerado termina por convertirse en otro uniforme, cuando (1)

R, esto es, que aumenta su valor al aumentar la velocidad, resulta que un movimiento acelerado termina por convertirse en otro uniforme, cuando (1) VISCOSIDAD DE A ICERINA Fundamento Cuando un sólido se desplaza verticalmente y en sentido descendente en el seno de un fluido sobre él actúan las siguientes fuerzas: El peso del sólido (P) en dirección

Más detalles

Viscosidad - Fluidos No Newtonianos

Viscosidad - Fluidos No Newtonianos Viscosidad - Fluidos No Newtonianos Fenómenos de Transporte ILQ 230 (II 2011) Prof. Alonso Jaques Ley de newton de la Viscosidad y Y t < 0 t = 0 V v x y, t V v x y x V t pequeño t grande Fluido inicialmente

Más detalles

Ecuación de estado del gas ideal

Ecuación de estado del gas ideal Prácticas de laboratorio de Física I Ecuación de estado del gas ideal Curso 2010/11 1 Objetivos Comprobación de la ecuación de estado del gas ideal experimentalmente Construcción de curvas a presión, temperatura

Más detalles

1010 DEPARTAMENTO DE FÍSICA Y QUÍMICA 2º Bachillerato QUÍMICA

1010 DEPARTAMENTO DE FÍSICA Y QUÍMICA 2º Bachillerato QUÍMICA 1.- La constante de equilibrio, K p, para la siguiente reacción química: C 2 H 4 (g) + H 2 (g) C 2 H 6 (g), vale 5 x 10 17, a 25º C. Calcula, a la misma temperatura, el valor de K c. Solución: K c = 1,22

Más detalles

PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES

PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES Prof. Elizabeth K. Galván Miranda Prof. Ximena Villegas Pañeda Facultad de Química, UNAM Departamento de Fisicoquímica Laboratorio de Termodinámica

Más detalles